Finite and algorithmic model theory (Dresden, Winter 22/23): Exercises 3 (02.11.22 13:00)

- 1. An alternative definition of the random graph.¹ Consider a countable graph G whose universe is the set of primes congruent to 1 modulo 4. Put an edge between p and q if p is a quadratic residue modulo q.² Prove that G is isomorphic to the random graph.
- 2. Yet another alternative definition of the random graph.³ We define the set HF of *hereditarily finite sets* as follows. The empty set \emptyset is in HF and if a_1, \ldots, a_k are in HF (for any $k \in \mathbb{N}$) then $\{a_1, \ldots, a_k\} \in$ HF. Consider a countable graph G whose domain is HF and we put the edge between two nodes u, v iff $u \in v$ or $v \in u$. Prove that G is isomorphic to the random graph.
- 3. And yet another alternative definition of the random graph.⁴ Consider a countable graph G whose universe is \mathbb{N} and there is an undirected edge between any (i, j) for which j < i and $\mathsf{BIT}(i, j)$ is true (i.e. the *j*-th bit of the binary expansion of *i* is 1). Prove that G is isomorphic to the random graph.
- 4. Łoś-Tarski made algorithmic. Given a first-order formula φ that is preserved under substructures (over all structures), show that we can compute an equivalent (over all structures) universal formula that it is equivalent to φ .
- 5. The alternative statement of Łoś-Tarski theorem is: "A first-order formula φ is preserved under extensions⁵ iff it is equivalent to a existential formula". Assuming Łoś-Tarski Preservation Theorem, show that its alternative version holds.
- 6. Repeat (with small modifications) our proof of Łoś-Tarski to show that the following Lyndon-Tarski "homomorphism preservation theorem" holds: a formula φ is preserved under inverse homomorphism images⁶ then φ is equivalent to a universal negative formula⁷.

¹Difficult? Show that the constructed graph satisfies extension axioms.

²A number p is a quadratic residue modulo q if there is a number x so that $x^2 \equiv p \pmod{q}$.

 $^{^{3}\}mathrm{Difficult?}$ Show that the constructed graph satisfies extension axioms.

⁴Difficult? Show that the constructed graph satisfies extension axioms.

 $^{{}^5\}mathfrak{B}$ is an extension of \mathfrak{A} iff \mathfrak{A} is a substructure of \mathfrak{B}

 $^{{}^{6}\}mathrm{If} \; \varphi \; \mathrm{holds} \; \mathrm{in} \; \mathfrak{B} \; \mathrm{and} \; \mathrm{there} \; \mathrm{is} \; \mathrm{a} \; \mathrm{homomorphism} \; \mathrm{from} \; \mathfrak{A} \; \mathrm{to} \; \mathfrak{B}, \; \mathrm{then} \; \varphi \; \mathrm{is} \; \mathrm{also} \; \mathrm{true} \; \mathrm{in} \; \mathfrak{A}.$

 $^{^7\}mathrm{i.e.}$ the formula that can use negation of atoms, \lor, \land and \forall