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Petri Nets: Basic Notions

Definition 3.1: A triple N = (P, T, F) is a net structure if P and T are disjoint finite
sets, and FF C (P x T)U (T x P).

e elements p € P are called places, elements ¢ € T transitions.
e [ is a flow relation; its elements are called arcs

e foranodene PUT,
the preset of n is *n := {m | (m,n) € F} and
the postset of n is n® :={o | (n,0) € F'}
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Petri Nets: Token Game

states of a Petri net are distributions of so-called tokens on the places of a net

we use multisets: for set S, m : S — N is a multiset over S

for multisets 11, mo over S, define
e union m; + mg, such that for s € S, (m1 +mz2)(s) = mi(s) + ma(s);
o difference my — mo, such that for s € S, (m1 — m2)(s) = max{m.(s) — ma(s),0};
e inclusion m1 < ma, which holds if, and only if, Vs € S : mi(s) < ma(s)

note, my £ myo if my < my or my and mo are incomparable

Definition 3.2: Let N = (P, T, F') a net structure. We call a multiset 7 over P a mark-
ing of V. A transition ¢t € T is enabled under m if ¢ < m. An enabled transition ¢t € T'
(under m) my fire, producing the successor marking

m(p) — 1 if pet\t®
m/(p) =< m(p) +1 ifpete\*t
m(p) otherwise.
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Petri Nets

e Enabledness of ¢ (in net N) under m is denoted by m|t)x

e If m/ is the successor marking of m by firing ¢ (in net V), we write mlt) ym’

e The set of reachable markings from m in N = (P, T, F) is [N, m), defined inductively
1. m €[N, m) and
2. if m1 € [N, m) and m[t) nms for some t € T', then ma € [N, m).

Definition 3.3: A Petri net (elementary net system) is a quadruple N = (P, T, F,my),
where (P, T, F') is a net structure and mg a marking for (P, T, F'). We call m the initial
marking of N. [N) := [(P,T, F'), mg) is the set of all reachable markings of V.

Definition 3.4: The reachability graph of a Petri net N = (P, T, F,my) is the directed
graph R(N) = (V, E) with V = [N) and if m,m’ € V and m[t)ym’, then (m,m’) € E.
The reachability graph may also be labeled, having (m,t,m') € E if m[t)ym/.
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Some Extensions

e place capacities
e arc weights

e read arcs

® reset arcs

e inhibitor arcs

e colors (aka. data types)
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Labeled Petri Nets

Petri nets are unlabeled, meaning that different transitions model different actions.

Definition 3.5: Let ¥ be a labeling alphabet. For a Petri net N = (P, T, F,my), [ :
T — X is a transition labeling function. Instead of using transition as labels for the

!
labeled version of the reachability graph, we may also write m KO, if mltynym'. If lis

injective, IV is effectively unlabeled under I.

Using the (labeled) reachability graph, we can define all equivalences from before for (labeled)
Petri nets.
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Analysis Tasks for Petri Nets

Let N = (P, T, F,mg) be a Petri net.

1.
2.

Termination: NN is terminating if its reachability graph is finite and acyclic.

Deadlock-freedom: A marking m for N is dead if for all ¢ € T, m|t) 5 does not hold. N is
deadlock-free if there is no dead marking m € [N).

3. Liveness. Weak liveness. Quasi-liveness.

Boundedness: For k € N, N is k-bounded if for all m € [N) and all p € P, m(p) < k. N
is bounded if there is a & € N, such that NV is k-bounded.

Reversibility: N is reversible if for each m € [N), mg € [N, m).
Reachability: A marking m is reachable in N if m € [N).

Equivalence (e. g., bisimilarity, trace equivalence, isomorphism): Two (labeled) Petri nets
N; and Ny are bisimilar, denoted Ny & Ny if R(N;) € R(Ns).
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Monotonicity Lemma

Lemma 3.6: Let N = (P, T, F,mg) be a Petri net and | a marking for N. For each
marking m for N, if m[t) ym/, then m + [[t) ym/.

Proof: Since m[t)ym/, t is enabled under m, meaning that ¢ < m. That means, for each

p €t, m(p) > 1. For each p € P, m(p) < m + I(p). Hence, m + I(p) > 1 for each p € t.

Hence, ¢ is enabled under m + (.

If pet\t, m'(p)=m(p) —1 and for m + [[t) y1ir, we have

m(p) =m +1l(p) — 1 =m(p) +l(p) — 1. Since m(p) > 1, we can equivalently say that

m(p) = (m(p) — 1) +U(p) = m/(p) + U(p) = m' + U(p).

Ifpet\t, m(p)=m(p) +1. We get

m(p) =m+1(p) +1=m(p) +1U(p) + 1= (m(p) + 1) +U(p) = m'(p) + U(p) = m' + I(p).
) =

Otherwise, m'(p) = m(p) and m(p) = m+1(p) = m(p) +1(p) = m'(p) +1(p) = m' +1(p). O
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Boundedness

Theorem 3.7: A Petri net N = (P, T, F,myg) is unbounded if, and only if, there are two
markings m; and ms for N, such that m; € [N, mg), ma € [N,m1), m; < mg, and
mq(p) < ma(p) for some p € P.

