3. Petri Nets: The Basics

May 10-16, 2022

Petri Nets: Basic Notions

Definition 3.1: A triple N = (P, T, F) is a **net structure** if P and T are disjoint finite sets, and $F \subseteq (P \times T) \cup (T \times P)$.

- elements $p \in P$ are called places, elements $t \in T$ transitions.
- F is a flow relation; its elements are called arcs
- for a node $n \in P \cup T$,

the preset of n is $\bullet n := \{m \mid (m, n) \in F\}$ and the postset of n is $n^{\bullet} := \{o \mid (n, o) \in F\}$

Petri Nets: Token Game

- states of a Petri net are distributions of so-called tokens on the places of a net
- we use **multisets**: for set S, $m: S \to \mathbb{N}$ is a multiset over S
- for multisets m_1, m_2 over S, define
 - union $m_1 + m_2$, such that for $s \in S$, $(m_1 + m_2)(s) = m_1(s) + m_2(s)$;
 - difference $m_1 m_2$, such that for $s \in S$, $(m_1 m_2)(s) = \max\{m_1(s) m_2(s), 0\}$;
 - inclusion $m_1 \leq m_2$, which holds if, and only if, $\forall s \in S : m_1(s) \leq m_2(s)$
- note, $m_1 \not\leq m_2$ if $m_2 \leq m_1$ or m_1 and m_2 are incomparable

Definition 3.2: Let N = (P, T, F) a net structure. We call a multiset m over P a marking of N. A transition $t \in T$ is enabled under m if $\bullet t \leq m$. An enabled transition $t \in T$ (under m) my fire, producing the successor marking

$$m'(p) := \begin{cases} m(p) - 1 & \text{if } p \in {}^{\bullet}t \setminus t^{\bullet} \\ m(p) + 1 & \text{if } p \in t^{\bullet} \setminus {}^{\bullet}t \\ m(p) & \text{otherwise.} \end{cases}$$

Petri Nets

- Enabledness of t (in net N) under m is denoted by $m[t\rangle_N$
- If m' is the successor marking of m by firing t (in net N), we write $m[t\rangle_N m'$
- The set of reachable markings from m in N=(P,T,F) is $[N,m\rangle,$ defined inductively 1. $m\in[N,m\rangle$ and
 - 2. if $m_1 \in [N,m)$ and $m_1[t\rangle_N m_2$ for some $t \in T$, then $m_2 \in [N,m\rangle$.

Definition 3.3: A **Petri net** (elementary net system) is a quadruple $N = (P, T, F, m_0)$, where (P, T, F) is a net structure and m_0 a marking for (P, T, F). We call m_0 the **initial marking** of N. $[N \rangle := [(P, T, F), m_0)$ is the set of all reachable markings of N.

Definition 3.4: The reachability graph of a Petri net $N = (P, T, F, m_0)$ is the directed graph $\mathcal{R}(N) = (V, E)$ with $V = [N\rangle$ and if $m, m' \in V$ and $m[t\rangle_N m'$, then $(m, m') \in E$. The reachability graph may also be labeled, having $(m, t, m') \in E$ if $m[t\rangle_N m'$.

Some Extensions

- place capacities
- arc weights
- read arcs
- reset arcs
- inhibitor arcs
- colors (aka. data types)

Petri nets are unlabeled, meaning that different transitions model different actions.

Definition 3.5: Let Σ be a labeling alphabet. For a Petri net $N = (P, T, F, m_0)$, $l : T \to \Sigma$ is a **transition labeling function**. Instead of using transition as labels for the labeled version of the reachability graph, we may also write $m \xrightarrow{l(t)} m'$ if $m[t\rangle_N m'$. If l is injective, N is effectively unlabeled under l.

Using the (labeled) reachability graph, we can define all equivalences from before for (labeled) Petri nets.

Analysis Tasks for Petri Nets

Let $N = (P, T, F, m_0)$ be a Petri net.

- 1. Termination: N is **terminating** if its reachability graph is finite and acyclic.
- 2. Deadlock-freedom: A marking m for N is **dead** if for all $t \in T$, $m[t\rangle_N$ does not hold. N is **deadlock-free** if there is no dead marking $m \in [N\rangle$.
- 3. Liveness. Weak liveness. Quasi-liveness.
- 4. Boundedness: For $k \in \mathbb{N}$, N is k-bounded if for all $m \in [N\rangle$ and all $p \in P$, $m(p) \leq k$. N is bounded if there is a $k \in \mathbb{N}$, such that N is k-bounded.
- 5. Reversibility: N is reversible if for each $m \in [N\rangle$, $m_0 \in [N, m\rangle$.
- 6. Reachability: A marking m is **reachable** in N if $m \in [N\rangle$.
- 7. Equivalence (e.g., bisimilarity, trace equivalence, isomorphism): Two (labeled) Petri nets N_1 and N_2 are **bisimilar**, denoted $N_1 \Leftrightarrow N_2$ if $\mathcal{R}(N_1) \Leftrightarrow \mathcal{R}(N_2)$.

