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Abstract

Datalog is a well-understood relational query language and there are efficient rea-

soners based on different concepts and technologies. Nevertheless, the search for faster

and more efficient reasoners continues. A promising approach for further performance

improvements is the so-called leapfrog triejoin by Veldhuizen [28]. Leapfrog triejoin is

a variable-oriented join algorithm, similar to an ordered merge join, and it computes

the matches of a Datalog rule as a result trie following a previously defined variable

order. Leapfrog triejoin is worst-case optimal w.r.t. the AGM bound [5, 28], which pro-

vides a tight bound on the maximum result size of full conjunctive queries, and empirical

evaluations suggest that leapfrog triejoin is promising for real-world problems, too [1,28].

The literature about leapfrog triejoin focuses on its application to a single join or,

respectively, Datalog rule. Thus, there are both practical and theoretical insights, e.g.,

on constructing the necessary data structures and the complexity bounds of leapfrog

triejoin. Unfortunately, applying leapfrog triejoin to whole Datalog programs during

materialisation yields new challenges. In this thesis, we concentrate on these challenges

as well as on potential solutions.

As leapfrog triejoin requires suitable data structures for each rule, it is prone to be

inefficient when considering the rules of a program in isolation, as this might introduce

avoidable redundancy. Moreover, the choice of ‘good’ variable orders is crucial for the

performance of leapfrog triejoin. Hence, we propose and discuss criteria for the quality

of variable orders. Unfortunately, finding good variable orders is challenging: we show

the NP-completeness of two decision problems that are tightly related to this task.

For finding good variable orders, we propose an optimal approach based on Answer

Set Programming as well as a heuristic approach. Furthermore, we show the trade-off

between the optimality of the ASP approach and the required time in an evaluation.

Moreover, we generalise leapfrog triejoin to use partial variable orders. We discuss the

resulting generalisation of the data structures, i.e., f-representations [7] instead of tries,

and we show how to efficiently prepare them for leapfrog triejoin. To realise the potential

of considering independent variables separately and the more succinct representation of

relations, we adapt leapfrog triejoin for partial variable orders. We show that, on a set

of benchmarks, partial variable orders are of higher quality than total ones w.r.t. our

optimisation criteria.
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1 Introduction

In contrast to the algorithmic, imperative approach of traditional software engineering,

Knowledge Representation and Reasoning typically follows a declarative approach, which

supports an intuitive modelling of the world as well as automated reasoning. Thus, Knowl-

edge Representation and Reasoning covers several real-world scenarios and it has a variety of

applications, e.g., for the Semantic Web [26], Knowledge Graphs [25], and game theory [3].

Even though there are different formalisms, e.g., description logics [6] and Answer Set Pro-

gramming [16], a common core concept is the idea of rules, which describe consequences of

(aspects of) the world: knowing that some facts hold allows us to infer further facts.

As a simple rule language, Datalog [2] has been of interest for several decades, and by

now its theoretical foundations are well-understood and there are several fast reasoner im-

plementations [8,12,20,23]. To keep pace with the increase of machine-readable information

about the world resulting in larger databases and ontologies, the search for even faster Data-

log reasoners continues. Moreover, language extensions like existential rules benefit from

improved performance as well, as it enables them to run on problems with larger input data.

To improve Datalog reasoners, the literature discusses different approaches and the knowl-

edge from related areas, in particular relational databases, is beneficial. A promising ap-

proach is the so-called leapfrog triejoin [28], which is a variable-oriented join algorithm and

is similar to ordered merge joins over multiple relations. Leapfrog triejoin is known to be

worst-case optimal w.r.t. to the AGM bound [5, 28], which provides a tight bound on the

size of a relational query and, thus, matches for a Datalog rule. Moreover, implementations

like LogicBlox [4] and EmptyHeaded [1], which are based on leapfrog triejoin, showcase the

practicality of this approach.

Thus, enabling an already fast Datalog reasoner to use leapfrog triejoin might increase its

performance even further. Applying leapfrog triejoin to whole Datalog programs, however,

yields new challenges. As a variable-oriented join algorithm with similarities to an ordered

merge join, leapfrog triejoin requires not only a variable order for each join, or Datalog rule,

but also sorted data structures supporting the variable orders. Veldhuizen [28] discusses some

approaches to obtain valid data structures for a single join, but there might be redundant data

structures. Even though this is sometimes unavoidable, using leapfrog triejoin for applying

several Datalog rules is prone to introduce avoidable redundancy – if done incautiously.

Moreover, different variable orders might yield noticeable performance differences, although

any variable order is worst-case optimal (w.r.t. the AGM bound).

Thus, we reflect upon computing the consequences of a Datalog program, known as

materialisation, via leapfrog triejoin from both a theoretical and a practical perspective.

Even though there is some discussion of using leapfrog triejoin for a single Datalog rule, we

are, as far as we know, the first to study the implications of applying leapfrog triejoin to

whole Datalog programs. The focus of this thesis is to provide the necessary foundation for

finding good variable orders for an efficient materialisation for a given Datalog program by

a Datalog reasoner based on leapfrog triejoin. The main contributions of our work are:

(i) showing the NP-completeness of problems related to finding ‘good’ variable orders for

leapfrog triejoin,
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(ii) discussing and quantifying criteria towards ‘good’ variable orders,

(iii) generalising leapfrog triejoin from total variable orders to partial ones,

(iv) providing an ASP approach and a heuristic approach for finding ‘good’ variable orders,

(v) discussing improvements of leapfrog triejoin in the context of Datalog materialisation,

and

(vi) evaluating our approaches for finding variable orders and the generalisation of variable

orders.

We start with a review of Datalog in Section 2, focusing on its syntax and semantics.

Moreover, we shortly recall stratified negation and existential rules as possible language

extensions. Afterwards, we introduce leapfrog triejoin in Section 3: we begin with tries

as its data structures, before we describe the algorithm itself. Additionally, we recall the

complexity bound for leapfrog triejoin w.r.t. the AGM bound and introduce further notions,

which we use in subsequent sections. In Section 4, we introduce two decision problems related

to finding variable orders for leapfrog triejoin, and we show that they are NP-complete. We

then discuss how to encode, evaluate and find good (total) variable orders for leapfrog triejoin

in Section 5. For finding good variable orders, we describe an ASP approach and a heuristic

one. We generalise leapfrog triejoin to partial variable orders in Section 6, and we discuss a

generalised version of tries, so-called f-representations [7], as well as the impact on leapfrog

triejoin and finding good variable orders in this context. Moreover, we describe in Section

7 how to deal with further settings, e.g., looking for multiple variable orders, and Datalog

extensions. Section 8 contains an evaluation of finding optimal variable orders with ASP

in contrast to a heuristic approach, and it evaluates the impact of partial variable orders.

Finally, Section 9 concludes the thesis.

2 Datalog

Datalog is a relational query language that introduces recursion and can therefore express

query mappings that are not first-order definable, e.g., notions of reachability. Datalog

evolved from the field of logic-programming and was inspired by Prolog. The first major

event in the history of Datalog was the first Datalog workshop [18] organised by Gallaire and

Minker in 1977. In the following years, the theoretic foundations of Datalog [2, Chapter 12]

were researched and Datalog became a well-understood query language. The second Datalog

workshop [14] is an example of a renewed interest, and further insights and extensions, e.g.,

existential rules and their implications, were introduced, discussed, and implemented. By

now, there is a variety of Datalog reasoners, e.g., VLog [12] and Llunatic [20].

Intuitively, a Datalog program is a set of implications, where conjunctions of atoms imply

further atoms, and it allows the recursive application of these implications. Thus, a Datalog

program defines a set of atoms that can be derived. The basic version of Datalog allows

neither negation nor function symbols, which leads to restricted expressivity. Different ex-

tensions, e.g., allowing negation in special cases (semipositive Datalog) or adding a successor

ordering, are used to overcome these limitations and to extend the expressivity of Datalog.

As an intuitive and declarative approach to recursion, Datalog has a variety of applications,
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e.g., for the Semantic Web [26] and AI [15].

When talking about Datalog programs, we consider a signature based on mutually dis-

joint, countably infinite sets of constants C, variables V, predicates P, and attributes A. The
function arity : P → N≥1 assigns each predicate an arity and we say that a predicate p with

arity(p) = n has the attributes A1, . . . , An ∈ A, which corresponds to the positions of tuples

for P . A relation p[A1, . . . , An] is a set of facts over a predicate p ∈ P and its attributes

A1, . . . , An ∈ A with arity(p) = n. A term t is an element t ∈ C ∪V. t denotes a list of terms

t1, . . . , tn, and we treat such lists as sets, if appropriate. An atom is an expression p(t) for

a predicate p ∈ P and terms t ⊆ C ∪ V with |t| = arity(p). For an expression ϕ, we write

ϕ[x] with x ⊆ V to indicate that ϕ uses (exactly) the variables x. For an expression ϕ[x]

and a substitution δ : V ⇀ C, let ϕδ be the expression obtained by replacing all unbound

occurrences of all x ∈ x by δ(x) if δ is defined for x.

2.1 Syntax

An in-depth introduction and analysis of basic properties of Datalog is given by Abiteboul

et al. [2, Chapter 12]. We slightly adapt their notions and provide a short review of the

concepts relevant to our work.

Definition 2.1. A Datalog rule is an expression

∀x,y. B[x,y]→ H[x]

where the head H is an atom and the body B is a conjunction of atoms. A Datalog program

is a finite set of Datalog rules.

As all variables are universally quantified, it is common to omit the universal quantifiers

when writing Datalog rules. A rule with an empty body is a fact. Alternatively, Datalog

can be defined by allowing several atoms in the rule head. This, however, does not result

in major differences, as several rules with a single head atom can express a single rule with

several head atoms. For a Datalog rule r = B → H, we use head(r) := H and body(r) := B

to obtain the head or, respectively, the body of the rule.

For a given Datalog program, we distinguish two kind of predicates: extensional data-

base (EDB) predicates are the ‘given’ predicates that occur only in rule bodies, i.e., no

new facts for these predicates can be derived. The intensional database (IDB) pred-

icates are the remaining predicates, which occur in the head of some rules. We use the

functions EDB(P ) and IDB(P ) to obtain the EDB or, respectively, IDB predicates of a Data-

log program P .

2.2 Semantics

There are different, yet equivalent ways to define the semantics of a Datalog program. We use

the fixpoint semantics. Again we refer to Abiteboul et al. [2, Datalog] for more information

about the different semantics.
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The evaluation of a Datalog program P is based on the set of all constants c ∈ C occurring
in P , the so-called Herbrand universe UP , which is used to obtain the ground instances of the

Datalog rules in P . For a given Datalog rule r[x] ∈ P , let ground(r, P ) := {rθ | θ : x→ UP }
denote the set of all ground instances. The grounding ground(P ) :=

⋃
r∈P

ground(r, P ) of a

program P is the union of the grounding of all its rules.

Definition 2.2. The immediate consequence operator TP of a Datalog program P maps

a set of ground facts I to a set of derived ground facts TP (I):

TP (I) = {H | H ← B ∈ ground(P ) and B ⊆ I }

The least fixpoint of TP is T∞
P =

⋃
i≥0 T

i
P , where T

0
P = ∅ and T i+1

P = TP (T
i
P ). A ground

fact A is derived from P if and only if A ∈ T∞
P . For a Datalog program P , a query ⟨P, q⟩

asks for all ground literals q(c) that can be derived from P .

2.3 Extensions

As the standard version of Datalog lacks some expressivity, e.g., negation is not allowed, there

are several extensions of Datalog. In this section, we give a short review of two features:

stratified negation and existential rules.

Stratified negation The first extension of Datalog we want to review is the introduction

of stratified negation [2, Chapter 15], a syntactically restricted form of negation. Intuitively,

stratified negation allows the use of negation, as long as all facts of a predicate can be

computed before its negation is used. To give a formal definition, it is useful to begin with

the simpler version of semipositive Datalog, which allows negation only for EDB predicates:

Definition 2.3. Semipositive Datalog, denoted Datalog⊥, extends Datalog by allowing

negated EDB atoms ∼p(t) in rule bodies.

To define the semantics of a semipositive Datalog program P over a database I of facts,

we transform P to a standard Datalog program P ′ over an extended version I ′ of the given

database as following: (i) for each EDB predicate p ∈ EDB(P ), we introduce a new EDB

predicate p̄ together with the facts p̄(c) ∈ I ′ for all atoms p(c) /∈ I with c ⊆ UP and (ii) we

replace each occurrence of ∼p with p̄. Then a fact is derived from P and I if and only if it

is derived from P ′ and I ′.

We can extend the idea of semipositive Datalog to receive stratified negation: we allow

not only negated EDB predicates, but we allow negated IDB predicates, too, as long as there

is a preorder ⪯ of the predicates such that it is possible to compute all facts of a predicate p

before its negation is needed to compute the facts of a predicate q with p ≺ q. The preorder

then gives rise to a stratification, a sequence of semipositive Datalog programs. Formally,

we can define this idea as follows:

Definition 2.4. Let P be a Datalog program with arbitrary negation. If there is a total

preorder ⪯, i.e., a total, reflexive and transitive binary relation, of the predicates such that
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• if H ← B ∈ P , p(t) = H, and q(u) ∈ B, then q ⪯ p, and
• if H ← B ∈ P , p(t) = H, and ∼q(u) ∈ B, then q ≺ p,

then P is stratifiable and ⪯ gives rise to a stratification, i.e., a partition {P 1, . . . , Pn}
of P , where each P i corresponds to an equivalence class [pi] of ⪯ and contains all the rules

defining the predicates q ∈ [pi], and for all 1 ≤ i, j ≤ n we have i < j if pi ≺ pj. Each P i is

called a stratum of the stratification.

The semantics of a Datalog program P with stratified negation is obtained via a strat-

ification {P 1, . . . , Pn} of P . Each P i is a semipositive Datalog program if we consider the

predicates defined in previous strata as EDB predicates for P i. This view is justified since

the stratification ensures that no facts for predicates of previous strata are derived. Thus,

we can compute the derived facts for each stratum sequentially, starting with P 1. Finally,

P entails all the facts that are derived for the strata.

To check whether a program P is stratifiable, it suffices to look at the precedence graph

GP of P . GP contains an edge ⟨p, q⟩ whenever there is a rule where the head is an atom

p(t) and the body contains a literal q(u) or ∼q(u). The edge is called positive for q(u) and

negative for ∼q(u). P is stratifiable if and only if GP contains no cycle with a negative edge,

and a suitable stratification order can then be found by topologically sorting the connected

components, e.g., by Tarjan’s strongly connected components algorithm [27].

Existential rules As a second extension of Datalog, we consider existential rules, which are

also known as tuple-generating dependencies. Existential rules allow to express constraints,

as they can ensure the existence of elements with certain properties: whenever the body of an

existential rule has a match, there have to be elements satisfying the heads. Otherwise, new

elements, so-called named nulls, together with the necessary facts to satisfy the constraints

are introduced.

We provide a short review of existential rules and, for an in-depth discussion of existential

rules and dependencies in general, we refer to Abiteboul et al. [2, Chapter 10]. For extending

Datalog with existential variables, we consider an additional countably infinite set of nulls

N , which is disjoint from the constants, variables, predicates, and attributes. Moreover,

nulls n ∈ N are terms and substitutions can map variables to both constants and nulls.

Otherwise, we use the same notions as for plain Datalog.

Definition 2.5. An existential rule, or tuple-generating dependency, is a formula of the

form

∀x,y. B[x,y]→ ∃z. H[x, z]

where the head H and the body B are conjunctions of atoms. The variables x are called

frontier.

Similar to plain Datalog rules, it is common to omit the universal quantifiers, and a

variable is implicitly universally quantified unless it is bound by an existential quantifier.

Let r = B[x,y] → ∃z. H[x, z] be an existential rule. The rule r is applicable to a set

I of facts for a substitution δ if (i) Bδ ⊆ I and (ii) r is not already satisfied under δ, i.e.,

Hδ′ ⊈ I for all extension δ′ ⊇ δ. Applying a rule r to a set I extends it, for all substitutions
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δ such that r is applicable to I for δ, by Hδ′, where δ′ is an extension of δ that maps each

z ∈ z to a fresh null. The so-called (standard) chase is a possibly infinite set I obtained by

the exhaustive, fair application of rules, and a fact is entailed by a Datalog program P with

existential rules if and only if it is contained in the chase.

3 Leapfrog Triejoin

As the leapfrog triejoin algorithm [28] is the central focus of this thesis, we start with a

review of the algorithm in this section. Leapfrog triejoin is a join algorithm for ∃1 queries,

i.e., first-order formulae without universal quantifiers. In particular, leapfrog triejoin can

be used for conjunctive queries and computing the consequences of a Datalog rule w.r.t.

facts I. In contrast to ‘traditional’ join algorithms, leapfrog triejoin is variable-oriented and

enumerates satisfying assignments for x of a query ϕ[x] similar to a backtracking search,

thereby creating a trie for the query results. Thus, leapfrog join is able to consider all input

relations simultaneously, instead of relying on intermediate results of successive binary joins

of the input relations. Leapfrog triejoin is worst-case optimal w.r.t. the AGM bound [5]

based on the fractional edge cover of a query and there are examples where leapfrog triejoin

is asymptotically faster than any join algorithm based on binary joins: for the relations

a1[A1] = {0, . . . , 2n− 1}, a2[A2] = {n, . . . 3n− 1}, and a3[A3] = {0, . . . , n− 1, 2n, . . . 3n− 1},
leapfrog triejoin determines that there are no matches for a body B = a1(x) ∧ a2(x) ∧ a3(x)
in O(1) steps, while any pairwise join produces n intermediate results.

As leapfrog triejoin uses variable orders during its search for satisfying assignments, we

introduce the following notions concerning orders. For n ∈ N, we use [n] to denote the set

{1, . . . , n}. For a set S, a surjective function f : S → [|S|] is an order (function) of S, and we

use Ord(S) = {f | f : S → [|S|] ∧ f is surjective} to denote the set of all order functions of

S. To specify an order function for a set S = {s1, . . . , sn}, a list ⟨si1 , . . . , sin⟩ with i1, . . . , in
being a permutation of [n] denotes the order function f : S → [n], sik 7→ k. An order function

f : S → [|S|] gives rise to a total order ≤ of S, and vice versa.

3.1 Data structure

Leapfrog triejoin uses tries [17], also known as prefix trees, as the underlying data structure.

Thus, the facts for the predicates of a Datalog rule or program are stored in tries. The core

idea is that the facts for a predicate are stored in a tree where each level is associated with

an attribute of the predicate. Then a tuple corresponds to a path in the tree. Consider a

predicate p with attributes A1, . . . , An for n = arity(p), where the trie uses the natural order

A1, . . . , An of the attributes. The first level of the trie contains all constants in the projection

onto the first attribute. For a constant c1 in the first level, the children are the constants c2

such that the projection onto the first two attributes contains ⟨c1, c2⟩. Similarly, a node at

level i < n is reached via a path ⟨c1, . . . , ci⟩ and its children are the constants ci+1 such that

the projection onto the first i+1 attributes contains ⟨c1, . . . , ci, ci+1⟩, i.e., the children are the

constants in the projection of the tuples with prefix ⟨c1, . . . , ci⟩ onto the attribute i+1. The

order of the attributes determines onto which attribute the projection occurs in each level.
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⟨a, a, d⟩
⟨a, a, e⟩
⟨a, c, e⟩
⟨a, c, g⟩
⟨b, c, a⟩

(a) Tuples

p

a

a

d e

c

e g

b

c

a

(b) Attribute order A1, A2, A3

p

a

d

a

e

a

c

a

b

e

a

g

a

(c) Attribute order A2, A3, A1

Fig. 1: Representation of a relation p[A1, A2, A3] as tuples and tries

Moreover, the children of a node are stored in some fixed order, e.g., an ascending order

based on their string representation. Fig. 1 shows an example for a relation and possible

tries.

There are other data structures which are related to tries and can simulate them. For

example, consider a relation p[A] for some predicate p ∈ P and attributes A ∈ A whose

facts are stored as a table and the tuples are hierarchically ordered w.r.t. to some order of

the attributes A. We can use the table instead of a trie with the same attribute order, as

moving to a vertex v with some prefix c in the trie corresponds to moving to the first row

with the values c for the corresponding attributes. Moreover, the subtree of v corresponds

to the rows with values c and they are easily accessed as the table is ordered and, thus, the

rows are consecutive. Finally, we observe that accessing all facts of the trie via a depth-first

search results in the ordered table.

As it is possible to use other data structures which act like tries, the following inter-

face based on the interface by Veldhuizen [28] abstracts the tries to trie iterators. Upon

initialisation, the iterator is positioned at the root of the trie and there are methods for

navigating the trie. The methods open(), which moves the iterator to the first child of the

current node, and up(), which moves the iterator to the parent of the current node, provide

the tools for vertically traversing the trie. For horizontal traversing, there are the methods

seek(seekKey), which moves the iterator to the first sibling s of the current node with

s ≥ seekKey, and next(), which proceeds the iterator to the next sibling of the current

node. The method key() returns the key of the current node, i.e., the constant assigned

to the node. As both seek() and next() might reach the end of the considered siblings,

a special symbol ∞ indicates the end, which can be checked via key(). Finally, there is a

method variables(), which returns the list of the variables that are assigned to the levels

of the trie, thereby providing a way to assign the variables of an atom to a trie iterator.

