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Petri Nets: Basic Notions

Definition 3.1: A triple N = (P, T, F ) is a net structure if P and T are disjoint finite
sets, and F ⊆ (P × T ) ∪ (T × P ).

• elements p ∈ P are called places, elements t ∈ T transitions.

• F is a flow relation; its elements are called arcs

• for a node n ∈ P ∪ T ,
the preset of n is •n := {m | (m,n) ∈ F} and
the postset of n is n• := {o | (n, o) ∈ F}
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Petri Nets: Token Game

• states of a Petri net are distributions of so-called tokens on the places of a net
• we use multisets: for set S, m : S → N is a multiset over S
• for multisets m1,m2 over S, define

• union m1 +m2, such that for s ∈ S, (m1 +m2)(s) = m1(s) +m2(s);
• difference m1 −m2, such that for s ∈ S, (m1 −m2)(s) = max{m1(s)−m2(s), 0};
• inclusion m1 ≤ m2, which holds if, and only if, ∀s ∈ S : m1(s) ≤ m2(s)

• note, m1 ̸≤ m2 if m2 ≤ m1 or m1 and m2 are incomparable

Definition 3.2: Let N = (P, T, F ) a net structure. We call a multiset m over P a mark-
ing of N . A transition t ∈ T is enabled under m if •t ≤ m. An enabled transition t ∈ T

(under m) my fire, producing the successor marking

m′(p) :=


m(p)− 1 if p ∈ •t \ t•

m(p) + 1 if p ∈ t• \ •t

m(p) otherwise.
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Petri Nets

• Enabledness of t (in net N) under m is denoted by m[t⟩N
• If m′ is the successor marking of m by firing t (in net N), we write m[t⟩Nm′

• The set of reachable markings from m in N = (P, T, F ) is [N,m⟩, defined inductively
1. m ∈ [N,m⟩ and
2. if m1 ∈ [N,m⟩ and m1[t⟩Nm2 for some t ∈ T , then m2 ∈ [N,m⟩.

Definition 3.3: A Petri net (elementary net system) is a quadruple N = (P, T, F,m0),
where (P, T, F ) is a net structure and m0 a marking for (P, T, F ). We call m0 the initial
marking of N . [N⟩ := [(P, T, F ),m0⟩ is the set of all reachable markings of N .

Definition 3.4: The reachability graph of a Petri net N = (P, T, F,m0) is the directed
graph R(N) = (V,E) with V = [N⟩ and if m,m′ ∈ V and m[t⟩Nm′, then (m,m′) ∈ E.
The reachability graph may also be labeled, having (m, t,m′) ∈ E if m[t⟩Nm′.
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Some Extensions

• place capacities

• arc weights

• read arcs

• reset arcs

• inhibitor arcs

• colors (aka. data types)
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Labeled Petri Nets

Petri nets are unlabeled, meaning that different transitions model different actions.

Definition 3.5: Let Σ be a labeling alphabet. For a Petri net N = (P, T, F,m0), l :

T → Σ is a transition labeling function. Instead of using transition as labels for the

labeled version of the reachability graph, we may also write m
l(t)−−→ m′ if m[t⟩Nm′. If l is

injective, N is effectively unlabeled under l.

Using the (labeled) reachability graph, we can define all equivalences from before for (labeled)
Petri nets.
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Analysis Tasks for Petri Nets

Let N = (P, T, F,m0) be a Petri net.

1. Termination: N is terminating if its reachability graph is finite and acyclic.

2. Deadlock-freedom: A marking m for N is dead if for all t ∈ T , m[t⟩N does not hold. N is
deadlock-free if there is no dead marking m ∈ [N⟩.

3. Liveness. Weak liveness. Quasi-liveness.

4. Boundedness: For k ∈ N, N is k-bounded if for all m ∈ [N⟩ and all p ∈ P , m(p) ≤ k. N

is bounded if there is a k ∈ N, such that N is k-bounded.