Monotonicity Lemma

Lemma 3.6: Let $N = (P, T, F, m_0)$ be a Petri net and l a marking for N. For each marking m for N, if $m[t\rangle_N m'$, then $m + l[t\rangle_N m'$.

Proof: Since $m[t\rangle_N m'$, t is enabled under m, meaning that $t \leq m$. That means, for each $p \in t$, $m(p) \geq 1$. For each $p \in P$, $m(p) \leq m + l(p)$. Hence, $m + l(p) \geq 1$ for each $p \in t$. Hence, t is enabled under m + l.

If $p \in t \setminus t$, m'(p) = m(p) - 1 and for $m + l[t\rangle_N \hat{m}$, we have $\hat{m}(p) = m + l(p) - 1 = m(p) + l(p) - 1$. Since $m(p) \ge 1$, we can equivalently say that $\hat{m}(p) = (m(p) - 1) + l(p) = m'(p) + l(p) = m' + l(p)$.

If $p \in t \setminus t$, m'(p) = m(p) + 1. We get $\hat{m}(p) = m + l(p) + 1 = m(p) + l(p) + 1 = (m(p) + 1) + l(p) = m'(p) + l(p) = m' + l(p)$. Otherwise, m'(p) = m(p) and $\hat{m}(p) = m + l(p) = m(p) + l(p) = m'(p) + l(p) = m' + l(p)$.

Boundedness

Theorem 3.7: A Petri net $N = (P, T, F, m_0)$ is unbounded if, and only if, there are two markings m_1 and m_2 for N, such that $m_1 \in [N, m_0\rangle$, $m_2 \in [N, m_1\rangle$, $m_1 \leq m_2$, and $m_1(p) < m_2(p)$ for some $p \in P$.

Proof: " \Leftarrow ": Since $m_2 \in [N, m_1)$, there is a finite sequence $t_1, t_2, \ldots, t_n \in T$, such that $m_1[t_1\rangle[t_2\rangle\ldots[t_n\rangle m_2]$. As $m_1(p) < m_2(p)$, there is a non-empty marking l, such that $m_2 = m_1 + l$. By reasoning with the monotonicity lemma over all of the n firing transitions, we have that $m_2[t_1\rangle[t_2\rangle\ldots[t_n\rangle m_3$ and $m_3 = m_2 + l$. As l is non-empty, there is again place p with $m_3(p) > m_2(p)$. Suppose now, there was a $k \in \mathbb{N}$ such that N is k-bounded. Then this bound applies to p, meaning $k \ge m_i(p)$ (i = 0, 1, 2, 3). Repeating the firing sequence t_1, t_2, \ldots, t_n from m_3 for $k - m_3(p) + 1$ times yields a marking \hat{m} with $\hat{m}(p) > k$, contradicting the assumption that N is k-bounded.

" \Rightarrow ": Here, we need two more tools.

König's Lemma (for Petri Nets)

Lemma 3.8: Let $N = (P, T, F, m_0)$ be a Petri net. If $[N\rangle$ is infinite, then $\mathcal{R}(N)$ has an infinite path $m_0 \xrightarrow{t_1} m_1 \xrightarrow{t_2} \dots$, where each $m_i \neq m_j$ for $i \neq j$.

Proof: Since T is finite, there are only finitely many successor marking of m_0 . Thus, there is a marking $m_1 \in [N \setminus \{m_0\}$, such that $m_0[t_1 \setminus m_1$ for some $t \in T$ and $[N, m_1 \setminus m_1]$ is infinite because $[N \setminus m_1]$ is infinite. We proceed constructing the path from m_1 as initial marking with the same arguments as before.

As unboundedness of N implies $[N\rangle$ to be infinite, we have already derived an infinite path with distinct markings (by König's Lemma). But how do we get to $m_1 \leq m_2$?

Dickson's Lemma

Lemma 3.9: For any infinite sequence $a_1, a_2, a_3, \ldots \in (\mathbb{N}^k)^{\omega}$, there is an infinite sequence of indizes $i_1 < i_2 < i_3 < \ldots$, such that $a_{i_1} \leq a_{i_2} \leq a_{i_3} \leq \ldots$.

Proof: By induction on $k \in \mathbb{N}$.