3.2 Algorithm

The computation of a leapfrog triejoin for a Datalog rule r[x] requires a variable order of x,

which determines the order in which the variables are processed. Then there are two major

tasks: navigating the tries and computing the bindings for the variables consecutively.

Firstly, we have a look at the second part, which is accomplished by Algorithm 1, called

leapfrog. As input, it expects a list of trie iterators It , which are positioned somewhere

10



Algorithm 1: leapfrog

Input : A list It of iterators of length n
Output: A generator for keys k ∈

⋂
i∈It

keys(i) at the current iterator positions

1 J = (J0, . . . , Jn−1) := sort(It) // sort iterators by their current keys

2 k′ := Jn−1.key() // currently largest key

3 idx := 0 // index of iterator with currently smallest key

4 while k′ ̸=∞ do
5 if Jidx.key() = k′ then
6 yield k′

7 Jidx.next()

8 else
9 Jidx.seek(k

′)

10 k′ := Jidx.key()
11 idx := idx+ 1 mod n

(except for the root) in their underlying tries. Thus, each iterator i corresponds to a set

keys(i) of keys, consisting of the key k where i is positioned at and all the larger siblings of

k. Note that if an iterator i is positioned at the smallest key with some prefix c1, . . . , cn,

then keys(i) consists of all keys k such that c1, . . . , cn, k is in the projection onto the first

n+ 1 levels. leapfrog returns a generator for the keys that are in the intersection
⋂
i∈It

keys(i)

of the sets corresponding to the given iterators It . Upon initialisation, leapfrog sorts the list

of iterators by their current keys and, afterwards, stores the currently largest key k′ as well

as the index idx of the iterator with the currently smallest key. Then the search for a match

begins: as long as the largest key is not ∞, i.e., no iterator has reached an end, it checks

whether the smallest key equals the largest key. If this is the case, a match is found and k′

is yielded and, once the computation of further matches is required, the iterator at index idx

proceeds to its next key, thereby becoming the iterator with the largest key. Otherwise, the

iterator at index idx leapfrogs to the first key k̃ with k̃ ≥ k′, which becomes the new largest

key. Again, the iterator is now among the iterators with the largest key. Finally, the index

idx is incremented (and reset if the end of the list is reached), thereby moving on to the next

iterator, which is positioned at the currently smallest key. Thus, we can think of the list of

iterators as a directed cycle, where idx points to the iterator with the smallest key and the

keys stay the same or increase along the edges. Fig. 2 shows an example computation for

leapfrog.

The main task of Algorithm 2 (leapfrog-triejoin) is navigating the iterators It and calling

leapfrog to construct matches for the variables. It requires a variable order l and each iterator

i ∈ It has to comply with this order, i.e., restricting l to the variables of i.variables()≥j ,

where j is the level where i is currently positioned at, has to lead to i.variables()≥j . In

particular, restricting l to the variables of i.variables() has to lead to i.variables() if i

is still positioned at its root. Starting with the first variable v of l, leapfrog-triejoin collects

the iterators Itv where v is assigned to some level of the underlying trie. Note that it is the

next level since the iterators comply with the order l. Thus, the algorithm proceeds these

11
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1

10

6 11

q

0 4 5 6 8 11

(a) Representation of three iterators i1 at p→ 2, i2 at p→ 4→ 0, and i3 at q → 0

i2 : 0 i3 : 0

i1 : 2 k′ = 2

(b) Initialisation

i2 : 4 i3 : 0

i1 : 2 k′ = 4

(c) i2 jumps to 4

i2 : 4 i3 : 4

i1 : 0 k′ = 4

(d) i3 jumps to 4

i2 : 4 i3 : 4

i1 : 4 k′ = 4

(e) i1 jumps to 4

(f) yield 4

i2 : 7 i3 : 4

i1 : 4 k′ = 7

(g) i2 proceeds to 7

i2 : 7 i3 : 8

i1 : 4 k′ = 8

(h) i3 jumps to 8

i2 : 7 i3 : 8

i1 : 8 k′ = 8

(i) i1 jumps to 8

i2 : 8 i3 : 8

i1 : 8 k′ = 8

(j) i2 jumps to 8

(k) yield 8

i2 : 8 i3 : 11

i1 : 8 k′ = 11

(l) i3 jumps to 11

i2 : 8 i3 : 11

i1 :∞ k′ =∞
(m) i1 reaches end

Fig. 2: Example computation for Algorithm 1 (leapfrog). The set of keys are keys(i1) =
{2, 4, 8, 10}, keys(i2) = {0, 1, 4, 7, 8}, and keys(i3) = {0, 4, 5, 6, 8, 11}. The trace shows the
current key for each iterator and the value k′ of the currently largest key, after the initialisa-
tion and after each execution of the code within the for-loop. Additionally, a yield-statement
is shown whenever a match is found. The current value of the index idx is used to add a box
around the corresponding iterator. The arrows between the iterators indicate the order in
which they are considered.
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iterators to the first key of the next level via calling open(). It then calls leapfrog with these

iterators and the yielded keys are bindings for v, which might lead to a match. Hence, after

receiving a key k ∈ leapfrog(Itv), leapfrog-triejoin returns the binding {v 7→ k} if v is the last

variable to be bound or, otherwise, it computes the matchings for the remaining variables

l≥1 and the iterators It recursively. In particular, the iterators remain at the position they

are at when yielding k, thereby ensuring that they comply with l≥1. Having considered

all bindings for v, the iterators Itv return to the parents of their current key and they are

therefore in the same state as at the beginning of leapfrog-triejoin.

Given a Datalog rule r[x] = H ← B and a variable order l of x, we prepare an iterator

i for each atom p(v) ∈ B: we choose a trie for the predicate p where the attribute order is

the same as the order of v w.r.t. l, we initialise i to start at the root of the trie, and we

set i.variables() := v. Thus, i complies with l. Note that several iterators may operate

on the same trie, potentially with different associated variables variables(). Moreover, r

and l determine which tries are required. Finally, leapfrog-triejoin with l and the prepared

iterators returns a generator for the matches of r.

Concerning a Datalog rule r, there are two cases we have to handle: constants and

variables occurring several times in the same atom. We can handle these cases via the

rewrites proposed by Veldhuizen [28]. If an atom contains a constant c, we syntactically

replace c by a fresh variable vc and add an atom Constc(vc) with Constc = {c}. If a variable

v occurs n ≥ 2 times in an atom, we replace each occurrence 2 ≤ i ≤ n with a fresh variable

vi and add an atom Id(v, vi) with Id(x, y)⇔ (x = y).

These rewrites, however, require extra effort while searching for a good variable order,

as we have to ensure that v occurs before all the fresh variables v2 up to vn, and we lose the

information that there is only a single match for the variables vc. Thus, it might be beneficial

to keep the Datalog rule and, instead, adapt the iterators for the corresponding atoms. For

an atom p(t) with a constant c ∈ t, an iterator can use any trie for the predicate p and has

to ensure that seek(seekkey) and next() called in levels before the level of c consider only

keys that are an ancestor of a node in the level of c with value c. Ideally, the used trie starts

with attributes for the constants. Similarly, if a variable v occurs several times in an atom

p(t), the iterator can use any trie where the attributes for v are consecutive. Then, seek(k)

and next() called upon the first level representing v consider only keys that are present in

all levels representing v, and open() and close() traverse these levels with one call.

3.3 Complexity considerations

For a given Datalog rule r, we are interested in the worst-case runtime of any join algorithm,

and leapfrog triejoin in particular, for computing the matches of r, i.e., we are interested in

the maximal amount of time or, respectively, steps a join algorithm needs for any database

of relations for the body predicates. This leads to the question of how many matches the rule

r can have for relations of maximal size n, and the so-called AGM bound provides a tight

bound [5]. As leapfrog triejoin is worst-case optimal for the AGM bound [28], we provide a

short review.

The AGM bound is based on the fractional edge cover of a relational join or, respectively,

13



Algorithm 2: leapfrog-triejoin

Input : A variable order l for some variables v and
a list It of iterators that comply with l

Output: A generator for matches for v w.r.t. It

1 v := l0
2 Itv := {i ∈ It | v ∈ i.variables()}
3 for i ∈ Itv do
4 i.open()

5 for k ∈ leapfrog(Itv) do
6 if |l| = 1 then
7 yield {v 7→ k}
8 else
9 for µ ∈ leapfrog-triejoin(l≥1, It) do

10 yield µ ∪ {v 7→ k}

11 for i ∈ Itv do
12 i.up()

a Datalog rule. An edge cover for a (hyper)graph G = ⟨V,H⟩ is a set of edges EC ⊆ H such

that every vertex occurs in at least one of these edges, i.e., V =
⋃

e∈EC
e. The corresponding

integer linear program uses a variable λe ∈ {0, 1} for every edge e ∈ H and there is a

constraint for every vertex v ∈ V requiring that
∑

e∈H,v∈e
λe ≥ 1. A fractional edge cover is a

solution to the relaxation to a linear program, i.e., λe ∈ R for all e ∈ H. The minimum size

of a (fractional) edge cover is called the (fractional) edge cover number.

Let r = h[y] ← B[x] be a Datalog rule and let n = max
p∈Pr

|p| be the size of the largest

relation used in r. Then r gives rise to a hypergraph G = ⟨x, H⟩ with H = {v | p(v) ∈ B}.
It is easy to see that the number of matches is bound by nρ with ρ being the edge cover

number for G, as the join of the atoms in an edge cover already binds all variables. Asterias,

Grohe, and Marx [5] showed that the number of matches is tightly bound by nρ
∗
with ρ∗

being the fractional edge cover number for G. Thus, the bound is known as the AGM bound.

To reach the worst-case optimality of leapfrog triejoin w.r.t. the AGM bound, it is

essential that the trie iterators are efficient: key() has to take O(1) time, next() and

seek(seekKey) are required to take O(logN) with N being the cardinality of the underly-

ing relation, and visiting m keys in ascending order has to be in O(1+log N
m). Then leapfrog

triejoin can be shown to be worst-case optimal [28].

3.4 Further notions and functions

As we discuss different facets concerning finding and evaluating variable orders for leapfrog

triejoin, we introduce further notions and functions to make the discussion more concise.

There are situations where we do not care about the data stored in a trie, but we are

only interested in the structure of the trie. A typical example is finding a variable order

for a rule without knowing the facts or before constructing the tries. To formally describe
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the structure of a trie, we state the predicate for which the trie should be used as well as

an attribute order for this predicate. When we use a trie structure for an atom p(x), we

assume that x contains no constants and no repeated variables. This can be achieved by the

rewrites of Section 3.2.

Definition 3.1. The (trie) structure t of a trie for a predicate p[A1, . . . , An] is a tuple

⟨p, f⟩ where f ∈ Ord(A) is an order function of the attributes of p. A trie structure t = ⟨p, f⟩
is compatible with a variable order g and an atom p(x) with x ∩ C = ∅ and no repeated

variables in x if g(xi) ≤ g(xj)⇒ f(Ai) ≤ f(Aj) for 1 ≤ i, j ≤ arity(p), i.e., the order of the

variables of the atom agrees with the order of the attributes of the trie.

Given an order for variables x, the computation of leapfrog triejoin requires a compatible

trie for every atom p(v) with v ⊆ x in the join. Thus, we can check whether a given set T of

tries is sufficient to compute the leapfrog join of a Datalog rule or, respectively, the leapfrog

joins of a Datalog program. We then say that T is admissible:

Definition 3.2. Let T be a set of tries, let r = H[x] ← B[x,y] be a Datalog rule, and let

f : x ∪ y → [|x ∪ y|] be a variable order. f is admissible for r w.r.t. T if for each atom

b ∈ B there is a trie t ∈ T that is compatible with b and f .

On the other hand, we might compute the set of required tries for a given variable order.

Thus, we define a function Trie to obtain the structure of the required trie for a given atom

and variable order. Similarly, its generalisation Tries returns the structures of the required

tries for a Datalog rule or program:

Definition 3.3. For an atom a = p(v) and a variable order f ∈ Ord(x) with v ⊆ x, the

function Trie(f, a) returns the structure of the compatible trie. For a Datalog rule r and a

variable order fr for r, let Tries(r, fr) := {Trie(f, a) | a ∈ body(r)} denote the set T of tries

such that fr is admissible for r w.r.t. T . For a Datalog program P with variable orders F

for each r ∈ P , let Tries(P, F ) :=
⋃
r∈P

Tries(r, fr) denote the set T of tries such that for each

rule r ∈ P the corresponding variable order fr ∈ F is admissible for r w.r.t. T .

4 Decision problems

In the previous section, we described how to compute a leapfrog triejoin for a Datalog rule

and a (given) order of its variables. In the end, however, our goal is to find a (good) variable

order for a given Datalog rule, instead of relying on receiving one. In order to feasibly find

variable orders and to decide between different possible variable orders, it is beneficial to

study some decision problems that arise naturally.

4.1 Single Trie

We observe that for a rule r[x] any variable order l ∈ Ord(x) can be used for a leapfrog

triejoin, but there are differences in the tries that are needed. Even though there is no

preference between two tries with different attribute orders for a predicate p (unless there is

15



additional information about the data distribution for p), it is superior to have only one trie

instead of several since every trie has to be stored and maintained whenever consequences

for p are derived. Ideally, there is only a single trie for each predicate. Unfortunately, there

are rules where any variable order requires multiple tries for at least one predicate, e.g.,

binaryCycle(x)← p(x, y) ∧ p(y, x), which detects elements with a p-cycle of length two.

As this property might indicate whether a rule inherently requires to maintain several

tries for some predicates, it is interesting whether there is a variable order for a given Datalog

rule such that we need only one trie for each predicate used in the rule:

Definition 4.1. The decision problem SingleTrie asks whether a Datalog rule r has a

variable order that requires for each predicate at most one trie, i.e.,

SingleTrie = {r[x] | ∃f ∈ Ord(x). ∀p ∈ P. |{fp | ⟨p, fp⟩ ∈ Tries(r, f)}| ≤ 1}

For a more illustrative perspective, we can think about a rule r with its variables and

atoms as a directed, labelled graph dep(r). Every variable is a vertex and every binary

atom p(x, y) represents an edge ⟨x, y, p1,2⟩. Predicates with higher arity can be translated to

edges by considering pairs of its positions, e.g., an atom p(x1, . . . , xn) gives rise to the edges

⟨xi, xj , pi,j⟩ with 1 ≤ i < j ≤ n.

Definition 4.2. Let r = H[y] ← B[x] be a Datalog rule. The induced dependency graph

dep(r) := ⟨V,E⟩ is a directed, edge-labelled graph defined by V := x and E := {⟨vi, vj , pi,j⟩ |
p(v) ∈ B ∧ vi, vj ∈ v ∧ i < j}.

Using the natural order of the attributes for all predicates would enforce a variable order

to respect all the dependencies (a.k.a. directed edges) of the graph dep(r); and there is no

variable order if and only if the graph contains a (directed) cycle. We can use any attribute

order for a predicate p instead of the natural order by reversing all edges ⟨x, y, pi,j⟩ with Ai

and Aj being attributes of p whose position we have reversed. Thus, we can reformulate

SingleTrie to ask whether there is an attribute order for each predicate p such that the

induced graph contains no (directed) cycles.

Independent of the perspective, it is easy to verify whether a variable order requires at

most one trie per predicate. It is, however, difficult to check whether such an order exists.

Indeed, we have the following theorem:

Theorem 4.3. SingleTrie is NP-complete.

Proof. To show membership, we non-deterministically choose a variable order f . We then

check for each predicate p whether all atoms with predicate p require the same trie. This

can be done in polynomial time since there are only linear many predicates and atoms.

To show hardness, we provide a reduction from Sat. Let ϕ be a propositional formula

in CNF, i.e., ϕ is a conjunction of disjunctions of literals. For each proposition p, we use a

predicate p̃. Moreover, we use an additional predicate q. We construct a rule r = h(c0)← B

where the body B contains the following atoms. For each clause Ci = li,1 ∨ . . . ∨ li,ni , we

introduce variables xi,0, . . . , xi,ni and we add the atom p̃(xi,j−1, xi,j) for each literal li,j = p

16



and p̃(xi,j , xi,j−1) for each literal li,j = ¬p. To construct cyclic structures, we add the atom

q(xi,0, xi,ni). Then, ϕ is satisfiable if and only if there is a variable order for r which requires

at most one trie for each predicate:

⇒: Let A be a satisfying assignment for ϕ. For each clause Ci = li,1 ∨ . . . ∨ li,ni , we split

the sequence ⟨0, 1, . . . , ni⟩ into non-empty intervals I1, . . . , Iτi such that 0 ∈ I1, j ∈ I2k with

k ∈ N if A(li,j) = 1, and j ∈ I2k+1 with k ∈ N if A(li,j) = 0. We consider the sequence

S = I1 · I3 · . . . · Iτi,odd · Ī2 · Ī4 · . . . · Īτi,even with τi,odd being the largest odd index j ≤ τi,

τi,even being the largest even index j ≤ τi, and, for an interval I = ⟨j, j + 1, . . . , j + k⟩ for
some j, k ∈ N, Ī = ⟨j + k, . . . , j + 1, j⟩ being the reversed interval. Thus, S collects the

values from the odd intervals and, then, the values from the even intervals, and it collects

the values of each even interval in reversed order. For the variables xi,0, . . . , xi,ni , we define

an order li = ⟨xi,j⟩j∈S . We observe that the variable order li induces for a predicate p̃ the

trie ⟨p̃, ⟨A1, A2⟩⟩ if A(p) = 1 and the trie ⟨p̃, ⟨A2, A1⟩⟩ otherwise: A(li,j) = 0 ⇒ j ∈ I2k+1

with k ∈ N ⇒ xi,j < xi,j−1 ⇒ ⟨p̃, ⟨A2, A1⟩⟩ for li,j = p and ⟨p̃, ⟨A1, A2⟩⟩ for li,j = ¬p.
Similarly, A(li,j) = 1 ⇒ j ∈ I2k with k ∈ N ⇒ xi,j > xi,j−1 ⇒ ⟨p̃, ⟨A1, A2⟩⟩ for li,j = p and

⟨p̃, ⟨A2, A1⟩⟩ for li,j = ¬p. Since there is at least one literal that evaluates to true, there are

at least two intervals and, thus, 0 and ni are in different intervals, thereby ensuring that

⟨q, ⟨A1, A2⟩⟩ always suffices. As each clause introduces individual variables, we can combine

the variable orders for the clause to a global variable order, which uses at most one trie for

each predicate.

⇐: Let f be a variable order that requires at most one trie for each predicate. W.l.o.g.,

we assume that f requires the trie ⟨q, ⟨A1, A2⟩⟩ (if it requires ⟨q, ⟨A2, A1⟩⟩, we use the reverse
order, which reverses the attribute order of all required tries). Consider the assignment A

with

A(p) :=

{
1 if ⟨p̃, ⟨A1, A2⟩⟩ ∈ Tries(r, f)

0 otherwise

We observe that A(li,j) = 0 implies f(xi,j) < f(xi,j−1). Moreover, having ⟨q, ⟨A1, A2⟩⟩
implies f(xi,0) < f(xi,ni) for all clauses Ci. As f cannot contain a cycle, there has to be at

least one literal in each clause that evaluates to true. Thus, A is satisfying.

Corollary 4.4. SingleTrie is still NP-complete if we require that each variable occurs at

most twice in the Datalog rule. Moreover, a similar reduction from 3Sat to SingleTrie

shows that it remains NP-complete if we bound the length of (undirected) cycles in the

dependencies of the variables by 4. It is easy to see that it remains NP-complete even for

a bound of 3, since a cycle of length 4 can be transformed into two cycles of length 3 where

one edge of each cycle uses the same, fresh predicate.

We can define a similar decision problem that considers Datalog programs instead of

single Datalog rules. This, however, does not increase the complexity of the problem since

we are merely interested in the body atoms and can combine the body atoms of all rules into

a single rule (with an arbitrary head).
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Simplifications Even though it is unlikely to find a polynomial algorithm to solve Sin-

gleTrie, there are some considerations on how to simplify the problem by reducing the

number of atoms, predicates, and variables. Hopefully, the simplifications suffice for rules

encountered in practice to immediately obtain an answer or to have only a small problem

instance left.

For a Datalog rule r, we consider its dependency graph dep(r). We can simplify the

dependency graph by exhaustively applying any of the following simplifications:

(i) remove any vertex v (and its incident edges) with deg(v) ≤ 1,

(ii) remove any edge that is part of no (undirected) simple cycle,

(iii) remove any edge whose label is used by no other edge,

(iv) remove all edges along an undirected path ⟨y0, y1, . . . , yn, yn+1⟩ with deg(yi) = 2 for

1 ≤ i ≤ n and a label l such that there are 0 ≤ i, j ≤ n with ⟨yi, yi+1, l⟩, ⟨yj+1, yj , l⟩ ∈ E,

(v) for ⟨x, y, l1⟩, ⟨x, y, l2⟩ ∈ E with l1 ̸= l2, replace all edges ⟨v, w, l2⟩ by ⟨v, w, l1⟩, and
(vi) for ⟨x, y, l1⟩, ⟨y, x, l2⟩ ∈ E with l1 ̸= l2, replace all edges ⟨v, w, l2⟩ by ⟨w, v, l1⟩.