5. Reversibility: N is reversible if for each m ∈ [N⟩, m0 ∈ [N,m⟩.
6. Reachability: A marking m is reachable in N if m ∈ [N⟩.
7. Equivalence (e. g., bisimilarity, trace equivalence, isomorphism): Two (labeled) Petri nets

N1 and N2 are bisimilar, denoted N1 - N2 if R(N1) - R(N2).
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Monotonicity Lemma

Lemma 3.6: Let N = (P, T, F,m0) be a Petri net and l a marking for N . For each
marking m for N , if m[t⟩Nm′, then m+ l[t⟩Nm′.

Proof: Since m[t⟩Nm′, t is enabled under m, meaning that t ≤ m. That means, for each
p ∈ t, m(p) ≥ 1. For each p ∈ P , m(p) ≤ m+ l(p). Hence, m+ l(p) ≥ 1 for each p ∈ t.
Hence, t is enabled under m+ l.

If p ∈ t \ t, m′(p) = m(p)− 1 and for m+ l[t⟩Nm̂, we have
m̂(p) = m+ l(p)− 1 = m(p) + l(p)− 1. Since m(p) ≥ 1, we can equivalently say that
m̂(p) = (m(p)− 1) + l(p) = m′(p) + l(p) = m′ + l(p).

If p ∈ t \ t, m′(p) = m(p) + 1. We get
m̂(p) = m+ l(p) + 1 = m(p) + l(p) + 1 = (m(p) + 1) + l(p) = m′(p) + l(p) = m′ + l(p).

Otherwise, m′(p) = m(p) and m̂(p) = m+ l(p) = m(p)+ l(p) = m′(p)+ l(p) = m′ + l(p).
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Boundedness

Theorem 3.7: A Petri net N = (P, T, F,m0) is unbounded if, and only if, there are two
markings m1 and m2 for N , such that m1 ∈ [N,m0⟩, m2 ∈ [N,m1⟩, m1 ≤ m2, and
m1(p) < m2(p) for some p ∈ P .

Proof: “⇐”: Since m2 ∈ [N,m1⟩, there is a finite sequence t1, t2, . . . , tn ∈ T , such that
m1[t1⟩[t2⟩ . . . [tn⟩m2. As m1(p) < m2(p), there is a non-empty marking l, such that
m2 = m1 + l. By reasoning with the monotonicity lemma over all of the n firing transitions,
we have that m2[t1⟩[t2⟩ . . . [tn⟩m3 and m3 = m2 + l. As l is non-empty, there is again place p

with m3(p) > m2(p). Suppose now, there was a k ∈ N such that N is k-bounded. Then this
bound applies to p, meaning k ≥ mi(p) (i = 0, 1, 2, 3). Repeating the firing sequence
t1, t2, . . . , tn from m3 for k −m3(p) + 1 times yields a marking m̂ with m̂(p) > k,
contradicting the assumption that N is k-bounded.

“⇒”: Here, we need two more tools.

61/67



König’s Lemma (for Petri Nets)

Lemma 3.8: Let N = (P, T, F,m0) be a Petri net. If [N⟩ is infinite, then R(N) has an
infinite path m0

t1−→ m1
t2−→ . . ., where each mi ̸= mj for i ̸= j.

Proof: Since T is finite, there are only finitely many successor marking of m0. Thus, there is a
marking m1 ∈ [N⟩ \ {m0}, such that m0[t1⟩m1 for some t ∈ T and [N,m1⟩ is infinite because
[N⟩ is infinite. We proceed constructing the path from m1 as initial marking with the same
arguments as before.

As unboundedness of N implies [N⟩ to be infinite, we have already derived an infinite path
with distinct markings (by König’s Lemma). But how do we get to m1 ≤ m2?
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Dickson’s Lemma

Lemma 3.9: For any infinite sequence a1, a2, a3, . . . ∈ (Nk)ω, there is an infinite se-
quence of indizes i1 < i2 < i3 < . . ., such that ai1 ≤ ai2 ≤ ai3 ≤ . . ..