Base: We have $a_1, a_2, a_3, \ldots \mathbb{N}^{\omega}$. There is a unique minimal element of the set $A_1 = \{a_1, a_2, a_3, \ldots\}$, say min A_1 . Set i_1 to be the first occurrence of min A_1 with $a_{i_1} = \min A_1$. Consider now the infinite sequence $a_{i_1+1}, a_{i_1+2}, \ldots$ and its set representation $A_2 = \{a_{i_1+1}, a_{i_1+2}, \ldots\}$, which also has a minimal element min A_2 . min $A_1 \leq \min A_2$ since $A_2 \subseteq A_1$ and min $A_2 < \min A_1$ contradicts the minimality of min A_1 w.r.t. A_1 . We set i_2 to be the first occurrence with $a_{i_2} = \min A_2$ in the remaining sequence. We proceed by repeating the procedure starting from a_{i_2+1} .

Dickson's Lemma (cont'd)

For any infinite sequence $a_1, a_2, a_3, \ldots \in (\mathbb{N}^k)^{\omega}$, there is an infinite sequence of indizes $i_1 < i_2 < i_3 < \ldots$, such that $a_{i_1} \leq a_{i_2} \leq a_{i_3} \leq \ldots$.

Proof:

Step: We argue now from $k \to k + 1$. Let $a_1, a_2, \ldots \in (\mathbb{N}^{k+1})^{\omega}$. Consider $\hat{a_1}, \hat{a_2}, \ldots \in (\mathbb{N}^k)^{\omega}$ where each $\hat{a_i}$ is a_i up to the k-th component. By induction hypothesis, there is an infinite sequence $i_1 < i_2 < i_3 < \ldots$, such that $\hat{a_{i_1}} \leq \hat{a_{i_2}} \leq \hat{a_{i_3}} \leq \ldots$. Consider now the infinite sequence $\bar{a_{i_1}}, \bar{a_{i_2}}, \bar{a_{i_3}}, \ldots \mathbb{N}^{\omega}$, where each $\bar{a_i}$ is the k + 1-st component of a_i . By induction hypothesis, there is an infinite sequence $j_1 < j_2 < j_3 < \ldots$, such that $\bar{a_{j_1}} \leq \bar{a_{j_2}} \leq \ldots$. Hence, $a_{j_1} \leq a_{j_2} \leq \ldots$.

Boundedness (cont'd)

A Petri net $N = (P, T, F, m_0)$ is unbounded if, and only if, there are two markings m_1 and m_2 for N, such that $m_1 \in [N, m_0\rangle$, $m_2 \in [N, m_1\rangle$, $m_1 \leq m_2$, and $m_1(p) < m_2(p)$ for some $p \in P$.

Proof: " \Rightarrow ": Since N is unbounded, $[N\rangle$ is infinite. Hence, there is an infinite sequence of distinct markings m_0, m_1, m_2, \ldots with $m_0[t_1\rangle m_1[t_2\rangle m_2[t_3\rangle \ldots$ (by König's Lemma). By Dickson's Lemma, there is an infinite sequence of indizes $i_1 < i_2 < i_3 < \ldots$, such that $m_{i_1} \le m_{i_2} \le m_{i_3} \le \ldots$. We set $m_1 = m_{i_1}$ and $m_2 = m_{i_2}$. Since all the markings are distinct, there is a place $p \in P$, such that $m_1(p) < m_2(p)$.

Boundedness: Decidability

Theorem 3.10: Boundedness is decidable.

- 1. Compute the reachability graph by a BFS from m_0 .
- 2. If we find a marking m_2 , such that there is a marking $m_1 \le m_2$ with a path to m_2 and for some p, $m_1(p) < m_2(p)$, return unbounded.
- 3. If the BFS terminates, return bounded.

Proof: Every step of the BFS triggers finitely many transitions (as T is finite). By Theorem 3.7, there will eventually be marking m_1 and m_2 revealing unboundedness. If the net is bounded, the reachability graph is finite and will be computed by the BFS (terminating). \Box

Making the Most Out Of Monotonicity

Definition 3.11: Let $N = (P, T, F, m_0)$ be a Petri net. A transition $t \in T$ is quasi-live if there is a marking $m \in [N\rangle$ such that $m[t\rangle$. N is quasi-live if all transitions $t \in T$ are quasi-live.

By monotonicity, m could be equal to t or any bigger marking than t.

Definition 3.12: For markings m_1 and m_2 , we say that m_2 covers m_1 if $m_1 \leq m_2$.d For Petri net $N = (P, T, F, m_0)$, a marking m is coverable by N if there is a marking $m' \in [N\rangle$ covering m.

Hence, it is sufficient to check whether t is coverable in a Petri net.

The **Coverability Problem** — that is given a Petri net N and a marking m for N, is m coverable by N? — is decidable.