The correctness of the simplification (i), (ii), and (iii) is easy to see. To see the correctness

of the simplification (iv), we assume that the attribute orders of the predicates and the

positions of y0 and yn+1 are fixed, and we show that there are positions of y1, . . . , yn that

respect the attribute orders. W.l.o.g., we assume y0 < yn+1. There are a forward and

a backward edge labelled by l. Let ⟨yi, yi+1, l̃⟩ with 0 ≤ i ≤ n be the last forward edge

of the undirected path ⟨y0, y1, . . . , yn, yn+1⟩. We can find positions for y1, . . . , yi such that

yj < yi+1 for 0 ≤ j ≤ i. If i = n, we are done. If i < n, we set the position of yi+1

such that yn+1 < yi+1, and we can find appropriate positions for yi+2, . . . , yn as the path

⟨yi+1, . . . , yn+1⟩ contains only backward edges. The simplifications (v) and (vi) handle cycles

of length two. Fixing the direction of either edge immediately determines the direction of

the other edge to prevent a directed cycle. Thus, we can choose one of the involved labels

and replace all its occurrences by the other label, and it does not matter which of the labels

we choose as they determine each other. For the simplification (vi), we have to reverse the

edges for which we replace the labels.

If the (simplified) dependency graph contains a directed cycle where all edges have the

same label, then there is no variable order which requires at most one trie for each predicate.

If the (simplified) dependency graph is empty or a single cycle (that does not fulfil the above

property), then there is a variable order which requires at most one trie for each predicate.

In the remaining cases, we have to do more work, e.g., by finding a propositional encoding

and using a Sat-solver for this encoding.

Propositional encoding Let ⟨V,E⟩ be the (simplified) dependency graph for a Datalog

rule r[x], and we want to find a propositional encoding whose solution induces a variable

order f ∈ Ord(x) that requires at most one trie per predicate. We introduce propositions

xv<w for v, w ∈ V and v ̸= w. The idea is that we can construct a variable order from a

satisfying assignment A by setting f(v) < f(w) if A(xv<w) = 1, and f(x) > f(y) otherwise.

We ensure that this construction is well-defined by adding (i) xv<w ↔ ¬xw<v for v, w ∈ V
and v ̸= w and (ii) xv1<v2 ∧ xv2<v3 → xv1<v3 for v1, v2, v3 ∈ V being different vertices.
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Moreover, we use propositions pi,j for p ∈ P and 1 ≤ i < j ≤ arity(p) to encode whether a

position i occurs before a position j in a predicate p. We connect the two kinds of propositions

as we add xv<w ↔ pi,j for each edge ⟨v, w, pi,j⟩ ∈ E. Finally, we obtain that this propositional

encoding is satisfiable if and only if there is a variable order f for r such that f requires at

most one trie per predicate.

4.2 Trie Set Admissibility

Our definition of SingleTrie and our approaches to solve it (Section 4.1) focus on variable

orders, even though it is possible to express similar ideas with a focus on the attribute order

of the predicates, e.g., SingleTrie can be reformulated to asks whether there is an attribute

order for each predicate such that the atoms of a Datalog rule, or Datalog program, induce

an admissible variable order. We now show that this idea is no longer feasible if we allow

several tries for the same predicate as there is most likely no polynomial algorithm to decide

whether a given set of atoms and tries has an admissible variable order. Thus, it is not

sufficient to specify the tries to use for leapfrog triejoin.

Assume that we are given a set of tries for the predicates used in leapfrog triejoins of

Datalog rules. We might encounter this situation after fixing the variable orders for other

rules, thereby already requiring a set of tries. We then wonder whether we can reuse these

tries or whether we have to add more tries, and we call this problem Admissibility:

Definition 4.5. The decision problem Admissibility, or short Adm, asks whether a Data-

log rule r has an admissible variable order for a given set T of trie structures, i.e.,

Adm = {(r[x], T ) | ∃f ∈ Ord(x). f is admissible for r w.r.t. T}.

We observe that we can check whether a variable order is admissible in polynomial time,

as we only have to check whether each (of the linear many) body atoms has a compatible

trie. It is, however, unlikely that there is a polynomial algorithm to find such a variable

order or to certainly refute its existence. Indeed, we have the following theorem:

Theorem 4.6. Adm is NP-complete.

Proof. To show membership, we choose non-deterministically a variable order f . For each

atom p(v), we can check (in polynomial time) whether there is a compatible trie t ∈ T (since

there are only linear many tries for p and checking compatibility is possible in linear many

steps in the size of the variable order and the attribute order).

To show hardness, we provide a reduction from 3Sat. Let ϕ be a propositional formula in

CNF where each clause consists of at most three literals. W.l.o.g., we assume that each clause

has exactly three literals. We replace every negative literal l = ¬p by a fresh proposition

p̄ and add clauses for ¬p ↔ p̄, i.e., p ∨ p̄ and ¬p ∨ ¬p̄. We call this new formula ϕ̃ and

observe that ϕ is satisfiable if and only if ϕ̃ is satisfiable. To translate ϕ̃ to a Datalog

rule r, we use the propositions p and p̄ as variables. Moreover, we introduce a variable

z and a variable xi for each clause Ci = pi,1 ∨ pi,2 ∨ pi,3. The intuition is that z acts as

a separator between false and true propositions, i.e., f(z) < f(p) if and only if A(p) = 1
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during the construction of an assignment A for a variable order f , and vice versa. Intuitively,

for a clause Ci = pi,1 ∨ pi,2 ∨ pi,3 and variable order f , f(z) < f(xi) ensures during the

construction of an assignment A that A(pi,1 ∨ pi,2) = 1. Formally, we translate every clause

Ci = pi,1 ∨ pi,2 ∨ pi,3 to the atoms ψ1(Ci) := {ci,1(pi,1, pi,2, xi), ci,2(xi, pi,3, z)} with the

trie structures τ1(Ci) := {⟨ci,j , f⟩ | j ∈ {1, 2} ∧ f ∈ {⟨1, 3, 2⟩, ⟨2, 3, 1⟩, ⟨3, 1, 2⟩, ⟨3, 2, 1⟩}}.
Additionally, we translate each literal p̄ to the atom ψ2(p̄) = qp̄(p̄, z, p) with the trie structures

τ2(p̄) := {⟨qp̄, ⟨1, 2, 3⟩⟩, ⟨qp̄, ⟨3, 2, 1⟩⟩}. Thus, we set r := h(c0)←
∧

Ci∈ϕ̃,|Ci|=3

ψ1(Ci)∧
∧̄
p∈ϕ̃

ψ2(p̄)

and T :=
⋃

Ci∈ϕ̃,|Ci|=3

τ1(Ci) ∪
⋃̄
p∈ϕ̃

τ2(p̄), where p̄ ∈ ϕ̃ denotes that p̄ syntactically occurs in ϕ̃.

We have that ϕ̃ is satisfiable if and only if r has an admissible variable order for T :

⇐: Let f be an admissible order for r w.r.t. T . Then, the assignment A with A(p) = 1

if and only if f(z) < f(p) for each proposition p is satisfying. The equivalences ¬p↔ p̄ are

satisfied thanks to ψ2(p̄), which ensures that either f(p̄) < f(z) < f(p) or f(p) < f(z) < f(p̄)

hold. Moreover, for every clause Ci we have f(z) < f(pi,3) or f(z) < f(xi) thanks to

ci,2(xi, pi,3, z). In the former case, Ci is immediately satisfied due to A(pi,3) = 1. In the latter

one, we have f(z) < f(xi) < f(pi,1) or f(z) < f(xi) < f(pi,2) thanks to ci,1(pi,1, pi,2, xi), and

we therefore have A(pi,1) = 1 or A(pi,2) = 1, thereby satisfying Ci.

⇒: Let A be a satisfying assignment for ϕ̃. We choose a variable order f such that

(i) for each proposition p, we have f(p) < f(z) if and only if A(p) = 0,

(ii) for each variable xi, we have f(z) < f(xi) if and only if A(pi,1 ∨ pi,2) = 1, and

(iii) for each variable xi and 1 ≤ j ≤ 2, we have f(pi,j) < f(xi) if and only if A(pi,j) = 0

and A(pi,1 ∨ pi,2) = 1.

Since A is satisfying for ϕ̃, at least one proposition of Ci is true and there is a compatible trie

for each atom ψ1(Ci): (i) for ci,1(pi,1, pi,2, xi), f(xi) < f(pi,1) or f(xi) < f(pi,2) and there

is a compatible trie as all tries with A3 not being the last attribute are present and (ii) for

ci,2(xi, pi,3, z), if A(pi,3) = 1, then f(z) < f(pi,3) and one of the attribute orders with A3

before A2 is compatible, and if A(pi,3) = 0, then f(pi,3) < f(z) < f(xi) (since A is satisfying

and, thus, A(pi,1 ∨ pi,2) = 1) and the attribute order ⟨2, 3, 1⟩ is compatible. Moreover, there

is a compatible trie for each atom ψ2(p̄) since A(p) ̸= A(p̄) due to ¬p ↔ p̄. Thus, f is

admissible for r w.r.t. T .

Corollary 4.7. Adm is still NP-complete if we restrict the predicate arity to be at most

three, i.e., arity(p) ≤ 3 for all p ∈ P.

We observe that Adm ∈ P if we restrict the predicate arity to be at most two, i.e.,

arity(p) ≤ 2 for all p ∈ P. Let T be a set of trie structures, let r be rule, and let p be

a predicate with arity(p) = 2. If T contains no trie structure for p and there is an atom

p(x) ∈ body(r), then there is no admissible variable order for r w.r.t. T . If T contains

both possible trie structures for p, then the atoms p(x) ∈ body(r) do not restrict possible

solutions. Thus, we have to consider only predicates with exactly one trie structure in T :

each atom using one of these predicates introduces a dependency between two variables, and

there is an admissible variable order if and only if these dependencies are acyclic.
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Simplifications Even though there are worst-case scenarios which require significant ef-

fort, there is hope that we rarely encounter them in practice as there are several simplifica-

tions for this problem. We associate every atom A = p(v) with the set TA of tries that we can

use for it. Initially, these are exactly the tries for the predicate p, i.e., TA := {⟨p, fp⟩ ∈ T}.
We then exhaustively apply the following simplifications:

(i) delete all atoms p(v) where all tries for its predicate p are available,

(ii) select an atom p(v) with a single associated trie, fix the order of v accordingly, and

remove all tries associated to other predicates that violated this order, and

(iii) select an atom p(v) and v, w ∈ v where all tries for the atom require v < w, fix v < w,

and remove all tries associated to other predicates which require w > v.

If an atom is associated with no trie any more, then there is no admissible variable order.

If all atoms are associated with exactly one trie, it is easy to check whether this induces a

valid variable order. In the remaining cases, we cannot directly decide whether an admissible

order exists and have to use, e.g., a propositional encoding.

Propositional encoding Let r[v] = H ← B be a Datalog rule and let T be a set of

tries structures. Similar to the encoding for SingleTrie, we introduce propositions xv<w

for v, w ∈ v and v ̸= w and the formulae (i) xv<w ↔ ¬xw<v for v, w ∈ V and v ̸= w and

(ii) xv1<v2 ∧ xv2<v3 → xv1<v3 for v1, v2, v3 ∈ V being different vertices.

Additionally, we have to ensure that for each body atom there is a compatible trie, i.e.,

for each atom A = p(v1, . . . , vn) ∈ B with n = arity(p) and attributes A1, . . . , An of p, we

add the formula ∨
⟨p,fp⟩∈T

∧
1≤i,j≤n

fp(Ai)<fp(Aj)

xvi<vj

If we have applied the simplifications described above, we use only tries for each atom that

are still associated with it. Finally, we observe that this encoding is satisfiable if and only if

there is an admissible variable order for r w.r.t. T .

5 Variable orders for Datalog programs

In the previous chapters, we discussed some theoretical problems concerning variable orders

for leapfrog triejoin and we only loosely distinguished between single Datalog rules and whole

programs, as the theoretical considerations are similar. In practice, however, it is essential

to consider Datalog programs more carefully, especially while searching for ‘good’ variable

orders for all Datalog rules of a program. Optimising the variable order of a single rule is a

necessary building block, but there are further considerations when optimising several rules,

e.g., which tries of the predicates can be reused between rules. Thus, we now provide a

detailed approach on how to find a variable order for each rule of a program simultaneously,

thereby creating the basics for computing the consequences of a Datalog program via leapfrog

triejoins.

As a general set-up, we assume that we have a Datalog reasoner that uses leapfrog

triejoin for computing the matches of a Datalog rule and a given variable order. Moreover,
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we are given a Datalog program, whose consequences we want to compute. Our task is to

provide the reasoner with a variable order for each rule, thereby enabling it to compute the

consequences. Hence, there are some questions we have to answer: How does a variable order

look like? Are there any restrictions? How do we encode the variable orders? What is a

good variable order? What are good variable orders across several rules? How do we find

them? Are they optimal? Which tries do we need? How can we obtain the required tries

from the input relations and the rule applications? However, we do not have to deal with

the implementation details of the Datalog reasoner, e.g., the technical layer of the relations

or the order in which the rules are applied.

As a basic setting, we want to find a single, total variable order for each rule and use these

orders to compute the matches via leapfrog triejoin. Moreover, we prepare and maintain all

required tries for all predicates. We introduce and discuss advanced techniques in Section 7.

5.1 Variable order

Let P =
n⋃

i=1
ri[xi] be a Datalog program with n rules. W.l.o.g, we assume that the rules use

disjoint variables, i.e., xi ∩ xj = ∅ for 1 ≤ i < j ≤ n. We then are interested in variable

orders fi ∈ Ord(xi) for each rule ri. As there can be several tries for the same predicate, any

variable order is valid, even though they are of different quality. Thus, we can encode the

potential variable orders with propositions that indicate the relation between two variables

of a rule, i.e., for each pair of variables x, y ∈ xi and 1 ≤ i ≤ n there is a proposition px<y.

We use formulae for totality (5.1.1), transitivity (5.1.2), and irreflexivity (5.1.3) to ensure

that the encoding induces valid variable orders:

Definition 5.1. For a Datalog rule ri[xi] ∈ P , we introduce the propositional formulae

px<y ∨ py<x for x, y ∈ xi, x ̸= y, 1 ≤ i ≤ n (5.1.1)

px<y ∧ py<z → px<z for x, y, z ∈ xi, 1 ≤ i ≤ n (5.1.2)

¬px<x for x ∈ xi, 1 ≤ i ≤ n (5.1.3)

Then a satisfying assignment A for the formulae of Definition 5.1 induces for the rule ri

a (total) variable order fi with A(px<y) = 1⇔ fi(x) < fi(y) for x, y ∈ xi, 1 ≤ i ≤ n.

5.2 Required tries

As leapfrog triejoin requires compatible tries for each predicate and rule, we have to set

up these tries. The functions Trie and Tries from Definition 3.3 specify the tries for each

predicate. Thus, we have to construct these tries for each input relation. Alternatively, if

they use a data structure or interface that can simulate tries, e.g., an ordered table, we can

use the relations directly, especially for external relations, which are not yet stored locally.

Additionally, the IDB predicates require that the facts of each rule application are stored.

Depending on the implementation of the Datalog reasoner, they are inserted in the existing

tries or an additional trie with the newly derived facts is created for each trie structure.

Anyway, leapfrog triejoin produces the tuples in the join as lexicographically ordered tuples
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Fig. 3: Exemplary result trie produced by leapfrog triejoin for a rule r = q(x, z)← p1(x, y)∧
p2(y, z) and variable order ⟨x, y, z⟩ (left) and the corresponding trie of derived facts for the
head predicate q and head variables ⟨x, z⟩ (right)

and, thus, they correspond to the path labellings of a trie following the variable order used

by leapfrog triejoin. Thus, we can regard the result of the join as a trie. Unfortunately, this

trie might not be compatible with the tries of the head predicate needed in the body of some

rules. For instance, the variable order of the join might use a non-head variable before a

head variable, such that the values for the head variable are distributed over several sub-tries

and a projection onto the head variables is therefore no longer hierarchically ordered.

Thus, for each trie structure tb of the head predicate required by the body of some rule,

we have to sort the trie th with the derived facts:

(i) we can keep the (maximal) prefix of head variables with the same order as the attributes

of tb,

(ii) we can ignore the (maximal) postfix of non-head variables, and

(iii) we have to sort the remaining variables such that the head variables are upfront and

have the same order as the attributes of tb.

Example 5.2. Let r = q(x, z)← p1(x, y)∧ p2(y, z) be a Datalog rule. For the variable order

⟨x, y, z⟩, Fig. 3 shows an exemplary result trie produced by leapfrog triejoin together with the

corresponding trie of derived facts for q. We observe that the first level with the values for x

is the same in both tries. As the variable order uses the non-head variable y before the head

variable z, we have to sort the second and third level to produce the trie for q. Otherwise,

it is not possible to easily access the values for q in order, e.g., the values ⟨1, 1⟩, ⟨1, 2⟩, and
⟨1, 4⟩ are distributed over different sub-tries with different values for y. If we need a trie for

q with the reversed attribute order, we can no longer keep the first level and have to sort the

whole result trie.

Ideally, the variable order for a rule starts with the head variables, ordered in the same

way as the trie structures for the head predicate, since then there is no sorting required. As

it is unlikely that no sorting is required for any predicate, there has to be a strategy for when

and how to sort. A rather general approach is to simultaneously store all required tries and,

whenever new facts for a predicate are derived, sort and add them to all tries. A discussion

of the advantages and drawbacks of different sorting strategies can be found in Section 7.
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siblings(p1, p2)← hasParent(p1, f) ∧ hasParent(p2, f) ∧ isMale(f)

∧ hasParent(p1,m) ∧ hasParent(p2,m) ∧ isFemale(m)

hasAncestor(p, a)← hasParent(p, a)

hasAncestor(p, a2)← hasParent(p, a1) ∧ hasAncestor(a1, a2)

relatives(p1, p2)← hasAncestor(p1, a) ∧ hasAncestor(p2, a)

Fig. 4: Example program Π4 about family relations; all terms are variables

5.3 Optimisation criteria

Even though any variable order for each rule is valid, they are not equally ‘good’, and not all

of them might be practically feasible. The main goal is to reduce the effort of computing the

inferences of a Datalog program. Thus, we want to achieve the following main objectives:

(i) small memory consumption,

(ii) fast computation of matches, i.e., consider as few candidates and matches as possible,

and

(iii) fast storing of derived facts, i.e., as little sorting effort as possible.

Some variable orders might be directly disadvantageous (w.r.t. some criteria) for their

rule, e.g., the variable order ⟨p1, a, p2⟩ for the last rule of Fig. 4 requires two tries for hasAnces-
tor, while a single trie suffices for the order ⟨p1, p2, a⟩. In other cases, only the combination

of variable orders for several rules reveals that they are disadvantageous, e.g., the variable

orders ⟨p, a1, a2⟩ for the third rule of Fig. 4 and ⟨a, p1, p2⟩ for the last rule require, individu-

ally, only a single trie for hasAncestor but in combination they require two tries as they use

different ones.

Evaluating variable orders depends on the evaluation criteria we use. Moreover, the same

variable order that is advantageous for one criterion might be disadvantageous for the next

criterion, e.g., the variable order ⟨p1, p2, a⟩ for the last rule of Fig. 4 needs only a small amount

of memory, as it only needs a single trie for each of its predicates, but the computation of

matches is not as efficient as possible, as it binds the mutually independent variables p1 and

p2 before a. Finally, the NP-completeness of SingleTrie (Theorem 4.3) suggests that the

optimisation problem is difficult, even for a single criterion.

5.3.1 Small memory consumption

As state-of-the-art Datalog reasoners [8, 12, 20, 23] use an efficient and scalable implemen-

tation, they are able to deal with industry-scale problems with millions of facts. Thus, an

implementation based on leapfrog triejoin has to be able to deal with these problems as well

to be relevant. Memory consumption is therefore a concern, in particular as leapfrog triejoin

might require several tries for the same predicate.

To measure the memory consumption, we consider the required tries for a given Datalog

rule and variable order or, respectively, for a Datalog program P and variable orders F for

each of its rules. The function Tries from Definition 3.3 returns the structure of these tries.
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As a first approximation, we can multiply the number of tries for a predicate with its arity,

which determines the number of columns of the relation when considered as a table and,

thus, correlates with the required memory:

λtries(P, F ) =
∑

⟨p,fp⟩∈Tries(P,F )

arity(p)

This measure has, however, some drawbacks. Firstly, the number of (given and derived)

facts for different relations might differ significantly and only a few relations may contain the

majority of the facts. Thus, the number of tries for these relations is much more important

than the number of the remaining tries. Secondly, depending on the distribution of the

constants in the facts of a relation, a trie can be more concise than the corresponding fact

table since a prefix is stored only once for all siblings.