Proof: By induction on k ∈ N.

Base: We have a1, a2, a3, . . .Nω. There is a unique minimal element of the set
A1 = {a1, a2, a3, . . .}, say minA1. Set i1 to be the first occurrence of minA1

with ai1 = minA1. Consider now the infinite sequence ai1+1, ai1+2, . . . and its
set representation A2 = {ai1+1, ai1+2, . . .}, which also has a minimal element
minA2. minA1 ≤ minA2 since A2 ⊆ A1 and minA2 < minA1 contradicts the
minimality of minA1 w. r. t. A1. We set i2 to be the first occurrence with
ai2 = minA2 in the remaining sequence. We proceed by repeating the
procedure starting from ai2+1.
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Dickson’s Lemma (cont’d)

For any infinite sequence a1, a2, a3, . . . ∈ (Nk)ω, there is an infinite sequence of indizes
i1 < i2 < i3 < . . ., such that ai1 ≤ ai2 ≤ ai3 ≤ . . ..

Proof:

Step: We argue now from k → k + 1. Let a1, a2, . . . ∈ (Nk+1)ω. Consider
â1, â2, . . . ∈ (Nk)ω where each âi is ai up to the k-th component. By induction
hypothesis, there is an infinite sequence i1 < i2 < i3 < . . ., such that
âi1 ≤ âi2 ≤ âi3 ≤ . . ..
Consider now the infinite sequence āi1 , āi2 , āi3 , . . .Nω, where each āi is the
k + 1-st component of ai. By induction hypothesis, there is an infinite sequence
j1 < j2 < j3 < . . ., such that āj1 ≤ āj2 ≤ . . .. Hence, aj1 ≤ aj2 ≤ . . ..
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Boundedness (cont’d)

A Petri net N = (P, T, F,m0) is unbounded if, and only if, there are two markings m1

and m2 for N , such that m1 ∈ [N,m0⟩, m2 ∈ [N,m1⟩, m1 ≤ m2, and m1(p) < m2(p)

for some p ∈ P .

Proof: “⇒”: Since N is unbounded, [N⟩ is infinite. Hence, there is an infinite sequence of
distinct markings m0,m1,m2, . . . with m0[t1⟩m1[t2⟩m2[t3⟩ . . . (by König’s Lemma). By
Dickson’s Lemma, there is an infinite sequence of indizes i1 < i2 < i3 < . . ., such that
mi1 ≤ mi2 ≤ mi3 ≤ . . .. We set m1 = mi1 and m2 = mi2 . Since all the markings are distinct,
there is a place p ∈ P , such that m1(p) < m2(p).
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Boundedness: Decidability

Theorem 3.10: Boundedness is decidable.

1. Compute the reachability graph by a BFS from m0.

2. If we find a marking m2, such that there is a marking m1 ≤ m2 with a path to m2 and for
some p, m1(p) < m2(p), return unbounded.

3. If the BFS terminates, return bounded.

Proof: Every step of the BFS triggers finitely many transitions (as T is finite). By
Theorem 3.7, there will eventually be marking m1 and m2 revealing unboundedness. If the net
is bounded, the reachability graph is finite and will be computed by the BFS (terminating).
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Making the Most Out Of Monotonicity

Definition 3.11: Let N = (P, T, F,m0) be a Petri net. A transition t ∈ T is quasi-live
if there is a marking m ∈ [N⟩ such that m[t⟩. N is quasi-live if all transitions t ∈ T are
quasi-live.

By monotonicity, m could be equal to t or any bigger marking than t.

Definition 3.12: For markings m1 and m2, we say that m2 covers m1 if m1 ≤ m2.d
For Petri net N = (P, T, F,m0), a marking m is coverable by N if there is a marking
m′ ∈ [N⟩ covering m.

Hence, it is sufficient to check whether t is coverable in a Petri net.

The Coverability Problem — that is given a Petri net N and a marking m for N , is m

coverable by N? — is decidable.
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