

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Introduction to Automatic StructuresSummer Semester 2016Exercise Sheet 2 – Word Automatic Structures26th April 2016PD Dr.-Ing. habil. Anni-Yasmin Turhan & Dipl.-Math. Francesco Kriegel

Exercise 2.1 Which of the following statements hold true?

- (a) Any word automatic structure has a finite domain.
- (b) For all relations R, both R and its convolution c(R) have the same cardinality.
- (c) If A is countably infinite, and $P \subseteq A$ is a unary relation, then the structure (A; P) has an automatic presentation.
- (d) If the structure $(A; R_1, ..., R_n)$ has an automatic presentation, then also $(A; R_1, ..., R_{n-1})$ is automata presentable.
- (e) If $(A; R_1, \ldots, R_n)$ is an automatic structure, then it has an automatic presentation, too.

Exercise 2.2 For each of the following structures, check whether it is automatic, and if it has an automatic presentation.

- (a) $(\{0, \ldots, n-1\}; +, \leq)$ where + denotes the addition modulo *n*.
- (b) $(\mathbb{N};+,\leq)$
- (c) $(\mathbb{R};+,\leq)$
- (d) $({a,b}^*; R_1)$ where

$$R_1 \coloneqq \{ (u, v) \in (\{a, b\}^*)^2 \mid \forall i \colon u(i) = a \Rightarrow v(i) = a \}.$$

(e) $(\{a\}^*; R_2, R_3)$ where

$$R_2 \coloneqq \{ (u, v, w) \in (\{a\}^*)^3 \mid \mathsf{length}(u) > \mathsf{length}(v) > \mathsf{length}(w) \},$$

and
$$R_3 \coloneqq \{ (u, v, w) \in (\{a\}^*)^3 \mid \mathsf{length}(u) > \mathsf{length}(v) + \mathsf{length}(w) \}.$$

(f) $(\Sigma^*; \leq_1, \ldots, \leq_n)$ where

- $\Sigma = \{\sigma_1, \ldots, \sigma_n\}$ is an alphabet,
- $|w|_i$ denotes the number of occurrences of the symbol σ_i in w, and
- $u \leq_i v$ if $|u|_i \leq |v|_i$.

Exercise 2.3 Let *R* be a relation of arity *n*, and consider a permutation π on $\{1, \ldots, n\}$. Show that $\pi(R) \coloneqq \{(x_{\pi(1)}, \ldots, x_{\pi(n)}) | (x_1, \ldots, x_n) \in R\}$ is automatic if *R* is automatic.

Exercise 2.4 Let *R* be a relation of arity *m*, *S* a relation of arity *n*, and $\ell \le m + 1$. The *join* of *R* and *S* at position ℓ is defined as the relation

$$R \bowtie_{\ell} S := \{ (x_1, \dots, x_{n+\ell-1}) \mid (x_1, \dots, x_m) \in R \text{ and } (x_{\ell}, \dots, x_{n+\ell-1}) \in S \}.$$

Show that $R \bowtie_{\ell} S$ is automatic if R and S are automatic.

Exercise 2.5 Let Σ be a finite alphabet, and R a binary relation on Σ^* , such that the structure $(\Sigma^*; R)$ is automatic. For each word w over Σ , we denote by \overleftarrow{w} the word w written backwards. Define the relation

$$\overleftarrow{R} \coloneqq \{ (\overleftarrow{w_1}, \overleftarrow{w_2}) \mid (w_1, w_2) \in R \}.$$

Prove or disprove the following statements:

- (a) The structure $(\Sigma^*; \overleftarrow{R})$ is automatic.
- (b) The structure $(\Sigma^*; \overleftarrow{R})$ has an automatic presentation.

Exercise 2.6 Let $\mathcal{A} = (A; R_1, ..., R_n)$ be an automatic structure, and consider a subset $X \subseteq A$. The *restriction* of \mathcal{A} to X is defined as the structure $\mathcal{A}|_X \coloneqq (X; R_1|_X, ..., R_n|_X)$ where $R_i|_X \coloneqq R_i \cap X^{\mathsf{arity}(R_i)}$. Prove or refute the following statements:

- (a) If X is regular, then the restriction $\mathcal{A}|_X$ is automatic.
- (b) The restriction $\mathcal{A}|_X$ is automatic.

Exercise 2.7 Let $\mathcal{A} = (A; R_1, \dots, R_n)$ be an automata presentable structure.

- (a) Is there a structure with domain $\wp(A)$ that has an automatic presentation?
- (b) Let \mathcal{B} be another automata presentable structure. Is there a structure with domain B^A that has an automatic presentation?