In general, unfortunately, there is no perfect information about the data distribution

of the involved relations available (without a costly analysis). We might, however, be able

to estimate the size of the relations, e.g., there might be heuristics or statistical data from

previous computations of inferences for similar databases or programs. Hence, we can use

weights δp ≥ 0 based on these estimations to obtain a better measure:

λ′tries(P, F ) =
∑

⟨p,fp⟩∈Tries(P,F )

δp · arity(p)

Even if there are no statistical estimates for the size of the relations, the Datalog program

P itself provides some insights, e.g., we can distinguish EDB and IDB predicates. Since we

do not derive new facts for EDB predicates, the size of the tries remains small w.r.t. the

input. Thus, we can define different weights for EDB and IDB predicates, i.e.,

δp :=

δidb if p ∈ IDB(P )

δedb otherwise

with 0 ≤ δedb ≤ δidb. Alternatively, we can use separate measures λedb(P, F ) and λidb(P, F ),

thereby supporting a hierarchical optimisation. Moreover, there are more fine-granular clas-

sifications of IDB predicates, as being an IDB predicate does not immediately result in a

large number of derived facts. In particular, if an IDB predicate is the mere union of or the

selection on EDB predicates, having several tries for this predicate is comparable to having

several tries for EDB predicates.

Ideally, there is only one trie for each predicate, as we have to store the facts for each

predicate anyway. There are, however, situations where we have to maintain several tries for

the same predicate, e.g., the rule binaryCycle(x) ← p(x, y) ∧ p(y, x) requires tries for both

attribute orders ⟨A1, A2⟩ and ⟨A2, A1⟩ for the relation p[A1, A2]. Additionally, we might

introduce additional tries to improve the variable orders w.r.t. other measures.
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5.3.2 Fast computation of matches

Even though leapfrog triejoin is worst-case optimal for any variable order [28], there are run-

time difference to expect in practice. One major reason is that a join, hopefully, is selective:

during the computation of matches for variables v1, . . . , vn, leapfrog triejoin (Algorithm 2)

computes, for each variable vi, the intersection of values for the literals p(x) with vi ∈ x

w.r.t. to the bindings of variables vj with j < i (Algorithm 1). We then say that a variable

is selective if this intersection is small. In particular, the hope is that the intersections are

even smaller than the smallest involved value set. This does, however, not hold in the worst

case. Thus, there are a lot of situations where leapfrog triejoin is faster than its worst-case

runtime, which is specified by the AGM bound [5].

Moreover, the selectivity of a leapfrog triejoin depends on the variable order. As each

variable order produces the same result for a leapfrog triejoin, the number of actual matches

is the same for each variable order. The number of candidates, however, depends on the

variable order and it is beneficial to have selective variables first to eliminate partial variable

bindings which cannot be extended to a match early on.

Consider the rule hasSibling(x, y)← hasParent(x, p)∧hasParent(y, p) together with facts

for hasParent, which contains pairs of children and their parents, and let n be the number

of children in our database. Then, the variable order ⟨x, y, p⟩ produces on the second level

all possible bindings for children x and y, even if they are not related at all. Thus, there

are n2 candidates to check on the third level. On the other hand, the variable order ⟨p, y, x⟩
produces on the second level only bindings for people p and their children y, which results

in only 2n candidates since every person has only two parents. Note that the selectivity of

a variable depends on the current (partial) binding, e.g., in the above setting, y is selective

if and only if p is already bound.

To achieve a fast computation of matches, it is therefore essential to avoid partial vari-

able bindings that cannot be extended to a match. We recall that leapfrog triejoin computes

matches and candidates as a trie similar to a backtracking search: following a given variable

order, for each variable v, it computes the intersection of values for v of all atoms with v,

based on the partial assignment. The intersection is used to produce candidate bindings by

assigning v to the constants in the intersection. If this intersection, however, is empty, the

current (partial) binding cannot be extended to a match and is discarded. The search for

candidates then continues with the next value in the intersection of the variable of the previ-

ous level. We can formally define these candidates based on Algorithm 2, which implements

leapfrog triejoin, as the candidates for the first i variables are exactly the tuples generated

at recursion level i:

Definition 5.3. Let r[x] = H ← B be a Datalog rule, let v be a variable order of x, and let

It be a list of trie iterators for B that comply with v. Let v≤i := ⟨v1, . . . , vi⟩ denote the list

of variables up to vi and let Itvi := {it ∈ It | vi ∈ it.variables()} denote the trie iterators

with a level associated with vi. For a trie iterator i and a variable binding µ for a prefix of

i.variables(), let keys(i, µ) denote the key set represented by vertices of i with the prefix

specified by µ.

Then the candidates Ωvi for a variable vi are defined inductively:
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(i) Ω0 := {ϵ} with ϵ being the empty binding and

(ii) Ωi+1 := {µ ∪ {vi+1 7→ k} | µ ∈ Ωi ∧ k ∈
⋂

it∈Itvi+1

keys(it, µ)} for i ≥ 0.

We say that a candidate µ ∈ Ωi for some vi is irrelevant if there is no µ̃ ∈ Ωn for

n = |v| such that µ is the restriction of µ̃ to v≤i.

Cartesian products Once again we have a look at the Datalog rule hasSibling(x, y) ←
hasParent(x, p) ∧ hasParent(y, p). The variable order ⟨x, y, p⟩ is very likely to produce a lot

of irrelevant candidates for ⟨x, y⟩ since there is no restriction yet. The information that x

and y are siblings is not used until leapfrog triejoin looks for a parent p. In general, the more

information about a variable is used when it becomes bound, the less likely it is to produce

irrelevant candidates. In particular, if a variable is the last one to be bound in each of its

atoms, there is no risk of introducing irrelevant candidates at all. On the other hand, the

risk is at its highest if a variable only occurs in atoms for which no other variable has been

bound yet. In this situation, leapfrog triejoin has to compute the Cartesian product of the

previous candidates and all values for the current variable. In the example, the candidates

for the second level are the Cartesian products of people x and y.

Thus, it is desirable to have a variable order where each variable, beyond the first one,

occurs in an atom with an already assigned variable. Note that this criterion considers each

rule and its variables individually, while the criteria from Section 5.3.1 consider the whole

program simultaneously. To quantify this evaluation criterion, we start with a measure for

a single rule and its variable order, we and generalise it to a program by combining the

measures for each rule additively. For a given rule r and variable order f , we calculate the

number of unbound variables, i.e., variables v such that we have f(v) ≤ f(w) for variables

w that occur in an atom together with v, except the first variable:

λcart(r[v], f) = |{v ∈ v |∃u ∈ v : f(u) < f(v) and

∀w ∈ v : (f(w) < f(v)⇒ ¬∃p(x) ∈ body(r) : v, w ∈ x)}|

For a Datalog program P with variable orders F , we have

λcart(P, F ) =
∑
r∈P

λcart(r, fr)

with fr ∈ F being the variable order for r.

Selective variables We have discussed so far how variables can be restricted by other,

already bound variables. Additionally, there are situations where variables are inherently

selective, i.e., they occur in an atom whose relation is much smaller than the other relations.

Thus, we want to formalise the idea of variable selectivity.

In the spirit of tries, we again regard the candidates of a leapfrog triejoin as a trie and,

for a partial binding µ of variables v, we are interested in how many successors (bindings

for the next variable w) the vertex for the binding µ has. Hence, we introduce a branching

factor that takes the current variable binding into account:
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Definition 5.4. Let r be a Datalog rule and let v be a variable order of x. For a variable

vi ∈ v and a (partial) binding µ of the variables v<i, the branching factor bvi,µ := |{µ̃ ∈
Ωi | µ̃|v<i = µ}| counts the candidates obtained by extending the binding µ with a value for

vi. For a variable vi+1 with i ≥ 0, the average branching factor b̄vi+1
:= 1

|Ωi|
∑

µ∈Ωi

bvi+1,µ

is the average of the branching factors for a variable vi+1 for all candidates in Ωi.

For a rule r and a variable order v, we can now count the candidates based on the

branching factors: |Ω0| = 1 and |Ωi+1| =
∑

µ∈Ωi

bvi+1,µ. Under the assumption that the

branching factors for a variable do not vary, we can estimate the cardinality based on the

average branching factors: |Ωi+1| =
∑

µ∈Ωi

bvi+1,µ = |Ωi| · b̄vi+1 . Inductively, we obtain that

|Ωi+1| =
i+1∏
k=0

b̄vk . This estimate provides a measure to approximate the effort for a leapfrog

triejoin or to compare different variable orders, e.g., if the available tries allow different vari-

able orders for a leapfrog triejoin. In particular, it is helpful if there is statistical information

about the average branching factors or if the tries for the leapfrog triejoin are available for

sampling.

The estimate might, however, be not feasible as there are up to n · 2n−1 different average

branching factors for the variables of a rule r[x] with n = |x|, as the branching factor for a

variable depends on which variables are already bound, but the order of the bound variables

is irrelevant. Thus, additional assumptions are necessary.

The number of produced candidates when binding a variable v depends on the size of

the domain dom(v) of v, i.e., the constants that occur for some atom p(x) with xi = v in

the corresponding relation p[A1, . . . , An] at position Ai, and on the size of the fraction σ

of these constants that actually produce a binding. The fraction is expected to be smaller

if v occurs in a lot of atoms, as a constant has to be present in the intersection of all

corresponding relations, and if v co-occurs in atoms with a lot of variables which are already

bound, as binding a variable restricts the corresponding trie to the branch with this binding

and potentially eliminates some of the constants for variables at a deeper level.

If there is limited or no information about the data distribution for a Datalog rule r[v],

we have to treat the domain of all variables as equally large and we have to rely on the

statical information of the Datalog rule, or program, for which we want to compute the

leapfrog triejoin. As a basic estimation for the fraction σ for a variable v, we can use an

estimation function h̃occ based on the number ηocc = |{p(x) ∈ body(r) | v ∈ x}| of atoms in

which v occurs and, for a variable order f , a function h̃co-occ based on the number ηco-occ =

|{⟨w, p(x)⟩ | p(x) ∈ body(r)∧ f(w) < f(v)∧ v, w ∈ x}| of pairs ⟨w, p(x)⟩ of variables w with

f(w) < f(v) and atoms p(x) in which v and w co-occur. Then we can estimate the average

branching factor for a variable v and a variable order f by b̄v = n · h̃occ(v, r) · h̃co-occ(v, r, f)
with n estimating the impact of the domain sizes. As a measure for the number of candidates

at all levels, we recall that |Ωi| ≈
i∏

k=0

b̄vk and obtain

λbranch(r[v], f) =

|v|∑
i=1

(ni ·
i∏

j=0

h̃occ(vj , r) · h̃co-occ(vj , r, f))
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with exemplary estimation functions h̃occ(r, v) = σ̃ηocc−1
occ and h̃co-occ(v, r, f)) = σ̃ηco-occco-occ with

parameters σ̃occ ∈ [0, 1] for estimating the selectivity due to multiple occurrences of a variable

and σ̃co-occ ∈ [0, 1] for estimating the selectivity due to co-occurrences with bounded variables.

Note that the smaller λbranch(r[v], f) is, the better the estimate for f is. Additionally,

we can generalise it to Datalog programs by using the sum over its rules:

λbranch(P, F ) =
∑
r∈P

λbranch(r, fr)

with fr ∈ F being the variable order for r.

Head variables first As we want to reduce the number of irrelevant candidates or, re-

spectively, discard them as soon as possible, there are two improvements of leapfrog triejoin:

once the last head variable is bound, check if the corresponding fact is already present before

checking if there is an extension of the current binding for the remaining, non-head variables.

Moreover, it is sufficient to compute only a single extension.

As these approaches require adaptations of the algorithm, we discuss them in detail in

Section 7.3. For now we realise that the position of the last head variable indicates how good

a variable order is for these criteria:

λlast-head-var(r[v], f) = |{v ∈ v | p(x) = head(r) ∧ ∃x ∈ x. f(v) ≤ f(x)}|

Similar to the other criteria, we can generalise it to Datalog programs by using the sum over

its rules:

λlast-head-var(P, F ) =
∑
r∈P

λlast-head-var(r, fr)

with fr ∈ F being the variable order for r.

5.3.3 Fast storing of derived facts

Leapfrog triejoin requires tries for both the given and derived facts, and it produces the

matches for a rule as a trie, too. There are, however, situations where the trie structure of

the matches is incompatible with the required tries for its predicate, e.g., leapfrog triejoin

produces for the rule r̃ = hasAncestor(p, a2) ← hasParent(p, a1) ∧ hasAncestor(a1, a2) with

the variable order l̃ = ⟨p, a1, a2⟩ the trie structure with the three levels p, a1, and a2, but we

have to store a trie that is the projection of the result trie to the levels for p and a2. Thus,

the first level can be used directly, but there is some effort required to project the second

level away, e.g., change the order of the levels for a1 and a2 by materialising and sorting the

children of each vertex for p.

For each rule r with head(r) = p(v) and each required trie structure t for p, we have

to transform the result trie of the matches for r to a trie with the attribute order of t. We

observe that we can keep the prefix of sorted head variables and we can prune the variables

after the last head variable, as they are only required to check if there is a match for the

current binding of the head variables. Thus, a level of a result trie is unsorted if

(i) it is assigned to a non-head variable and there is a later level assigned to a head variable,
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(ii) it is assigned to a head variable v and there is a level assigned to a head variable w such

that the order of the levels of v and w is the opposite of the order of the corresponding

attributes of the head atom for the required trie structure t, or

(iii) it is assigned to a head variable and there is a previous level which is unsorted.

For a Datalog rule r, a variable order f of its variables, and a trie structure t = ⟨p, fp⟩,
let unsorted(r, f, t) be the set of variables assigned to an unsorted level of t, and we use the

cardinality of unsorted(r, f, t) as a measure for the sort effort:

λsort(r, f, t) = |unsorted(r, f, t)|

For the example rule r̃, the variable order l̃, and the trie structure t̃ = ⟨hasAncestor, ⟨p, a1⟩⟩,
we have unsorted(r̃, l̃, r̃) = {a1, a2}.

Similar to other measures, we can generalise it to a Datalog program by summing up

over all rules and required tries:

λsort(P, F ) =
∑
r∈P

∑
p(v)=head(r)

t=(p,fp)∈Tries(P,F )

λsort(r, fr, t)

with fr ∈ F being the variable order for r.

Unsurprisingly, this measure depends on the actual data distribution: if a rule r1 derives

much more facts than a rule r2, it is more vital to have efficient transformation for r1 than

for r2. Thus, the introduction of weights for rules or predicates might be beneficial.

We have assumed so far that the implementation immediately creates all required tries

for newly derived facts. However, there might be situations where some of these tries are

never used, e.g., the rules using the trie might have no matches anyway as the relation

for a body atom is empty. Moreover, storing all tries might exceed the available memory.

Thus, an implementation can use approaches to deal with these situations, e.g., having, for

each predicate, a primary trie representation that is always updated, but computing the

remaining, secondary tries only if a rule requires them. Moreover, secondary representations

can be dismissed at any time.

5.3.4 Implementation-specific optimisations

If there is additional information about the actual implementation of the Datalog reasoner,

further measure can be added to incorporate this information. As an example, we consider

a Datalog reasoner that implements a semi-naive evaluation [2, Chapter 13]: for a Datalog

program P , each rule r = h(x) ← e1(y1) ∧ . . . ∧ en(yn) ∧ I1(z1) ∧ . . . ∧ Im(zm) ∈ P with

EDB predicates e1, . . . , en and IDB predicates I1, . . . , Im is transformed into m rules

h(x)← e1(y1) ∧ . . . ∧ en(yn) ∧∆i
I1(z1) ∧ I

i
2(z2) ∧ . . . ∧ Im(zm)

h(x)← e1(y1) ∧ . . . ∧ en(yn) ∧ Ii−1
1 (z1) ∧∆i

I2(z2) ∧ . . . ∧ Im(zm)

. . .

h(x)← e1(y1) ∧ . . . ∧ en(yn) ∧ Ii−1
1 (z1) ∧ Ii−1

2 (z2) ∧ . . . ∧∆i
Im(zm)
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with Iik being the facts for Ik after the i-th application of the immediate consequence operator

TP and ∆i
Ik

being the facts newly derived by the i-th application of TP , i.e., I
i
k \ I

i−1
k .

It is likely that ∆i
Ik
(zk) for some k and i contains very few facts, and variable orders

starting with variables v ∈ zk are beneficial as they use the most selective relations and vari-

ables in the beginning, thereby potentially avoiding a large number of irrelevant candidates.

To be useful, however, this approach requires several variable orders for r, since every of the

m transformed rules wants to use different variables zk with 1 ≤ k ≤ m early on.

5.4 Optimisation methods

In the previous sections, we discussed general aspects to keep in mind when searching for

good variable orders. In this section, we provide concrete tools to obtain variable orders for

a given Datalog program. We introduce two approaches: the first one based on Answer Set

Programming (ASP) and the second one as a heuristic approach. Beyond these approaches,

other methods for solving or approximating optimisation problems can be used.

5.4.1 Answer Set Programming

Answer Set Programming (ASP) is a declarative approach to problem solving for Knowledge

Representation and Reasoning, and it extends classical logic by non-monotonic reasoning to

capture incomplete knowledge. Thus, ASP can be considered as an extension of Datalog.

Its semantics is based on the Gelfond-Lifschitz-Reduct [21], and ASP-Core-2 [11] defines a

common core for the syntax and semantics of ASP.

Answer Set Programming provides the tools to uniformly solve problems in NP (and

Σ2
P and Π2

P , the complexity classes of the second level of the polynomial hierarchy) [13].

Additionally, modern ASP solvers support minimisation and maximisation objectives to find

optimal answer sets w.r.t. those objectives. Thus, we can use ASP for finding good variable

orders for the rules of given Datalog programs.

Let P be a Datalog program (without facts), for whose rules we want to find variable

orders for leapfrog triejoins. Firstly, we have to encode P as a set of ASP facts. For a rule

r = h(x) ← p1(y1) ∧ . . . ∧ pn(yn) ∈ P , we assume that there is a unique identifier i. We

use the constant ri to refer to the rule and the constants hai and, respectively, bai,j with

1 ≤ j ≤ n to refer to its head atom and, respectively, its body atoms. We translate r into

the facts

hasHeadAtom(ri, hai) hasPredicate(hai, h)

|x|⋃
j=1

hasVariable(hai, xj , j)

hasBodyAtom(ri, bai,1) hasPredicate(bai,1, p1)

|y1|⋃
j=1

hasVariable(bai,1, y1,j , j)

. . . . . . . . .

hasBodyAtom(ri, bai,n) hasPredicate(bai,n, pn)

|yn|⋃
j=1

hasVariable(bai,n, yn,j , j)
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The transformation of a given Datalog program gives rise to an ASP instance for the

optimisation problem of finding optimal variable orders. Moreover, we need a (uniform)

encoding of potential solutions: based on the propositional encoding of variable orders from

Section 5.1, we obtain the following ASP rules, which generate the potential variable orders:

occursIn(X,R)← hasBodyAtom(R,A) ∧ hasVariable(A,X, )

before(R,X, Y ) ∨ before(R, Y,X)← occursIn(X,R) ∧ occursIn(Y,R) ∧X ̸= Y

before(R,X,Z)← before(R,X, Y ) ∧ before(R, Y, Z)

← before( , X,X)

Finally, we have to encode the optimisation criteria from Section 5.3. Exemplarily, we

present a possible encoding for minimising the number of required tries, for EDB and IDB

predicates individually. Figure 5 shows the corresponding ASP rules, using the syntax of

ASP-Core-2. The auxiliary ASP predicates isIDBPredicate, isEDBPredicate, and hasArity

can be derived from the facts encoding a Datalog program and they have the intuitive mean-

ing. We translate the variable order of a rule to the attribute order of its body atoms and

derive the corresponding facts for beforeAttr. Afterwards, we check whether two atoms use

different tries, i.e., they use a different order of some attributes, and we capture this infor-

mation with hasDifferentTrie. If an atom a uses the same trie as another atom represented

by a smaller constant, the trie for a is already required and we derive hasRedundantTrie(a).

Finally, we count the number of tries per predicate, i.e., the number of atoms with this

predicate whose trie is not already required, and minimise the sum of these counts, weighted

by the arities of the predicates. Minimising the weighted number of tries for IDB predicates

has a higher priority than minimising the weighted number of tries for EDB predicates.

Appendix A contains ASP programs for further optimisation criteria: combining the

ASP program of Listing 2 with the auxiliary definitions of Listing 1 results in an exemplary

ASP program for finding optimal variable orders w.r.t. more criteria. The answer sets of the

program correspond to variable orders and the predicate before induces a variable order for

each rule.