Proof: “<": Since ms € [N, my), there is a finite sequence t1,ts,...,t, € T, such that
malti)[ta) ... [tn)ma. As mi(p) < ma(p), there is a non-empty marking [/, such that

mo = my + [. By reasoning with the monotonicity lemma over all of the n firing transitions,
we have that mos|t1)[t2) ... [tn)ms and mg = msy + 1. As [ is non-empty, there is again place p
with ms(p) > ma(p). Suppose now, there was a k € N such that NV is k-bounded. Then this
bound applies to p, meaning k > m;(p) (i = 0, 1,2, 3). Repeating the firing sequence

ty,to, ... t, from mg for k —ms(p) + 1 times yields a marking v with 7iu(p) > k,
contradicting the assumption that /V is k-bounded.

“=": Here, we need two more tools.
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Konig's Lemma (for Petri Nets)

Lemma 3.8: Let N = (P, T, F,mg) be a Petri net. If [IV) is infinite, then R(NV) has an
infinite path my L, mq 2, .., where each m; # my; for i # j.

Proof: Since T is finite, there are only finitely many successor marking of mg. Thus, there is a
marking my € [N) \ {mo}, such that m[t1)m; for some ¢t € T" and [N, m1) is infinite because
[V) is infinite. We proceed constructing the path from m; as initial marking with the same

arguments as before. OJ

As unboundedness of N implies [IV) to be infinite, we have already derived an infinite path
with distinct markings (by Konig's Lemma). But how do we get to my < ms?
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Dickson’'s Lemma

Lemma 3.9: For any infinite sequence a;, as,as,... € (N¥)“, there is an infinite se-
quence of indizes i; < iy < i3 < ..., such that a;, <a;, <a;, < ...

Proof: By induction on k& € N.

Base: We have a1, as,as,...N¥. There is a unique minimal element of the set
Ay ={a1,a9,as,...}, say min A;. Set i; to be the first occurrence of min A,
with a;, = min A;. Consider now the infinite sequence a;, +1,a;, +2,... and its
set representation Ay = {a;,+1,a;,+2, ...}, which also has a minimal element
min As. min A; < min A, since Ay C A; and min A, < min A; contradicts the
minimality of min A; w.r.t. A;. We set i5 to be the first occurrence with
a;, = min Ay in the remaining sequence. We proceed by repeating the
procedure starting from a;, 1.
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Dickson’s Lemma (cont’d)

For any infinite sequence a1, as, as,... € (N¥)“, there is an infinite sequence of indizes
1 <l <iz3<..., such that 5y §ai2 Saig <...

Proof:

Step: We argue now from k — k + 1. Let ay,as, ... € (N*1)“_ Consider
dy,dy, ... € (N¥)“ where each d; is a; up to the k-th component. By induction
hypothesis, there is an infinite sequence i1 < iy < i3 < ..., such that
ai, <aj, <aj, <.
Consider now the infinite sequence a;,, a;,, a;,, ... N*, where each a; is the
k + 1-st component of a;. By induction hypothesis, there is an infinite sequence
J1 < Jj2 <Jjs<...suchthat a;, <a;, <....Hence, a;, <a,;, <... O
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Boundedness (cont'd)

A Petri net N = (P, T, F,m) is unbounded if, and only if, there are two markings m;
and mg for N, such that m; € [N, mg), ma € [N,mq1), my < ma, and mq(p) < ma(p)

for some p € P.

Proof: “=": Since N is unbounded, [N) is infinite. Hence, there is an infinite sequence of
distinct markings mq, m1, ma, ... with mq[t1)m[ta)ma|ts) ... (by Konig's Lemma). By
Dickson’s Lemma, there is an infinite sequence of indizes i1 < is < i3 < ..., such that

mi, < my, <m;, <.... Weset m; =m;, and mas = m,,. Since all the markings are distinct,

there is a place p € P, such that my(p) < ma(p). O
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Boundedness: Decidability

Theorem 3.10: Boundedness is decidable.

1. Compute the reachability graph by a BFS from my.

2. If we find a marking ms, such that there is a marking m; < ms with a path to ms and for
some p, m1(p) < mz(p), return unbounded.

3. If the BFS terminates, return bounded.

Proof: Every step of the BFS triggers finitely many transitions (as 7 is finite). By
Theorem 3.7, there will eventually be marking m; and ms revealing unboundedness. If the net
is bounded, the reachability graph is finite and will be computed by the BFS (terminating). O

66/67



Making the Most Out Of Monotonicity

Definition 3.11: Let N = (P, T, F,mg) be a Petri net. A transition ¢ € T is quasi-live
if there is a marking m € [V) such that m[t). N is quasi-live if all transitions ¢t € T" are
quasi-live.

By monotonicity, m could be equal to ¢ or any bigger marking than ¢.

Definition 3.12: For markings 7 and ms, we say that ms covers my if m; < msy.d
For Petri net N = (P, T, F,my), a marking m is coverable by N if there is a marking
m’ € [N) covering m.

Hence, it is sufficient to check whether ¢ is coverable in a Petri net.

The Coverability Problem — that is given a Petri net NV and a marking m for IV, is m
coverable by N7 — is decidable.
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