5.4.2 Heuristic approach

Answer Set Programming is ideal for finding optimal variable orders w.r.t. a set of (potentially

hierarchical and weighted) objectives. Computing an optimal answer set, and finding optimal

variable orders in general, might be costly, especially if the objectives define a fine-granular

measure. Thus, there is a trade-off between the quality of the variable orders and the time

to find them. Moreover, even non-optimal variable orders can still allow leapfrog triejoin to

compute the inferences fast. Hence a non-optimal, yet more efficient approach is beneficial

if the produced variable orders are still of high quality.

In this section, we suggest a heuristic approach as a fast alternative to the one based on

ASP. The core idea is that we consider the rules one at a time and then find a variable order

for each of them individually. Thus, we need two heuristics: one for deciding which rule we

want to consider next and another one for finding a variable order for a given rule.
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beforeAttr(A, I, J) :− hasBodyAtom(R,A), hasVariable(A,X, I),

hasVariable(A, Y, J), before(R,X, Y ).

hasDifferentTrie(A,A2) :− beforeAttr(A, I, J), beforeAttr(A2, J, I),

hasPredicate(A,P ), hasPredicate(A2, P ).

hasRedundantTrie(A) :− hasPredicate(A,P ), hasPredicate(A2, P ),

not hasDifferentTrie(A,A2), A > A2.

numberOfTries(P,C) :− hasPredicate( , P ), C = #count{A : hasPredicate(A,P ),

not hasRedundantTrie(A)}.
#minimize {C ∗N@1, P : numberOfTries(P,C), isIDBPredicate(P ), hasArity(P,N)}.
#minimize {C ∗N@0, P : numberOfTries(P,C), isEDBPredicate(P ), hasArity(P,N)}.

Fig. 5: ASP encoding for minimising the number of required tries

Choosing a variable order Firstly, we have a look at the heuristic for finding a variable

order for a Datalog rule. To construct a variable order, we translate the optimisation criteria

discussed in Section 5.3 into filter functions that choose the ‘best’ variables from a set of

candidates based on the rule of interest. Starting with the empty list, we can then construct

a list representing a total variable order by adding the variable that is the best w.r.t. the

filter functions among the not yet selected variables.

For some criteria, the translation is straightforward, e.g., minimising the number of

Cartesian products gives rise to a function that selects the set of variables that co-occur

with an already selected variable or, if no such variable exists, the whole set of candidates.

Preferring head variables above non-head variables leads to a function that returns the set of

(unselected) head variables, if there is at least one head variable remaining, or the candidate

set, otherwise.

For minimising the number of tries, the translation is less straightforward and there are

different approaches; and we exemplarily state one. Having obtained variable orders for some

rules of a Datalog program, we can compute the already required tries T . The objective of

finding a variable order for another rule r[v] is to re-use these tries. Thus, for the order l

and a variable v ∈ v \ l, we can count how many new tries are required if we select v. A new

trie is required as soon as the order of already selected variables l and v for an atom p(x) is

not the prefix of any existing trie t ∈ T for the predicate p.

Algorithm 3 shows the overall procedure for implementing a heuristic. Note that the def-

inition of the filter functions and their order determine the obtained variable order. As there

is no generally superior order of the optimisation criteria, the order of the filter functions,

too, depends on different aspects, e.g., the actual data distribution or the implementation of

both the Datalog reasoner and the leapfrog triejoin algorithm.

Choosing a Datalog rule Secondly, we have to find an order in which we consider the

Datalog rules. When searching for a good variable order of a single rule, there are several

criteria, e.g., reducing the number of Cartesian products, that do not depend on the variable
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Algorithm 3: Heuristic for finding a variable order

Input : A Datalog rule r[x] = H[y]← B[x],
a set T of already required tries, and
a list F of filters such that f(r, l, c, T ) for f ∈ F selects a subset of the
candidate variables c based on the rule r, an order l, and the set T of tries

Output: A (total) variable order l̃ ∈ Ord(x)

1 l := ()

2 while x \ l ̸= ∅ do
3 c := x \ l // get the unselected variables

4 for filter ∈ F do
5 if |c| = 1 then
6 break // continue in line 8

7 c := filter(r, l, c, T ) // get the best variables w.r.t. the filter

8 l.append(c0)
9 T := T ∪ Tries(l, r) // extend tries by those for rule r and order l

10 return l

orders of the other rules. There are, however, criteria, e.g., minimising the number of tries,

that depend heavily on the variable orders for all rules.

Thus, it is useful to consider these criteria when selecting the next rule to find a variable

order for. At any point, we can compute the required tries, even if not all rules have a

variable order yet. The goal is to use these tries for the remaining rules as well. Hence, we

select the rule with the largest number of literals for which there is already a trie. Similarly

to distinguishing different kinds of predicates while defining the optimisation goals, we first

consider literals with IDB predicates and then literals with EDB predicates.

As it is inherent for a heuristic, this approach does not allow optimality guarantees

in general. Nevertheless, the hope is that it yields good results in practice, especially for

Datalog programs which have several good variable orders. We conduct a practical evaluation

in Section 8.

6 Partial variable orders

While searching for good variable orders, we required the orders to be total. This follows the

spirit of leapfrog triejoin as presented by Veldhuizen [28], but it might introduce artificial

dependencies between variables which are independent. Consider, for instance, the rule

commonAncestorOf(a, p1, p2) ← hasAncestor(p1, a) ∧ hasAncestor(p2, a): any total variable

order, e.g., ⟨a, p1, p2⟩, results in a Cartesian product of descendants p1 and p2 for every

ancestor a. As a person can have a large number of relatives, especially when the common

ancestor is allowed to be several generations back, it is beneficial to avoid the materialisation

of the Cartesian products and to only store the list of descendants for each person a.

The core idea is to use partial variable orders inducing a tree structure instead of total

orders, and to adapt leapfrog triejoin to handle them. Then the matches of a Datalog rule

follow the tree structure and for each path in the tree structure, the result can be regarded
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name

given name

instrument notable work

Fig. 6: f-tree for a relation about famous composers

as a trie, but independent paths and variables can exist. This approach might not only result

in a more efficient way of computing matches and storing derived facts but it also provides a

more concise view on variable orders and introduces the potential for using the new structure

for body atoms during later rule applications, too.

6.1 Factorisation trees

We start our investigation of the impact of partial variable orders by looking at the emerging

data structure. Using a compact representation for a relation based on a factorisation of it,

i.e., using a representation faithful to the independence of attributes, is a known concept.

There are several works about and applications of factorisation [7, 9, 24, 29], both in general

and in the context of relational databases. In particular, Bakibayev et al. [7] propose fac-

torised representations, or short f-representations, along with the corresponding schemata

for the structure, the so-called factorisation trees. We give a short review of factorisation

trees, as they nicely describe the structure of matches and derived facts when we consider

partial variable orders.

Definition 6.1. A factorisation tree, or short f-tree, over a set S of attributes or variables

is an unordered rooted forest with each node labelled by a non-empty subset of S such that

each element of S labels exactly one node.

Note that we slightly extend the original definition by allowing variables, in addition to

attributes, as labels. If a node of an f-tree is labelled by exactly one element, we can use the

label to refer to the node.

Factorisation trees specify how to store the facts of a relation by describing the structure

of the f-representations, i.e., the instantiations, for the relation. For example, the f-tree in

Fig. 6 describes how to store facts about famous composers, by using the insights that the

instruments played by a composer and the works created by him or her are independent and,

thus, can be stored separately. Fig. 7 shows a possible f-representation constructed from

singletons with the help of set unions and Cartesian products.

As long as we only look at paths, the f-representation behaves like a trie, e.g., if we drop

all information about notable works, we obtain a trie for the attributes ⟨name, given name,

instrument⟩. Indeed, f-representations can be regarded as a generalisation of tries; and an

f-representation stores for a specific prefix all the values for each subsequent attribute in the

f-tree individually. This avoids the materialisation of Cartesian products, thereby potentially

leading to exponentially more succinct representations. Similar to tries, the values for each

prefix and attribute are stored in order, e.g., alphabetically.
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⟨Handel⟩ × ⟨George Frideric⟩ × (⟨oboe⟩ ∪ ⟨pipe organ⟩)

× (⟨Messiah⟩ ∪ ⟨Music for the Royal Fireworks⟩)∪

⟨Mozart⟩ × (⟨Leopold⟩ × ⟨violin⟩

× ⟨Jagdsinfonie⟩∪

⟨Wolfgang Amadeus⟩ × (⟨organ⟩ ∪ ⟨piano⟩ ∪ ⟨violin⟩)

× (⟨Don Giovanni⟩ ∪ ⟨The Magic Flute⟩))

Fig. 7: f-representation with facts about famous composers

A relational view on f-representations regards each path of an f-tree as the schema of a

relation, and an f-representation is the join of these relations on the common attributes, e.g.,

the f-tree in Fig. 6 gives rise to the (conceptual) relations R1[name, given name, instrument]

and R2[name, given name,notable work], and the original relation contains the facts of the

join R1 ▷◁name,given name R2.

For a formal definition of f-representations, additional considerations, and further in-

sights, we refer to Bakibayev et al. [7].

6.2 Leapfrog triejoin with partial variable orders

As leapfrog triejoin requires total variable orders, we have to adjust Algorithm 2 to use partial

variable orders instead of total ones. Thus, we assume that we are given a Datalog rule r[v],

represented by iterators for the body atoms, and a partial variable order, represented by

a tree t, whose vertices are the variables v. Our goal is to bind the variables starting at

the root of t and whenever a variable has several children, we consider them individually.

Algorithm 4 shows the adapted algorithm.

The algorithm obtains the variable v at the root of t and all of its children w. Similar to

the standard version, it collects all the iterators representing an atom using v. We require

that the iterators comply with t, i.e., the attribute order of the underlying relation is the

same as the variable order of the atom, to ensure that the next level of the current position

of the iterators for v is indeed associated with v. The algorithm proceeds these iterators to

the first value of the next level, which represents the potential values for v.

It then uses Algorithm 1 (leapfrog) to compute the (candidate) bindings for v. Contrary

to standard leapfrog triejoin, there might be several children and, thus, several independent

paths. It is therefore not possible to simply combine the binding {v 7→ k} with the bindings

of the remaining variables. Instead, the algorithm constructs a list with the value k and all

matches for the different paths. Even though the values are stored as a list, they represent a

Cartesian product, e.g., if ⟨c1, c2⟩ and ⟨d1, d2, d3⟩ are the matches for two independent paths

for a value k, then the list ⟨k, ⟨c1, c2⟩, ⟨d1, d2, d3⟩⟩ is stored and it represents the Cartesian

product {k}×{c1, c2}×{d1, d2, d3}. Indeed, storing a Cartesian product as lists instead of its

full materialisation is the core concept of factorisation and f-representations. Note that we

can skip the current value for v if a branch produces no results since the Cartesian product
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Algorithm 4: leapfrog-triejoin with partial variable orders

Input : A partial variable order represented as a tree t of some variables v and
a list It of iterators that comply with t

Output: An f-representation of the matches for the f-tree t w.r.t. It

1 v := root(t) // root node of t
2 w := children(t, v) // children of v
3 Itv := {i ∈ It | v ∈ i.variables()}
4 for i ∈ Itv do
5 i.open()

6 // build list of matches for the current variable v
7 matches := ()
8 labelv: for k ∈ leapfrog(Itv) do
9 // build list of matches for v and every path starting in v

10 // list is regarded as a Cartesian product

11 cart := (k)
12 for w ∈ w do
13 path-matches := leapfrog-triejoin(subtree(t, w), It)
14 if path-matches = ∅ then
15 continue labelv

16 cart.append(path-matches)

17 matches.append(cart)

18 for i ∈ Itv do
19 i.up()

20 return matches

is empty if one of the involved sets is empty. Having computed the matches for the paths

of all children, the algorithm adds the constructed list to the overall matches and continue

with the next binding for v. Finally, when there are no more bindings for v, the algorithm

moves the iterators for v back to the position they were at in the beginning and it returns

the computed matches.

The standard version of leapfrog triejoin is able to produce the matches on-the-fly and

we stated the algorithm as a generator. In the context of partial variable orders, the goal

is to store the matches as an f-representation. Enumerating all the matches based on the

f-representation is conceptually simple, but it means to compute the full materialisation of

all Cartesian products. If the f-representation is a plain trie, we can enumerate all matches

by traversing it via a depth-first search and yield a fact whenever we reach a leaf. In the

general context of f-representations, we use any topological order of its f-tree and slightly

adapt the depth-first search. For a variable vi, the values for the next variable vi+1 might

not be below vi but below any variable vj with j ≤ i or the root. Thus, we continue our

search there. Algorithm 5 realises the computation of the matches for an f-representation

with any topological order of its f-tree (and the empty list of already fixed values c).

For instance, let Fig. 7 be the f-representation for the derived facts of some rule and

let ⟨name, given name, instrument,notable work⟩ be the topological order of interest. Algo-
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Algorithm 5: f-generator

Input : An f-representation E for an f-tree T ,
the prefix A = ⟨A1, . . . , An⟩ of a topological order of T , and
a list of values c = ⟨c1, . . . , ck⟩ with 0 ≤ k ≤ n

Output: A generator for the facts of the projection onto A with prefix c

1 if k = n then
2 yield c // yield the complete fact

3 else

4 Ã := parentOf(Ak+1, T ) // get parent of current attribute in T

5 x := E.active[Ã] if Ã ̸= None else root // get active node for parent

attribute, or root if there is no parent

6 for ck+1 ∈ childrenOf(x,E,Ak+1) do
7 // visit all values ck+1 for Ak+1 in E
8 // mark node for ck+1 for attribute Ak+1 as active

9 E.active[Ak+1] := node(Ak+1, ck+1)
10 for c′ ∈ f-generator(I,A, ⟨c1, . . . , ck+1⟩) do
11 yield c′

rithm 5 starts its traversing of the f-representation with ⟨Handel⟩ 7→ ⟨George Frideric⟩ 7→
⟨oboe⟩. It then continues with the values for notable work, which are located not below

⟨oboe⟩ but ⟨George Frideric⟩, and it yields the matches ⟨⟨Handel⟩, ⟨George Frideric⟩, ⟨oboe⟩,
⟨Messiah⟩⟩ and ⟨⟨Handel⟩, ⟨George Frideric⟩, ⟨oboe⟩, ⟨Music for the Royal Fireworks⟩⟩. As it
has visited all values for notable work, it continues with the next value of the previous

level of the topological order, i.e., ⟨pipe organ⟩ for instrument. The algorithm uses the val-

ues for notable work below ⟨George Frideric⟩ once again, thereby yielding the two matches

⟨⟨Handel⟩, ⟨George Frideric⟩, ⟨pipe organ⟩, ⟨Messiah⟩⟩ as well as ⟨⟨Handel⟩, ⟨George Frideric⟩,
⟨pipe organ⟩, ⟨Music for the Royal Fireworks⟩⟩.

6.3 Storing of derived facts

Algorithm 4 produces the matches for a Datalog rule as an f-representation. If this is the

only (or last) rule application, we might be satisfied with any representation of the matches.

It is, however, likely that there are further rule applications, and some of them might use

a body atom p(v) with p being the head predicate of the current rule. To enable leapfrog

triejoin for these rules, the derived facts have to be stored in a compatible way.

When talking only about tries, the notion of being compatible is straightforward and a

trie structure is compatible with another if it uses the same attribute order. In the present of

f-representations and f-trees, we can relax this constraint, as we can use an f-representation

for a body atom, as long as its f-tree does not contradict any attribute order of the f-tree for

the body atom. We formalise this idea with the following notion:

Definition 6.2. Let T, T ′ be f-trees over some attributes A. We say that T is more general

than T ′ if ⪯T ⊆ ⪯T ′, i.e., ∀Ai, Aj ∈ A : Ai ⪯T Aj ⇒ Ai ⪯T ′ Aj.

The idea of this notion is that we can store both given and derived facts as an f-
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representation with a more general f-tree than the one we actually need for the rule ap-

plications. This approach reduces the storage effort since the representation might be more

succinct and the same f-representation might be used by multiple rules even if they require

slightly different f-trees. Formally, we have the following proposition:

Proposition 6.3. Let T, T ′ be f-trees over attributes A and let T be more general than T ′.

Then an f-representation E for T can simulate an f-representation E′ for T ′ which represents

the same relation, i.e., accessing the facts in E′ for a path in T ′ is possible in O(n) with n

being the number of facts for the path.

Proof. Let B = ⟨B1, . . . , Bn⟩ be an attribute path in T ′ starting at a root of T ′. Since T

is more general than T ′, we have ∀A ∈ A \B.∀B ∈ B. A ⪯̸T B, i.e., there is no attribute

(beyond the path attributes) that is smaller than some attributes of the path. Moreover, we

have Bj ⪯̸T ′ Bi with 1 ≤ i < j ≤ n and, thus, Bj ⪯̸T Bi with 1 ≤ i < j ≤ n. Hence, B is the

prefix of a topological order of T and we can use Algorithm 5 to compute the facts for B.

The algorithm requires some overhead for every attribute B ∈ B, e.g., storing the current

value and node as well as finding the parent attribute, but this overhead is constant w.r.t.

the number of facts for B since it depends only on B and T . Thus, the algorithm requires

constant time for finding a fact of B, and it visits exactly the facts for the path, thereby

running in O(n) with n being the number of these facts.

For instance, consider the relation p[Teacher,Student, Institution], the rule teaches(t, s, i)

← teachesAt(t, i) ∧ learnsAt(s, i) ∧ small(i), and the partial order i ≺ t and i ≺ s. The rule

computes triples ⟨t, s, i⟩ such that the teacher t thought the student s at the institution i by

assuming that every teacher teaches every student at small institutions. Thus, it is possible

to store the facts derived by this rule as an f-representation with the partial order as the

corresponding f-tree. This does not only avoid the materialisation of the Cartesian products

of teachers and students, but the f-representation can be used for rules using one of the

attribute orders ⟨Institution,Teacher,Student⟩ and ⟨Institution,Student,Teacher⟩. If there

is, however, a rule using teaches with the attribute order ⟨Teacher, Institution,Student⟩, the
f-representation cannot be used directly and the derived facts have to be sorted to obtain a

second, suitable f-representation.

In general, the f-representation for the matches of a rule does not immediately yield f-

representations that are more general than those we need for further rule applications, as

the attribute order might be wrong or there are non-head variables before head variables.

Definition 6.4. Let Tr be the f-tree for a Datalog rule r[v] with p(x) = head(r) and let Tb

be the required f-tree for some body atom over the relation p[A]. For a variable v ∈ v, the

corresponding node in Tr is not correctly ordered if

(i) v /∈ x and ∃w ∈ x. v ⪯Tr w,

(ii) v = xi ∈ x and ∃xj ∈ x. xi ≺Tr xj ∧Aj ≺Tb
Ai, or

(iii) v ∈ x and there is a w ∈ v with w ≺Tr v and the corresponding node of w is not

correctly ordered.
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We obtain an f-tree T from Tr that is more general than Tb by, firstly, removing all nodes

for non-head variables that are correctly ordered and, secondly, sorting each node that is not

correctly ordered and its children according to Tb.

For a Datalog rule r with head(r) = p(x), a partial order ⪯r for r, and a body atom p(v),

the function f-Tree(r,⪯r, p(v)) returns the f-tree according to the described transformation.

For a Datalog program P , a rule r ∈ P with head(r) = p(x) and a partial variable order

⪯r, the function f-Trees(P, r,⪯r, p) = {T | rb ∈ P ∧ p(v) ∈ rb ∧ T = f-Tree(r,⪯r, p(v)) ∧
T is a most general f-tree of this set} returns the set of the most general f-trees for the re-

quired f-representations for facts derived by r, and they can be computed via the transfor-

mation of Definition 6.4. This function is well-defined as the ‘more general’ relation of f-trees

is antisymmetric.

6.4 Impact on the optimisation problem

As we want to find good partial variable orders for a Datalog program, we have to adapt

the ideas of Section 5. Thankfully, partial variable orders can be regarded as a relaxation

of total variable orders in our context and, therefore, the basic considerations remain valid.

We start with adaptations to the encoding of feasible solutions for the optimisation problem,

i.e., partial variable orders, before we discuss the optimisation criteria.

Feasible solutions Similar to Section 5.1, we want to find an encoding of (partial) variable

orders for a Datalog program P =
n⋃

i=1
ri[xi]. W.l.o.g, we assume that the rules use disjoint

variables, i.e., xi∩xj = ∅ for 1 ≤ i < j ≤ n. We use propositions px≺y for variables x, y ∈ xi

and 1 ≤ i ≤ n. To ensure that a satisfying assignment gives rise to a partial order that

induces a tree structure, we use the following rules:

px≺y ∨ py≺x for A(v) ∈ body(ri), x, y ∈ v, x ̸= y, 1 ≤ i ≤ n (6.4.1)

px≺y ∧ py≺z → px≺z for x, y, z ∈ xi, 1 ≤ i ≤ n (6.4.2)

¬px≺x for x ∈ xi, 1 ≤ i ≤ n (6.4.3)

px≺z ∧ py≺z → px≺y ∨ py≺x for x, y, z ∈ xi, x ̸= y, 1 ≤ i ≤ n (6.4.4)

Note that we use the same rules for transitivity (6.4.2) and irreflexivity (6.4.3) as in our

encoding for total variable orders in Section 5.1, but we relax the rules for totality (5.1.1),

as we no longer require that every pair of variables (from the same rule) is comparable.

Instead, it is sufficient to have rules stating that variables which co-occur in a body atom are

comparable (6.4.1). Finally, we have to ensure that the partial orders induce tree structures.

Thus, we enforce that any (different) ancestors of a variable are comparable (6.4.4).

Rules 6.4.1 enforce that variables are comparable as soon as they co-occur in a body

atom. In the context of f-representations, this constraint can be relaxed, but for now, we

assume that attributes of any relation are mutually dependent, i.e., we regard the body

atoms as tries. We discuss the relaxation and the direct use of f-representations for body

atom with independent attributes in Section 6.5.

40



Optimisation criteria Even though some optimisation criteria are useful for both partial

and total variable orders, e.g., to have as few Cartesian products as possible, there are some

criteria which have to be adapted to be meaningful for partial variable orders. Thus, we

have a look at the three main objectives: small memory consumption, fast computation of

matches, and fast storing of derived facts.

As we use f-representations instead of tries to store derived facts, using the number of

indices for a predicate together with its arity does not take into account that f-representation

can be more succinct. Moreover, the goal is not primarily to have a small number of tries

per predicate but to have a small number of required f-trees (and f-representations) for the

derived facts of each rule. Indeed, it is even beneficial to allow several tries if they can be

simulated by the same f-representation.

Thus, a possible criterion uses the depth of the f-trees instead of the arity of the underlying

predicate, and the depth equals the arity for tries as a special case of f-representations. We

consider a function depth(T ) which returns the depth of an f-tree T , i.e., the longest path in

T , and we define the following measure for a program P and partial variable orders F :

λ′f-trees(P,F) =
∑
r∈P

∑
head(r)=p(x)

T∈f-Trees(P,r,⪯r,p)

δp · depth(T )

with ⪯r ∈ F being the variable order for r and the parameter δp ≥ 0 can be used to

distinguish predicates.

Concerning the fast computation of matches, the minimisation of Cartesian products

remains relevant, and the criterion λcart can use partial variable orders instead of total ones.

Moreover, the index of the last head variable becomes more important, as partial orders and f-

representations allow the computation of derived facts without the materialising of Cartesian

products for independent variables, potentially reducing the depth of the f-representation

below the number of head variables.

At the end of Section 6.3, we describe how to obtain the f-trees for the necessary f-

representations. As we have to sort the nodes which are not correctly ordered, we can use

the number of such nodes as a measure for the sort effort. We observe, however, that the

effort is mainly determined by the size of a maximal subtree of not correctly ordered nodes,

as we can sort children of different, already correctly ordered nodes independently. Thus,

we use a function λ′sort(r,⪯r, T ) that returns the size of such a subtree for a rule r, a partial

order ⪯r for r, and an f-tree T , which is required for some body atom. Finally, we sum up

the effort over all rules and required f-trees:

λ′sort(P,F) =
∑
r∈P

∑
p(x)=head(r)

Tb∈f-Trees(P,F ,p)

λ′sort(r,⪯r, Tb)

with ⪯r ∈ F being the variable order for r.
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6.5 Independence of attributes

With the introduction of partial variable orders and f-representations for storing derived

facts, we might wonder how we can directly use the obtained f-representations for later rule

applications instead of treating them as tries. It relaxes the constraints for our partial orders,

thereby allowing more, potentially better variable orders. Moreover, accessing the branches

of an f-representation individually avoids the materialisation of its Cartesian products –

which is unavoidable when we treat body atoms as tries.

As an example, consider a critic who superficially reviews movies based on the direc-

tors and the cast, and he appreciates a movie if there is at least a famous director and

actor involved. Reducing his effort even further, the critic uses a Datalog program with

the rules r1 = triple(m, d, a) ← director(m, d) ∧ actor(m, a) and r2 = masterpiece(m) ←
triple(m, d, a) ∧ awardReceived(d, awd) ∧ awardReceived(a, awa). Then the partial order ≺r1

with m ≺r1 d and m ≺r1 a for r1 allows not only a succinct representation of triple, but it

enables the partial order ≺r2 with m ≺r2 d ≺r2 awd and m ≺r2 a ≺r2 awa for r2. Thus, this

avoids the materialisation of the Cartesian products for triple.

Unfortunately, relations cannot be represented by arbitrary f-representations, but they

have to respect dependencies between attributes. In our example, we cannot represent

triple[M,D,A] as an f-representation over the f-tree with the root labelled by D and two

children labelled byM and A, since the movies and actors in the relation are not independent

of each other, even if we talk about a single director. In general, if an f-tree contains two

paths p ∪ p1 and p ∪ p2 with p being the common prefix, then for every binding of p, the

projection onto p1 ∪ p2 must be the Cartesian product of the projections p1 and p2.

As long as there is no information, we have to assume that the attributes of an input

relation are dependent and we have to represent them as tries. For a relation p[A] with

derived facts only, the partial orders for the rules r with head(r) = p(x) determine the de-

pendencies between the attributes A. The strongest notion of independence is accomplished

if two attributes are the labels of different roots of the f-tree induced by a partial order.

As it is unlikely that a rule uses two variables that do not interact at all, we observe that

attributes can become independent after binding the values for some attributes and we use

a weaker notion of conditional independence:

Definition 6.5. Let P be a Datalog program, let F be partial orders for the rules of P ,

and let p[A] be a relation. Attributes Ai, Aj ∈ A are conditionally independent for

attributes A′ ⊆ A if for each rule r ∈ P with p(x) = head(r) and ⪯r ∈ F being the

variable order for r, we have (i) xi and xj are incomparable, i.e., xi ⪯̸r xj and xj ⪯̸r xi,

(ii) xk ⪯r xi ∧ xk ⪯r xj ⇒ Ak ∈ A′, and (iii) ¬∃y ∈ dom(⪯r) \ x : y ⪯r xi ∧ y ⪯r xj.

Concerning the example of this section, we have that for triple[M,D,C] and rule r1 with

the partial order ⪯r1 , C and D are conditionally independent for {M}.
In contrast to total variable orders, we have to ensure that partial orders respect the

dependences between attributes. In Section 6.4 we enforce this by ensuring that any variables

co-occurring in a body atom are comparable. Now we relax this constraint and allow variables

to be incomparable for a rule r and a partial order ⪯r if they co-occur only in body atoms
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without input facts and their corresponding attributes are conditionally independent for

attributes corresponding to variables that precede them in the partial order ⪯r. We formalise

this with the notion of admissibility for partial orders:

Definition 6.6. Let P be a Datalog program and let F be the partial orders for its rules. A

partial order ⪯r ∈ F for a rule r ∈ P is admissible if (i) for each body atom p(x) ∈ body(r)

with input facts, xi ⪯r xj or xj ⪯r xi for all xi, xj ∈ x and (ii) for each body atom

p(x) ∈ body(r) without input facts, xi ⪯̸r xj and xj ⪯̸r xi implies that Ai and Aj are

conditionally independent for {Ak ∈ A | xk ≺r xi ∧ xk ≺r xj} with A being the attributes of

p. The partial orders F are admissible if each partial order ⪯r∈ F is admissible.

If the partial orders F for a Datalog program P are admissible, we can transform the

f-representation of derived facts for a predicate p and for each body atom p(x) ∈ r ∈ P to an

f-representation over an f-tree that is more general than the f-tree for p(x) induced by the

variable order for r. We use a swap operator χA,B, which is similar to the one by Bakibayev

et al. [7]. χA,B exchanges a node B of an f-tree T with its parent node A such that any

f-representation over T can be transformed into an f-representation of the resulting f-tree.

The swap operator promotes B to be the parent of A and all children of B become children

of A.

Proposition 6.7. Let P be a Datalog program, let F be a set of admissible, partial variable

orders for the rules of P , let p[A] be a relation without input facts, and let rh ∈ P be

a rule with head predicate p. For each body atom p(x) ∈ body(rb) of some rule rb ∈ P ,

an f-representation for the matches of rh over the f-tree Th can be transformed into an f-

representation with the same derived facts over an f-tree T ′
h that is more general than the

f-tree Tb which defines the required structure for the body atom p(x) ∈ body(rb) and the

partial order ⪯rb.

Proof. Let B = ⟨B1, . . . , Bn⟩ be a topological order of (the attributes of) Tb. We consider

the sequence T0, T1, . . . , Tn with T0 = Th and Ti+1 is constructed from Ti by exhaustively

swapping Bj+1 with its parent node A via χ(A,Bj+1) until it is the child of a node Bi such

that i ≤ j.
If Bi and Bj are incomparable for ⪯Tb

, then they are incomparable for ⪯Tk
with 0 ≤ k ≤

n. We can show this inductively: for k = 0, Bi and Bj are incomparable for T0 = Th since

the partial orders F are admissible and Th is induced by a partial order ⪯rh∈ F . Assume

that Bi and Bj are incomparable for ⪯Tk
. W.l.o.g, we assume that i < j. If Bk+1 ̸= Bi

and Bk+1 ̸= Bj , then they are incomparable for ⪯Tk+1
, as swapping Bk+1 upwards does

not introduce dependencies between Bi and Bj . If Bk+1 = Bi, we have that Bi and Bj are

conditionally independent for B′ = ⟨B1, . . . , Bk⟩, since B is a topological order of Tb and ⪯rb

is admissible. Thus, for any attribute A we swap Bi with to obtain Tk+1, we have A /∈ B′,

A ≺rk Bi as well as A ≺Th
Bi, and, due to the conditionally independence, A ⊀Th

Bj and

therefore A ⊀Tk
Bj (as A ≺Th

Bj would violate 6.5 (ii) or 6.5 (iii)). Hence, A is not an

ancestor of Bj and after swapping A and Bi, we have that Bi and Bj are still incomparable.

If Bk+1 = Bj , we have already swap Bi and we will not introduce any dependencies for it

when swapping Bj .
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In particular, if Bi and Bj are incomparable for ⪯Tb
, then they are incomparable for

⪯Tn . In addition with Bi ≺Tn Bj ⇒ Bj ⊀Tb
Bi (as we swapped Bi before Bj and B is a

topological order of Tb), we have that Bi ≺Tn Bj ⇒ Bi ≺Tb
Bj . Finally, we eliminate any

attribute A /∈ B from Tn, which is possible since they occur only after the attributes B, and

we get an f-tree, which is more general than Tb.

Bakibayev et al. [7] provide an algorithm for (a slightly more general version of) the swap

operator χ. Even though it is possible to obtain Tn by the repeated application of χ, it is

likely to be more efficient to construct it directly from T0 by materialising (the necessary

parts of) T0 and sorting them only once.

As Proposition 6.7 guarantees that we can transform the f-representations of derived

facts to suitable f-representations for future rule applications, we immediately get that we

can compute the materialisation for any Datalog program and admissible set of partial orders,

since the transformation of f-representations to tries, e.g., for predicates with input facts, is

always possible:

Corollary 6.8. Let P be a Datalog program and let F be a set of admissible, partial variable

orders for the rules of P . Then leapfrog triejoin for partial variable orders can materialise

the consequences of P .

Admissibility ensures that we can use leapfrog triejoin. There is, however, another facet

we have to be aware of when using f-representations. It is in general not possible to combine

two f-representations E1 and E2 over the same f-tree T to an f-representation E over T such

that E represents the union of the relations represented by E1 and E2. For example, let

p[A,B] be a relation, let T be the forest of f-trees {A} and {B}, and let E1 = ⟨a1⟩ × ⟨b1⟩
and E2 = ⟨a2⟩ × ⟨b2⟩ be f-representations over T . Then there is no f-representation over T

for the relation {⟨a1, b1⟩, ⟨a2, b2⟩}.
This observation shows that we might have to keep several f-representations for the same

relation, e.g., for derived facts from different rules or applications of the same rule. As some

Datalog reasoners use an incremental approach, e.g., for a semi-naive evaluation, having

several f-representations might be manageable. It, however, prevents the combination of

derived facts and every rule application has to consider all combinations of the partial fact

sets for the body atoms, thereby resulting in even more f-representations for the relation of

the head predicate. Thus, having rules whose body contains several atoms with independent

atoms might lead to a fast increase of required rule applications, in particular in the presence

of recursion. Hence, there is a trade-off between the benefits of succinct representations as

well as the fast computation of matches and the drawbacks of having several f-representations

as well as the potential increase of rule applications.

7 Extensions

In the previous sections, we discussed basic aspects of using leapfrog triejoin during the

materialisation of the consequences of Datalog programs. There are, however, further con-

siderations which arise from a more practical point of view. Even though we do not want to
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discuss them as extensive as the core considerations, we present the main ideas as they might

help to adjust the approaches from the previous sections for the specific implementation of

a Datalog reasoner based on leapfrog triejoin.

7.1 Multiple variable orders

As some of the optimisation criteria, e.g., the selectivity of variables, depend strongly on

the actual data distribution, it is beneficial to not restrict the search to a single variable

order for each rule. Having the tries or, respectively, f-representations for several variable

orders offers the freedom to choose between them when the actual join is computed. At that

point in time, there is more information available, e.g., the size of the involved relations and

experience from past applications of the rule.

Since enabling more variable orders most likely requires more redundancy of the data

structures, there is a trade-off between having as many variable orders as possible and having

as few indices as possible. Moreover, having several variable orders is more impactful if they

are diverse, e.g., the first variables occur in different atoms, and we propose two criteria to

measure the diversity.

Variables that are bound early have a higher impact on the number of irrelevant candi-

dates and, thus, the performance of an application of leapfrog triejoin. It is therefore desirable

to have for each variable a variable order that bounds it early on. To decide whether a vari-

able is bound early, we use a function level(x,⪯) = |{y ∈ dom(⪯) | y ⪯ x}|, which determines

the level at with x is bound for ⪯. Now we can define the fraction λfrac-var(r[x],Fr, i) of

variables of a rule r that are bound by some variable order ⪯ ∈ Fr at level i or less:

λfrac-var(r[x],Fr, i) =
|{x ∈ x | ∃⪯ ∈ Fr : level(x,⪯) ≤ i}|

|x|

Alternatively, we can use information about the data distribution by looking at the

relations that are involved in binding the first variable. Thus, we introduce a function

first(⪯) that returns the smallest element of a variable order ⪯. Similar to the first criterion,

we are interested in the fraction λfrac-atom(r,Fr) of body atoms of a rule r for which there is

a variable order ⪯ ∈ Fr whose first variable is used in the atom:

λfrac-atom(r,Fr) =
|{p(x) ∈ body(r) | ∃⪯ ∈ Fr : y = first(⪯) ∧ y ∈ x}|

|body(r)|

To balance the benefits and drawbacks of having multiple variable orders, we can restrict

the maximal number of variable orders per rule. Moreover, we can use the number of tries

for an optimal solution with a single variable order per rule as a base value and restrict the

number of tries for solutions with multiple variables orders per rule based on this value.

Exemplarily, the ASP program of Listing 6 together with the auxiliary definitions of

Listing 1 computes, for a parameter c, up to c variable orders per rule. Moreover, it computes

the minimal number of tries for IDB predicates that are required for a single variable order for

each rule, and it uses this value with a percentage increase, determined by another parameter,

to limit the number of tries for IDB predicates while searching for multiple variable orders.
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To measure the benefits of additional variable orders for a rule, it uses λfrac-atom.

7.2 Index maintenance strategies

To compute the matches of a Datalog rule for a given order, we need the necessary tries or,

respectively, f-representations containing the given or previously derived facts. We discussed

how to obtain them from tries representing the matches of a Datalog rule in Section 5.3.3

and from f-representation in Sections 6.3 and 6.5. We did, however, not discuss different

options when to get them.

A first approach is to immediately construct all tries or f-representations that are needed

for some Datalog rule, as soon as we derive new facts. Thus, the needed index structures are

available, whenever we apply a rule. There are, however, drawbacks to this approach. If a

rule is never again applied because, e.g., there are no facts for some body atom, computing

indices which are only used by this rule is needless. Similarly, if multiple variable orders

for each rule are considered, there might be some orders and indices that are never used.

Moreover, there might not be enough storage to maintain all indices at the same time.

Thus, we propose an on-demand construction of the required tries and f-representations as

an alternative. As the name suggests, the indices for a rule application are only constructed

before the actual application. This approach requires some bookkeeping to keep track of

which indices are currently available. Additionally, it is useful to have a primary index for

each predicate, which is always up-to-date, as negation and avoiding the re-computation of

facts require a trie with all facts for each predicate. If there are several variable orders for a

rule, the reasoner can take into account the required effort for constructing the indices when

it chooses which order to use.

Considering Datalog with stratified negation, we observe that some programs allow a

stratification and the rules of one stratum are exhaustively applied before moving on to the

next. Thus, we only need the indices for the applications of rules in the current stratum. In

particular, we can discard indices that are never again used in the later strata. Moreover,

it is possible to solve the optimisation problem of finding optimal variable orders for each

stratum individually, potentially taking into account which indices are available after the

previous one.

7.3 Improved implementations of leapfrog triejoin

During the discussion of optimisation criteria in Sections 5.3, we encountered properties of

variable orders which are beneficial if the implementation of the Datalog reasoner and leapfrog

triejoin supports the corresponding optimisations, e.g., a semi-naive evaluation might lead

to syntactically predictable differences in the size of relations involved in a join, thereby

favouring variable orders which use them first.

As the implementation of a Datalog reasoner is out of the scope of this thesis, we focus

on extensions of the leapfrog triejoin algorithm and show how they can positively impact

the execution of the join algorithm. Moreover, Algorithm 6 shows possible modifications of

leapfrog triejoin to use these extensions.

46



Existential branches Consider a Datalog rule r[x,y] = h(x) ← B[x,y]. We can distin-

guish the head variables x and non-head variables y. An application of r is merely interested

in the (newly) derived facts for h. Thus, a join algorithm has to find bindings µ for x such

that there is a binding µ′ for y with µ ∪ µ′ being a match for the rule body. In particular,

the actual values for y as well as the number of bindings µ′ is irrelevant.

Whenever leapfrog triejoin finds a match, it continues its search for the next match by

looking for another value for the last variable. If this variable is a non-head variable, it is

irrelevant whether it has another binding (for the same binding of the other variables). Thus,

leapfrog triejoin can skip this variable. Indeed, it can return to the latest head variable. In

the general setting of partial variable orders, leapfrog triejoin can skip the computation of

further matches for a subtree of only non-head variables beyond the first match. To decide

whether further bindings for a variable v have to be computed, it is not sufficient to check

whether v is a non-head variable, as leapfrog triejoin has to consider all bindings for v if

there is a head variable w with v ≺ w, as different values for v might enable different ones for

w. If leapfrog triejoin supports skipping the computation of further matches for non-head

variables, then variable orders whose last head variable occurs early are favourable.

Consider the rule triangle(x, y)← p(x, y)∧p(x, z)∧p(y, z) with the variable order ⟨x, y, z⟩,
which collects pairs ⟨x, y⟩ that are part of some triangle for the predicate p. Once leapfrog

triejoin has found values cx for x, cy for y, and cz for z, it can immediately continue with

looking for another value for y, thereby skipping potential matches ⟨cx, cy, c′z⟩ with cz ̸= c′z.

On the contrary, having found a match for a variable order ⟨z, y, x⟩, leapfrog triejoin has to

continue looking for values for the last variable x. Even if it has found all matches with a

value cz for z, leapfrog triejoin has to consider the remaining values for the non-head variable

z. Thus, the first variable order is superior to the second one w.r.t. this criterion.

New facts only Similar to the previous paragraph, we consider a Datalog rule r[x,y] =

h(x) ← B[x,y] and distinguish the head variables x and non-head variables y. As an

application of r is interested in the newly derived facts for h, we can take into account that

there might already be facts for h. Whenever a (partial) matching binds all head variables,

we can check if the binding might produce any new facts. Otherwise, we do not have to

search for a binding for the remaining variables and, instead, can continue immediately with

the next value.

As we allow partial variable orders, head variables can be independent of each other

and a candidate binding of the head variables might be an f-representation with Cartesian

products. Thus, checking whether there are candidates for new facts requires to resolve the

Cartesian products. Moreover, it is necessary to do some bookkeeping to know when the

last head variable is bound and to have access to the current variable bindings. Depending

on the actual implementation of the underlying Datalog reasoner, the facts for h might be

split into a union of smaller relations, e.g., representing the facts derived by the ith rule

application, which increase the costs for checking whether a fact is already present.

Checking whether facts are already there is unavoidable, e.g., to realise that the mate-

rialisation has reached its fix-point. Thus, the question is whether an early elimination of
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Algorithm 6: leapfrog-triejoin with partial variable orders

Input : A Datalog rule r = h(w)← B[v] with w ⊆ v,
a partial variable order for v represented as a tree t,
a list It of iterators that comply with t and represent B[v],
the current bindings µ for some variables v′ ⊆ v, and
a set of (given or already derived) facts F for h

Output: An f-representation of the matches of r with the f-tree t

1 v := root(t) // root node of t
2 w := children(t, v) // children of v
3 Itv := {i ∈ It | v ∈ i.variables()}
4 for i ∈ Itv do
5 i.open()

6 // build list of matches for the current variable v
7 matches := ()
8 labelv: for k ∈ leapfrog(Itv) do
9 if w \ v′ = {v} ∧ candidates(w, µ ∪ {v 7→ k}) ⊆ F then

10 continue // all facts that might be derived are already true

11 // build list of matches for v and every path starting in v
12 // list is regarded as a Cartesian product

13 cart := (k)
14 for w ∈ w do
15 path-matches := leapfrog-triejoin(subtree(t, w), It)
16 if path-matches = ∅ then
17 continue labelv

18 cart.append(path-matches)

19 matches.append(cart)

20 if inducesSubtreeOfExistentialVariables(v, t) then
21 break // only a single extension is of interests

22 for i ∈ Itv do
23 i.up()

24 return matches

candidates is beneficial as there is a trade-off between the effort of checking the presence of

candidates that cannot be extended to an actual match anyway and the savings of not com-

puting the extensions for already derived facts. This trade-off is in particular favourable for

an early elimination if (i) the head variables are bound early, i.e., there are several unbound

non-head variables left, (ii) it is likely that the candidates are already present, and (iii) there

is a high probability that the candidates are indeed (the projection of) a match, i.e., there

is a binding for the currently unbound non-head variables.

7.4 Datalog extensions

In Section 2.3 we introduced stratified negation and existential rules as examples for exten-

sions of Datalog. Even though leapfrog triejoin does not support them natively, there are no
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major adaptations necessary to do so. Thus, we discuss in this section how to use leapfrog

triejoin to support these extensions.

Stratified negation Handling stratified negation is similar to avoiding the derivation

of already known facts. Once all variables of a negated atom are bound, the algorithm

checks whether the resulting fact is present and, if this is the case, then it discards the

current candidate or match. In the context of partial variable orders, the matches can be

f-representations and checking the absence of facts for negated atoms has to be done for each

actual match individually – unless they do not use variables that are independent of each

other. Thus, negation enforces the materialisation of the Cartesian products for storing the

matches, unless all checks have the same result. Negated atoms, however, do not require a

trie with a compatible attribute order, as they are only used to ensure the absence of facts

and this is anyway only possible once all involved variables are bound.

Existential rules Consider an existential rule r = B[x,y]→ ∃v. H[x,v]. To compute the

inferences of the rule, we start with computing the matches for the frontier x via leapfrog

triejoin. For each match cx for x, we check whether there is already a match for H[x/cx].

If this is the case, then there are values for v that satisfy the existential rule. Otherwise,

we introduce fresh named nulls n together with the facts in H[x/cx,v/n]. To use leapfrog

triejoin for this check efficiently, we need a variable order for x ∪ v such that ∀x ∈ x, v ∈
v. x < v holds. Thus, we adapt the rules for the optimisation problem:

Transformation 7.1. We represent, for the purposes of optimising its variable order, an

existential rule r = B[x,y]→ ∃v. H[x,v] by the rules

r̃1 = frontierr(x)← B[x,y] (7.1.1)

r̃2 = satisfiedr(x)← frontierr(x) ∧H[x,v] (7.1.2)

with frontierr and satisfiedr being fresh predicates for r. Conceptually, r̃1 can be used to

compute matches for the frontier, while r̃2 checks if the head is already satisfied for a match

of the frontier.

8 Evaluation

Beyond the theoretical considerations, we conducted two experiments to show the feasibility

of our approaches to find total variable orders as well as their relaxation to partial ones

on a set of benchmarks. Moreover, the experiments allow us to evaluate the quality of the

obtained variable orders and the effort to find them. We present the results in this section.

The first part (Section 8.1) contains an evaluation of the heuristic approach and the ASP

approach, described in Section 5.4, to find total variable orders and we evaluate them w.r.t.

the optimisation criteria from Section 5.3. Moreover, we measure the required time for the

ASP solver and heuristic to find an optimal solution. In Section 8.2 we present our results

regarding the impact of partial variable orders. We evaluate the quality improvements when

using partial variable orders, and we measure the effort for finding them.
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We use three benchmarks for our experiments: elk-calculus1, datalog-arithmetics2, and

chasebench3. The first one, elk-calculus, contains Datalog rules which simulate the calculus

of ELK [22], a high-performance reasoner for EL ontologies. In contains three programs

for classification and normalisation of ontologies. Even though there is the data for the EL
ontology Galen, we are purely interested in the rules without any facts. The second one,

datalog-arithmetics, is the Datalog benchmark created by Bromberger et al. [10]. It contains

16 Datalog programs, which use, in comparison with elk-calculus, higher arities of predicates

and a higher number of predicates in the rule bodies. The last one, chasebench, consists of

different scenarios, which are partially based on known standards, either from the database

or the Semantic Web community, and partially manually curated. The benchmark contains

large programs with up to 1300 rules, and all of its Datalog program use tuple-generating

dependencies. From this benchmark, we only use the programs with plain Datalog rules and

tuple-generating dependencies, resulting in 14 Datalog programs.

For each Datalog program P of the benchmarks, we replace every existential rule r ∈ P
with the corresponding rules r̃1 (7.1.1) and r̃2 (7.1.2) to represent the two required joins for

existential rules. Afterwards, we recall the rewrites by Veldhuizen [28], and we prepare the

obtained programs for leapfrog triejoin accordingly: firstly, we replace every constant c ∈ C
by a fresh variable vc and we add an atom Constc(vc) to the rule body. Secondly, if a variable

v ∈ V occurs n ≥ 2 times in an atom, we replace each occurrence 2 ≤ i ≤ n with a fresh

variable vi and add an atom Id(v, vi) with a fresh predicate name Id. Moreover, we drop

negated atoms, as any trie is sufficient to check the absence of facts. Finally, we use the

ASP encoding of Section 5.4.1. The obtained Datalog programs and the corresponding ASP

instances are available online4.

Our evaluation computer is an iMac (macOS 10.15.7; Intel Core i5-7500 CPU @ 3.40GHz

× 4; 8 GB RAM). For solving ASP programs, we use the ASP system clingo v5.3.0 [19] from

the Potassco portfolio.

8.1 Optimal variable orders and approximations

We start with an evaluation of the heuristic approach and the ASP approach to finding good

total variable orders. While the heuristic is designed to find a – hopefully good – variable

order fast, the ASP program guarantees optimality w.r.t. the used optimisation objectives.

Thus, there are two evaluation goals: (i) comparing the quality of different approaches and

(ii) measuring the required time to find variable orders.

To evaluate different approaches, we fix the optimisation objectives. For a Datalog pro-

gram P and total variable orders F , we use the following criteria from Section 5.3:

(i) minλcart(P, F ), i.e., minimise the number of Cartesian products,

(ii) minλidb(P, F ), i.e., minimise the number of tries for IDB predicates,

(iii) minλedb(P, F ), i.e., minimise the number of tries for EDB predicates,

(iv) minλsort(P, F ), i.e., minimise the sorting effort, and

1https://iccl.inf.tu-dresden.de/web/Rules_ECAI_Tutorial_2020
2https://github.com/knowsys/eval-datalog-arithmetic
3https://github.com/dbunibas/chasebench
4https://github.com/phil-hanisch/rulewerk/tree/lftj/rulewerk-lftj/evaluation
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Approach λcart λidb λedb λsort λlast-head-var

Native 2 15 26 50 51

Heuristic 1 12 25 37 49

SimpleEnc 1 12 22 39 48

AspEnc 1 12 22 30 46

Fig. 8: Evaluation of variable orders for the Datalog program ‘elk-calculus-optimised.rls’;
showing the values for each approach and optimisation criterion; hierarchical optimisation;
for each criterion, smaller values are better

(v) minλlast-head-var(P, F ), i.e., minimise the indices of the last head variables.

As a baseline, we use the native orders of the rules, i.e., we use the order the variables

syntactically occur in, and we refer to this approach as Native. Additionally, we use a

heuristic Heuristic, which implements the ideas from Section 5.4, and we use, in this order,

the translation for a small number of Cartesian products, a small number of tries for IDB

predicates, and a small number of tries for EDB predicates. To determine the order in which

we consider the rules, we use the described approach as well. Our Java-implementation of

the heuristic is available online5.

For the ASP approach, we use the ASP program of Listing 2 in combination with the

auxiliary definitions of Listing 1 together with the ASP system clingo, and we refer to it as

AspEnc. As we use hierarchical criteria, we use the option --opt-strategy=bb,hier of

clingo such that its optimisation follows the hierarchy. This configuration requires, in this

situation, less time than the standard configuration. Finally, we consider a simplified version

of the ASP program which contains only the first three criteria, and we refer to the resulting

approach as SimpleEnc. We use a timeout of 30 minutes for searching for optimal variable

orders. We repeat all experiments three times and compute the average solving times.

To get an impression of the values for the optimisation criteria, Fig. 8 shows, exemplarily,

the values of the optimisation objectives for the different systems and the Datalog program

‘elk-calculus-optimised.rls‘ from elk-calculus. We recall that a variable order is better if the

values are smaller, and the objectives are hierarchical, i.e., a variable order is better if it

has a better value for an earlier objective, even if the value for a later objective is worse.

Thus, we see that AspEnc produces for this program the best variable order, followed by

SimpleEnc, Heuristic, and Native.

Secondly, Fig. 9 shows, for each benchmark, the fraction of Datalog programs for which a

system has found a variable order with the best value, up to a specific criterion. For example,

Heuristic has found a variable order with the best value w.r.t. λcart and λidb for 75.0% of

the programs of datalog-arithmetics, while none of the produced variable orders belong to

the variable orders with the best w.r.t. λcart, λidb, and λedb. For elk-calculus and datalog-

arithmetics, AspEnc produces the best variable orders, followed by SimpleEnc, Heuristic,

5https://github.com/phil-hanisch/rulewerk/blob/lftj/rulewerk-lftj/src/main/java/org/

semanticweb/rulewerk/lftj/implementation/Heuristic.java
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Approach λcart λidb λedb λsort λlast-head-var

Native 33.3% 33.3% 0% 0% 0%

Heuristic 100% 33.3% 0% 0% 0%

SimpleEnc 100% 100% 100% 0% 0%

AspEnc 100% 100% 100% 100% 100%

(a) elk-calculus

Approach λcart λidb λedb λsort λlast-head-var

Native 37.5% 12.5% 0% 0% 0%

Heuristic 100% 75.0% 0% 0% 0%

SimpleEnc 100% 100% 100% 0% 0%

AspEnc 100% 100% 100% 100% 100%

(b) datalog-arithmetics

Approach λcart λidb λedb λsort λlast-head-var

Native 78.6% 28.6% 7.1% 0% 0%

Heuristic 100% 100% 57.1% 28.6% 28.6%

SimpleEnc 71.4% 71.4% 71.4% 14.3% 7.1%

AspEnc 100% 85.7% 64.3% 64.3% 64.3%

(c) chasebench

Fig. 9: Quality of variable orders; for each benchmark and optimisation criterion, showing
the fraction of Datalog programs for which an approach finds a variable order with the best
value up to the criterion

and Native. For chasebench, we observe that the three approaches Heuristic, SimpleEnc,

and AspEnc are superior to the native variable order, but none of the approaches produces

always the best variable orders. In particular, Heuristic yields the best variable orders for

the largest Datalog programs (‘deep-100.rls’, ‘deep-200.rls’, ‘deep-300.rls’, and ‘Ontology-

256.rls’), for which SimpleEnc and AspEnc struggle to find good variable orders within a

reasonable amount of time.

Finally, for the different systems, except for Native, the times for finding their best

variable orders for each Datalog program are shown in Fig. 10. For the heuristic, the time

includes reading the Datalog program and computing the variable orders. For the ASP ap-

proaches, the time includes reading the ASP encoding of the Datalog program, computing the

grounding, and finding the optimal or, in case of a timeout, best variable orders. Moreover,

AspEncFirst shows the required time for finding the first answer set (including the time for
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Fig. 10: Times to find variable orders; showing the time to find the best or, respectively, first
variable orders for each instance, ordered by the required times; timeout of 30 minutes

reading the ASP encoding and computing the grounding). For each instance, ordered by the

required times, Fig. 10 shows the time to find the best or, respectively, first variable orders.

Considering the log-scale of the time axis, Heuristic is faster than both SimpleEnc and

AspEnc. In particular, the required time for AspEnc is several magnitudes larger for some

instances. Even if we consider only the time for computing the first answer set, Heuristic

is still significantly faster.

Unsurprisingly, the ASP solutions yield the best variable orders in the majority of the

cases, as they guarantee optimality for the considered criteria – unless the timeout is reached.

Nevertheless, the heuristic approach produces competitive variable orders for the first cri-

teria, and it is superior to the native variable orders. For the largest Datalog programs

of chasebench, the heuristic even finds better variable orders, as the optimisation problem

becomes more difficult and the ASP approaches can no longer compute the optimal variable

orders within a reasonable time limit.

Even if the ASP approach that considers all criteria is able to find optimal variable

orders, the search might require a significant amount of time (up to about 3 minutes). Thus,

this search might be not useful in practice, as it might require more time than the actual

materialisation. In these situations, a heuristic, ASP with only some optimization objectives,

or ASP with a time limit require only seconds, or even milliseconds, to find variable orders

that are still acceptable. Hence, there is a trade-off between the quality of the variable orders

and the time to find them, and it depends on the actual Datalog program and database

whether or not it is beneficial to spend more time searching for better variable orders.
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Approach λcart λf-trees λlast-head-var

Total 1 30 44

Tries 0 29 36

F-Repr 0 29 36

(a) ‘elk-calculus-optimised.rls’

Approach λcart λf-trees λlast-head-var

Total 3 181 196

Tries 0 152 172

F-Repr 0 147 170

(b) ‘lc e1.rls’

Fig. 11: Evaluation of variable orders for two exemplary Datalog programs; showing the
values for each approach and optimisation criterion; hierarchical optimisation; for each cri-
terion, smaller values are better

8.2 Partial and total variable orders

In Section 6 we discuss the use of partial variable orders instead of total ones, as the re-

sulting indices, the so-called f-representations, can be more succinct since they prevent the

materialising of Cartesian products in matches for independent variables. We now evaluate

the practical benefits of partial variables orders.

For a Datalog program P and (total or partial) variable orders F , we use the following

evaluation criteria from Section 5.3 and 6.4, focusing on criteria which capture aspects of

partial variable orders:

(i) minλcart(P,F), i.e., minimise the number of Cartesian products,

(ii) minλf-trees(P,F), i.e., minimise the required storage for the required f-representation

of each rule, and

(iii) minλlast-head-var(P,F), i.e., minimise the indices of the last head variables.

For partial variable orders, we consider two ASP programs together with the auxiliary

definitions of Listing 1: the first one, which is shown in Listing 4, searches for optimal partial

variable orders such that body atoms are always represented as tries, and we refer to the

resulting system as Tries. The second ASP program, which is shown in Listing 5, uses

the relaxation described in Section 6.5, which allows the representation of body atoms as

f-representations with independent attributes as long as the variable orders are admissible,

and we refer to the resulting system as F-Repr. For total variable orders, we use the ASP

program of Listing 2 together with the auxiliary definitions of Listing 1 but use only the

optimisation criteria λcart, λidb, and λlast-head-var. Total variable orders are optimal for λidb if

and only if they are optimal for λf-trees, since all f-representations are tries. We refer to the

resulting approach as Total.

Similar to the experiments of Section 8.1, we use the option --opt-strategy=bb,hier

of clingo such that its optimisation follows the hierarchy of the optimisation criteria. We use

a timeout of 30 minutes for each instance, and if the timeout is reached, then the currently

best variable order is returned. We repeat all experiments three times and compute the

average solving times.

To get an impression of the values for the optimisation criteria, Fig. 11 shows, exemplarily,

the values of the optimisation criteria for the Datalog programs ‘elk-calculus-optimised.rls’

from elk-calculus and ‘lc e1.rls’ from datalog-arithmetics. For the latter one, all approaches
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Approach λcart λf-trees λlast-head-var

Tries 77.8% 4.1% 17.1%

F-Repr 77.8% 4.6% 17.1%

(a) elk-calculus

Approach λcart λf-trees λlast-head-var

Tries 100% 13.4% 14.7%

F-Repr 100% 17.6% 16.4%

(b) datalog-arithmetics

Approach λcart λf-trees λlast-head-var

Tries 28.6% 16.0% 14.4%

F-Repr 28.6% 1.6% -0.7%

(c) chasebench

Fig. 12: Average decrease of the optimisation values for partial variable orders; for each
benchmark and optimisation criterion, showing the average percentage decrease of the values
for partial variable orders w.r.t. the values for the total variable orders

reach the timeout. For these examples, we find that partial orders do not require the ma-

terialisation of Cartesian products (at least for computing new facts) and that they yield

slightly better results for both λf-trees and λlast-head-var, even in the presence of a hierar-

chical optimisation. Moreover, the relaxation of partial orders to use f-representations for

body atoms might improve the variable orders even further, but there are programs like

‘elk-calculus-optimised.rls’ that do not allow further improvements.

For each benchmark, the percentage improvements of partial orders over total ones is

shown in Fig. 12: for each Datalog program, we determine the values for the optimisation

criteria for Total, and we compute the percentage decrease of the value for each criterion

for Tries and F-Repr, and the figure shows the average decrease. If the value for a criterion

is already 0 for the total variable orders, we use 0% as the decrease for this program and

criterion. Thus, the average decrease for λcart is below 100%, even though partial variable

orders completely prevent Cartesian products of unrestricted variables, i.e., λcart(P,F) = 0

for any program P and its partial variable orders F . Moreover, partial orders allow more

efficient use of indices and the used variable orders are more compact, i.e., the sum of indices

of the last head variables decreases. For elk-calculus and datalog-arithmetics, allowing the

direct use of f-representations for body atoms yields slightly better results than enforcing

partial orders to use tries for all body atoms. The benchmark chasebench, however, shows

a drawback: for the large Datalog programs of this benchmark, the additional degrees of

freedom of f-representations make the optimisation problem more difficult and, using the

same amount of time, the found variable orders are worse.

Finally, we compare the required solving time to find the optimal or, respectively, best

possible variable orders, and Fig. 13 shows the results. The time includes reading the ASP

encoding of the Datalog program, computing the grounding, and finding the optimal or, in

case of a timeout, best variable orders. For each instance, ordered by the required times,

Fig. 13 shows the time to find the optimal or, respectively, best variable orders. In the cases
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Fig. 13: Times to find variable orders; showing the time to find the best variable orders for
each instance, ordered by the required times; timeout of 30 minutes

when optimal variable orders can be found, Total requires the smallest amount of time and

the required time is sometimes an order of magnitude smaller than the required time for

the partial variable orders. Moreover, we observe that Tries and F-Repr require a similar

amount of time. For 14 out of the 33 Datalog programs, all approaches reach the timeout.

The experiment shows that partial variable orders can be better w.r.t. the optimisation

criteria. In particular, they avoid the materialisation of the Cartesian products for unre-

stricted variables during the computation of matches. Indeed, this property is guaranteed if

minimising the number of Cartesian products is the first optimisation criterion. To store the

derived facts, however, the Cartesian products might have to be materialised to construct

an index with a suitable attribute order. Moreover, the evaluation suggests that partial

variable orders require less storage, as λf-trees decreases, and can compute matches faster, as

λlast-head-var decreases as well. Unsurprisingly, allowing the direct use of f-representations for

body atoms yields better results (as long as optimal variable orders are found) since every

set of partial variable orders using tries for body atoms is admissible.

It is, however, more difficult to find optimal partial variable orders, since they are a

superset of total variable orders and the optimisation criterion for minimal storage require-

ment is more sophisticated. We also recall that derived facts for the same predicate, which

are stored in different f-representation might not be consolidated without materialising their

Cartesian products, thereby reducing the benefits observed in this evaluation. Thus, there is

a trade-off between the benefits and drawbacks of partial variable orders, and it depends on

the actual Datalog program and database whether it is worth to invest the additional effort

for partial variable orders.
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9 Conclusions

Using leapfrog triejoin is a promising approach to increase the performance of Datalog reason-

ers. This thesis provides the foundations for finding, maintaining, and using index structures

in order to implement an efficient Datalog reasoner based on leapfrog triejoin.

The essential task for applying leapfrog triejoin to whole Datalog programs is to find

a good variable order for each rule, and the variable orders directly induce the necessary

index structures. To evaluate variable orders, there are three main objectives: reducing the

number of index structures, the effort to find matches for each rule, and the effort to store

derived facts. We proposed measures for each category, and we provided an ASP encoding

to optimise the variable orders for a Datalog program w.r.t. them. Since the impact of the

criteria depends on the actual implementation and data distribution, the ASP approach is

flexible and can be adapted to the actual setting leapfrog triejoin is used in.

As there is a trade-off between the effort for optimising the materialisation and the gained

benefits, we proposed a heuristic approach and showed in an experimental evaluation that it

is faster than the ASP approach, while still yielding acceptable, though non-optimal variable

orders. Beyond these two approaches, other techniques for solving optimisation problems

can be applied to find good variable orders. Unfortunately, even finding an optimal variable

order w.r.t. only minimising the number of tries is difficult, as deciding whether a single

index structure for each relation is sufficient is NP-complete. Datalog programs, however,

are usually relatively small in comparison to the size of the databases they are used for.

Beyond finding good total variable orders for leapfrog triejoin, we investigated the use of

partial variable orders. Thus, we generalised leapfrog triejoin to support f-representations,

which can be regarded as a generalisation of tries that allow independent attributes. As

leapfrog triejoin can use f-representations to store derived facts potentially more succinctly

and in potentially fewer index structures, an implementation supporting partial variable

orders might yield better results. Hence, we proposed ways of how leapfrog triejoin can

realise the benefits of partial orders, e.g., by computing matches for independent variables

separately, thereby avoiding the materialisation of Cartesian products.

With the theoretical preparatory work done, a natural follow-up task is to implement

a Datalog reasoner based on leapfrog triejoin – and comparing it with existing reasoners.

Moreover, having such a system enables a better evaluation of the different optimisation

criteria, as well as their interaction, as it allows measuring the required time for Datalog

materialisation. In particular, it is possible to verify that variable orders with better values

for the optimisation criteria yield better performance results during the Datalog material-

isation. Additionally, applying such a reasoner to real-world problems can lead to further

insights about requirements for good variable orders, thereby providing a toolset for fine-

tuning leapfrog triejoin, and the reasoner, to the Datalog programs at hand. A different

path of research might consider related tasks, e.g., optimising variable orders for Datalog

extensions or providing several variable orders for each rule to choose from during the actual

materialisation, more intensively.
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A ASP programs

Listing 1: ASP program for auxiliary defintions

1 % --- Input predicates ---

2 % hasBodyAtom[2] - rule, atom

3 % hasHeadAtom[2] - rule, atom

4 % hasVariable[3] - atom, variable, position

5 % hasPredicate[2] - atom, predicate

6

7 isPredicate(P) :− hasPredicate(_,P) .

8 isVariable(X) :− hasVariable(_,X,_) .

9 isHeadVariable(X,R) :− hasHeadAtom(R,A), hasVariable(A,X,_) .

10 isRule(R) :− hasBodyAtom(R,_) .

11 isIDBPredicate(P) :− hasHeadAtom(_,A), hasPredicate(A,P) .

12 isEDBPredicate(P) :− isPredicate(P), not isIDBPredicate(P) .

13 occursIn(X,R) :− hasVariable(A,X,_), hasBodyAtom(R,A) .

14 hasArity(P,N) :− hasPredicate(A,P), N = #max { I : hasVariable(A,_,I) } .

15 bodyAtom(A) :− hasBodyAtom(_,A) .

16 headAtom(A) :− hasHeadAtom(_,A) .

17 samePredicate(A1,A2) :− hasPredicate(A1,P), hasPredicate(A2,P) .

Listing 2: ASP program for finding optimal total variable orders

1 % --- Generate ---

2 % generate a (total) variable order per rule

3 before(R,X,Y) | before(R,Y,X) :− occursIn(X,R), occursIn(Y,R), X != Y .

4 before(R,X,Z) :− before(R,X,Y), before(R,Y,Z) .

5 :− before(R,X,X) .

6

7 % --- Optimise ---

8 % number of tries per predicate

9 beforeAttr(A,I,J) :− hasBodyAtom(R,A), hasVariable(A,X,I), hasVariable(A,Y,J), before(R,X,Y) .

10 hasDifferentTrie(A,A2) :− beforeAttr(A,I,J), beforeAttr(A2,J,I), hasPredicate(A,P),

11 hasPredicate(A2,P) .

12 hasRedundantTrie(A) :− hasPredicate(A,P), hasPredicate(A2,P), not hasDifferentTrie(A,A2), A > A2 .

13 numberOfTries(P,C) :− isPredicate(P), C = #count { A : hasPredicate(A,P), not hasRedundantTrie(A) } .

14 #minimize { C*N@4,P : numberOfTries(P,C), isIDBPredicate(P), hasArity(P,N) } .

15 #minimize { C*N@3,P : numberOfTries(P,C), isEDBPredicate(P), hasArity(P,N) } .

16

17 % number of Cartesian products

18 isRestricted(X,R) :− before(R,Y,X), hasBodyAtom(R,A), hasVariable(A,X,_), hasVariable(A,Y,_) .

19 isUnrestricted(X,R) :− occursIn(X,R), not isRestricted(X,R) .

20 isNotFirst(X,R) :− before(R,_,X) .

21 isFirst(X,R) :− occursIn(X,R), not isNotFirst(X,R) .

22 numberOfCartProducts(R,C) :− isRule(R), C = #count { X : isUnrestricted(X,R), not isFirst(X,R) } .

23 #minimize { C@5,R : numberOfCartProducts(R,C) } .

24

25 % index of first non-head variable

26 isHeadVariable(X,R) :− hasHeadAtom(R,A), hasVariable(A,X,_) .

27 isNotPartOfHeadPrefix(X,R) :− isHeadVariable(X,R), before(R,Y,X), not isHeadVariable(Y,R) .

28 isPartOfHeadPrefix(X,R) :− isHeadVariable(X,R), not isNotPartOfHeadPrefix(X,R) .

29 headVarPrefixLength(R,C+1) :− isRule(R), C = #count { X : isPartOfHeadPrefix(X,R) } .

61



30 #maximize { C@1,R : headVarPrefixLength(R,C) } .

31

32 % index of last head variable

33 isNotLastHeadVariable(X,R) :− before(R,X,Y), isHeadVariable(X,R), isHeadVariable(Y,R) .

34 isLastHeadVariable(X,R) :− isHeadVariable(X,R), not isNotLastHeadVariable(X,R) .

35 indexOfLastHeadVar(R,I) :− isLastHeadVariable(X,R), I = #count { Y : before(R,Y,X) } .

36 #minimize { I@1,R : indexOfLastHeadVar(R,I) } .

37

38 % estimate effort for sorting derived facts per head atom

39 hasTrieRepresentative(H,A) :− hasPredicate(A,P), hasPredicate(H,P), not hasRedundantTrie(A) .

40 notOrdered(X,H,A) :− hasHeadAtom(R,H), hasTrieRepresentative(H,A), isHeadVariable(X,R),

41 before(R,Y,X), not isHeadVariable(Y,R) .

42 notOrdered(X,H,A) :− hasHeadAtom(R,H), hasTrieRepresentative(H,A), hasVariable(H,X,IX),

43 hasVariable(H,Y,IY), before(R,Y,X), beforeAttr(A,IY,IX) .

44 notOrdered(X,H,A) :− hasHeadAtom(R,H), hasTrieRepresentative(H,A), hasVariable(H,X,IX),

45 hasVariable(H,Y,IY), before(R,X,Y), beforeAttr(A,IX,IY) .

46 orderedHeadPrefixLength(H,C,A) :− hasHeadAtom(R,H), hasTrieRepresentative(H,A),

47 C = #count { X : isHeadVariable(X,R), not notOrdered(X,H,A) } .

48 sortEffort(H,A,I-C+1) :− hasTrieRepresentative(H,A), orderedHeadPrefixLength(H,C,A), hasHeadAtom(R,H),

49 indexOfLastHeadVar(R,I) .

50 hasPerfectOrder(H,A) :− sortEffort(H,A,0) .

51 #maximize { 1@2,H,A : hasPerfectOrder(H,A) } .

52 #minimize { E@1,H,A : sortEffort(H,A,E) } .

53

54 #show before/3 .

Listing 3: ASP program for defining optimisation criteria for partial variable orders

1 % - Memory consumption -

2 beforeAttr(A,I,J) :− hasBodyAtom(R,A), hasVariable(A,X,I), hasVariable(A,Y,J), before(R,X,Y) .

3 hasIndexFor(H,A) :− bodyAtom(A), headAtom(H), samePredicate(A,H) .

4

5 unordered(H,A,I) :− hasIndexFor(H,A), hasHeadAtom(R,H), before(R,Y,X), hasVariable(H,X,I),

6 not isHeadVariable(Y,R) .

7 unordered(H,A,IX) :− hasIndexFor(H,A), hasHeadAtom(R,H), before(R,X,Y), hasVariable(H,X,IX),

8 hasVariable(H,Y,IY), beforeAttr(A,IY,IX) .

9 unordered(H,A,IY) :− hasIndexFor(H,A), hasHeadAtom(R,H), before(R,X,Y), hasVariable(H,X,IX),

10 hasVariable(H,Y,IY), unordered(H,A,IX) .

11

12 mostGeneralIndexLessThan(H,A,IX,IY) :− hasIndexFor(H,A), hasHeadAtom(R,H), before(R,X,Y),

13 hasVariable(H,X,IX), hasVariable(H,Y,IY), not unordered(H,A,IX) .

14 mostGeneralIndexLessThan(H,A,IX,IY) :− hasIndexFor(H,A), hasVariable(H,X,IX),

15 hasVariable(H,Y,IY), unordered(H,A,IX), beforeAttr(A,IX,IY) .

16

17 notMoreGeneral(H,A,A2) :− mostGeneralIndexLessThan(H,A,IX,IY), hasIndexFor(H,A2),

18 not mostGeneralIndexLessThan(H,A2,IX,IY) .

19 moreGeneral(H,A,A2) :− hasIndexFor(H,A), hasIndexFor(H,A2), not notMoreGeneral(H,A,A2) .

20 sameGenerality(H,A,A2) :− moreGeneral(H,A,A2), moreGeneral(H,A2,A) .

21 redundant(H,A) :− hasIndexFor(H,A), moreGeneral(H,A2,A), not sameGenerality(H,A,A2) .

22 redundant(H,A) :− hasIndexFor(H,A), sameGenerality(H,A,A2), A2 < A .

23

24 atLevel(H,A,IX,LX+1) :− hasIndexFor(H,A), hasVariable(H,_,IX),

25 LX = #count { IY : mostGeneralIndexLessThan(H,A,IY,IX) } .
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26 depth(H,A,D) :− hasIndexFor(H,A), D = #max { 0; L : atLevel(H,A,_,L) } .

27 #minimize { D@4,H,A : depth(H,A,D), not redundant(H,A) } .

28

29 % - Fast computation -

30 % number of Cartesian products

31 isRestricted(X,R) :− before(R,Y,X), hasBodyAtom(R,A), hasVariable(A,X,_), hasVariable(A,Y,_) .

32 isUnrestricted(X,R) :− occursIn(X,R), not isRestricted(X,R) .

33 isNotFirst(X,R) :− before(R,_,X) .

34 isFirst(X,R) :− occursIn(X,R), not isNotFirst(X,R) .

35 numberCartProducts(R,C) :− isRule(R), C = #count { X : isUnrestricted(X,R), not isFirst(X,R) } .

36 #minimize { C@5,R : numberCartProducts(R,C) } .

37

38 % index of last head variable

39 indexOf(X,R,I) :− occursIn(X,R), I = #count { Y : before(R,Y,X) } .

40 indexOfLastHeadVar(R,I+1) :− isRule(R),

41 I = #max { 0; IX : indexOf(X,R,IX), isHeadVariable(X,R) } .

42 #minimize { I@3,R : indexOfLastHeadVar(R,I) } .

43

44 #show before/3 .

Listing 4: ASP program for the generation of partial variable orders with tries

1 % --- Generate ---

2 % generate a partial variable order per rule, inducing a tree structure

3 before(R,X,Y) | before(R,Y,X) :− hasVariable(A,X,_), hasVariable(A,Y,_), hasBodyAtom(R,A),

4 X != Y .

5 before(R,X,Y) | before(R,Y,X) :− before(R,X,Z), before(R,Y,Z), X != Y .

6 before(R,X,Z) :− before(R,X,Y), before(R,Y,Z) .

7 :− before(R,X,X) .

Listing 5: ASP program for the generation of admissible partial variable orders with f-

representations

1 % --- Generate ---

2 % generate a partial variable order per rule, inducing a tree structure

3 { before(R,X,Y); before(R,Y,X) } 1 :− occursIn(X,R), occursIn(Y,R), X != Y .

4

5 before(R,X,Y) | before(R,Y,X) :− before(R,X,Z), before(R,Y,Z), X != Y .

6 before(R,X,Z) :− before(R,X,Y), before(R,Y,Z) .

7 :− before(R,X,X) .

8

9 incomparable(R,X,Y) :− occursIn(X,R), occursIn(Y,R), not before(R,X,Y), not before(R,Y,X),

10 X != Y .

11 :− incomparable(R,X,Y), hasBodyAtom(R,A), hasPredicate(A,P), isEDBPredicate(P),

12 hasVariable(A,X,_), hasVariable(A,Y,_) .

13 :− incomparable(R,X,Y), hasBodyAtom(R,A), hasPredicate(A,P), isIDBPredicate(P),

14 hasVariable(A,X,IX), hasVariable(A,Y,IY), notConditionalIndependent(P,IX,IY) .

15 :− incomparable(R,X,Y), hasBodyAtom(R,A), hasPredicate(A,P), isIDBPredicate(P),

16 hasVariable(A,X,IX), hasVariable(A,Y,IY), hasVariable(A,Z,IZ),

17 notConditionalIndependentWithout(P,IX,IY,IZ), not before(R,Z,X) .

18 :− incomparable(R,X,Y), hasBodyAtom(R,A), hasPredicate(A,P), isIDBPredicate(P),

19 hasVariable(A,X,IX), hasVariable(A,Y,IY), hasVariable(A,Z,IZ),

20 notConditionalIndependentWithout(P,IX,IY,IZ), not before(R,Z,Y) .
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21

22 notConditionalIndependent(P,IX,IY) :− hasHeadAtom(R,A), hasPredicate(A,P), hasVariable(A,X,IX),

23 hasVariable(A,Y,IY), before(R,X,Y) .

24 notConditionalIndependent(P,I,J) :− notConditionalIndependent(P,J,I) .

25 notConditionalIndependent(P,IX,IY) :− hasHeadAtom(R,A), hasPredicate(A,P), hasVariable(A,X,IX),

26 hasVariable(A,Y,IY), not isHeadVariable(Z,R), before(R,Z,X), before(R,Z,Y) .

27 notConditionalIndependentWithout(P,IX,IY,IZ) :− hasHeadAtom(R,A), hasPredicate(A,P),

28 hasVariable(A,X,IX), hasVariable(A,Y,IY), hasVariable(A,Z,IZ), before(R,Z,X),

29 before(R,Z,Y) .

Listing 6: ASP program for generating multiple variable orders per rule

1 #const c = 1 .

2 #const margin = 50 .

3

4 % --- Generate ---

5 order(Ord) :− Ord = 0..c .

6 before(O,R,X,Y) | before(O,R,Y,X) :− occursIn(X,R), occursIn(Y,R), X != Y, order(O) .

7 before(O,R,X,Z) :− before(O,R,X,Y), before(O,R,Y,Z) .

8 :− before(_,R,X,X) .

9

10 % --- Optimise ---

11 % - Memory consumption -

12 % number of tries per predicate

13 beforeAttr(O,A,I,J) :− hasBodyAtom(R,A), hasVariable(A,X,I), hasVariable(A,Y,J),

14 before(O,R,X,Y) .

15

16 hasDifferentTrie(O,A,O2,A2) :− beforeAttr(O,A,I,J), beforeAttr(O2,A2,J,I),

17 hasPredicate(A,P), hasPredicate(A2,P) .

18 hasRedundantTrie(O,A) :− order(O), hasPredicate(A,P), hasPredicate(A2,P),

19 not hasDifferentTrie(O,A,O,A2), A > A2 .

20 hasRedundantTrie(O,A) :− order(O), order(O2), hasBodyAtom(_,A), hasBodyAtom(_,A2),

21 hasPredicate(A,P), hasPredicate(A2,P), not hasDifferentTrie(O,A,O2,A2), O > O2 .

22

23 numberOfTries(0,P,C) :− isPredicate(P),

24 C = #count { A : hasPredicate(A,P), not hasRedundantTrie(0,A) } .

25 #minimize { C*N@6,P : numberOfTries(0,P,C), isIDBPredicate(P), hasArity(P,N),

26 isBodyPredicate(P) } .

27

28 minNumberOfIDBTries(S) :− S = #sum { C*N,P : numberOfTries(0,P,C), isIDBPredicate(P),

29 hasArity(P,N), isBodyPredicate(P) } .

30 numberOfTries(P,C) :− isPredicate(P), C = #count { 1,O,A : order(O), hasPredicate(A,P),

31 not hasRedundantTrie(O,A), O > 0 } .

32 numberOfIDBTries(S) :− S = #sum { C*N,P : numberOfTries(P,C), isIDBPredicate(P), hasArity(P,N),

33 isBodyPredicate(P) } .

34

35 :− minNumberOfIDBTries(Smin), numberOfIDBTries(S), Smin * (100 + margin) / 100 < S .

36

37 #minimize { C*N@4,P : numberOfTries(P,C), isIDBPredicate(P), hasArity(P,N),

38 isBodyPredicate(P) } .

39 #minimize { C*N@3,P : numberOfTries(P,C), isEDBPredicate(P), hasArity(P,N),

40 isBodyPredicate(P) } .

41
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42 % - Fast computation -

43 % number of Cartesian products

44 isRestricted(O,X,R) :− before(O,R,Y,X), hasBodyAtom(R,A), hasVariable(A,X,_),

45 hasVariable(A,Y,_) .

46 isUnrestricted(O,X,R) :− order(O), occursIn(X,R), not isRestricted(O,X,R) .

47 isNotFirst(O,X,R) :− before(O,R,_,X) .

48 isFirst(O,X,R) :− order(O), occursIn(X,R), not isNotFirst(O,X,R) .

49 numberOfCartProducts(O,R,C) :− order(O), isRule(R),

50 C = #count { X : isUnrestricted(O,X,R), not isFirst(O,X,R) } .

51 #minimize { C@7,O,R : numberOfCartProducts(O,R,C) } .

52

53 % index of last head variable

54 isHeadVariable(X,R) :− hasHeadAtom(R,A), hasVariable(A,X,_) .

55 isNotLastHeadVariable(O,X,R) :− before(O,R,X,Y), isHeadVariable(X,R), isHeadVariable(Y,R) .

56 isLastHeadVariable(O,X,R) :− order(O), isHeadVariable(X,R), not isNotLastHeadVariable(O,X,R) .

57 indexOfLastHeadVar(O,R,I+1) :− isLastHeadVariable(O,X,R), I = #count { Y : before(O,R,Y,X) } .

58 #minimize { I@1,O,R : indexOfLastHeadVar(O,R,I) } .

59

60 % - Storage effort -

61 % estimate effort for sorting derived facts per head atom

62 hasTrieRepresentative(O,H,A) :− order(O), hasPredicate(A,P), hasPredicate(H,P),

63 not hasRedundantTrie(O,A), isBodyPredicate(P) .

64 notOrdered(O,X,H,A) :− hasHeadAtom(R,H), hasTrieRepresentative(O,H,A),

65 isHeadVariable(X,R), before(O,R,Y,X), not isHeadVariable(Y,R) .

66 notOrdered(O,X,H,A) :− hasHeadAtom(R,H), hasTrieRepresentative(O,H,A),

67 hasVariable(H,X,IX), hasVariable(H,Y,IY), before(O,R,Y,X), beforeAttr(O,A,IX,IY) .

68 notOrdered(O,X,H,A) :− hasHeadAtom(R,H), hasTrieRepresentative(O,H,A),

69 hasVariable(H,X,IX), hasVariable(H,Y,IY), before(O,R,X,Y), beforeAttr(O,A,IY,IX) .

70 notOrdered(O,X,H,A) :− hasHeadAtom(R,H), hasTrieRepresentative(O,H,A),

71 hasVariable(H,X,_), hasVariable(H,Y,_), before(O,R,Y,X), notOrdered(O,Y,H,A) .

72 orderedHeadPrefixLength(O,H,C,A) :− hasHeadAtom(R,H), hasTrieRepresentative(O,H,A),

73 C = #count { X : isHeadVariable(X,R), not notOrdered(O,X,H,A) } .

74

75 sortEffort(O,H,A,I-C) :− hasTrieRepresentative(O,H,A), orderedHeadPrefixLength(O,H,C,A),

76 hasHeadAtom(R,H), indexOfLastHeadVar(O,R,I) .

77 #minimize { E@2,O,H,A : sortEffort(O,H,A,E) } .

78

79 % - Multible variable orders -

80 % coverage of first atom

81 atomCovered(A,R) :− hasBodyAtom(R,A), hasVariable(A,X,_), isFirst(_,X,R) .

82 ruleAtomCover(R, NCov * 100 / N) :− isRule(R), N = #count { A : hasBodyAtom(R,A) },

83 NCov = #count { A : atomCovered(A,R) } .

84 #maximize { Cov@5,R : ruleAtomCover(R,Cov) } .

85

86 #show before/4 .
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