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Abstract. This paper introduces the characterizations of both semi-stable and stage extensions in
terms of 2-valued logical models. To this end, the so-called GL-supported and GL-stage models are
defined. These two classes of logical models are logic programming counterparts of the notion of
range which is a coined concept in argumentation semantics.

1. Introduction

Theoretical argumentation research has been strongly influenced by the abstract argumentation theory of
Dung [7]. This approach is mainly oriented towards managing the interaction between arguments.

Argumentation has been regarded as a non-monotonic reasoning approach since it was suggested as
an inference reasoning approach [20]. Dung showed that argumentation inference can be regarded as a
logic programming inference with negation as failure [7]. In his seminal paper [7], Dung introduced four
argumentation semantics: grounded, stable, preferred and complete semantics; moreover, he showed that
both the grounded and stable semantics can be regarded as logic programming inferences by considering
the well-founded [9] and stable model [10] semantics, respectively. Currently, it is known that the four
argumentation semantics introduced in [7] can be regarded as logic programming inferences by using dif-
ferent mappings, from argumentation frameworks into logic programs and different logic programming
semantics (see Section 4).
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Following Dung’s argumentation style, several new argumentation semantics have been proposed.
Among them, ideal, semi-stable, stage and CF2 have been deeply explored [2]. Currently we already
know that both ideal and CF2 semantics can also be regarded as logic programming inferences by using
different mappings from argumentation frameworks into logic programs and different logic programming
semantics (see Section 4).

Semi-stable and stable semantics were introduced from different point of views; however, both semi-
stable and stage semantics have been defined in terms of the so-called ranges of complete extensions and
conflict free sets, respectively. Given that the concept of range seems as a fundamental feature for both
semi-stable and stage semantics, the following question arises:

[Q1] How the concept of range can be captured from the point of view of logic programming?

This question takes relevance in the understanding of argumentation as logic programming.
Against this background, we will extend the results around the characterization of argumentation

semantics in terms of mappings from argumentation frameworks into logic programs and logic program-
ming semantics In particular, we will give answer to Q1 by introducing the so-called GL-supported and
GL-stage models which argue for an interpretation of range from a logic programming point of view. We
argue that for capturing the idea of range from the logic programming point view, logic programming
reductions which have been used for defining logic programming semantics such as stable model [10]
and p-stable [17] semantics are important.

We will show that semi-stable semantics can be characterized by GL-supported models and a map-
ping which has been used for characterizing the grounded, stable, preferred, complete and ideal semantics
(see Section 4). The stage semantics is characterized by GL-stage models and a mapping which has been
used for characterizing the grounded, stable, preferred, complete, semi-stable and CF2 semantics (see
Section 4).

The rest of the paper is structured as follows: In Section 2, basic background about logic program-
ming and argumentation is introduced. In Section 3, our characterizations of semi-stable and stage
semantics as 2-valued logical models are introduced. In Section 4, a discussion about related work is
introduced. In the last section, an outline of our conclusions and future work is presented.

2. Background

In this section, we start defining the syntax of normal logic programs. After this, the logic programming
semantics p-stable and stable model semantics are presented. In the last part of this section, we present
some basic concepts of argumentation theory and a pair of mappings from argumentation frameworks
into logic programs.

2.1. Logic Programs: Syntax

A signature L is a finite set of elements that we call atoms. A literal is an atom a (called a positive
literal), or the negation of an atom not a (called a negative literal). Given a set of atoms {a1, . . . , an},
we write not {a1, . . . , an} to denote the set of literals {not a1, . . . , not an}. A normal clause C is of the
form:

a0 ← a1, . . . , aj , not aj+1, . . . , not an
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in which ai is an atom, 0 ≤ i ≤ n. When n = 0 the normal clause is called a fact and is an abbreviation
of a0 ← ⊤, where ⊤ is the ever true atom. A normal logic program is a finite set of normal clauses.
Sometimes, we denote a clause C by a← B+, not B−, where B+ contains all the positive body literals
and B− contains all the negative body literals. We also use body(C) to denote B+, not B−. When
B− = ∅, the clause C is called a definite clause. A definite program is a finite set of definite clauses. We
denote by LP the signature of P , i.e. the set of atoms that occurs in P. Given a signature L, we write
ProgL to denote the set of all the programs defined over L.

Logical consequence in classical logic is denoted by ⊢. Given a set of proposition symbols S and a
theory (a set of well-formed formulae) Γ, Γ ⊢ S if and only if ∀s ∈ S Γ ⊢ s. When we treat a logic
program as a logical theory, each negative literal not a is replaced by ¬a such that ¬ is regarded as the
classical negation in classic logic. Given a normal logic program P, if M ⊆ LP , we write P  M when:
P ⊢M and M is a classical 2-valued model of P (i.e. atoms in M are set to true, and atoms not in M to
false; a set of atoms is a classical model of P if the induced interpretation evaluates P to true). We say
that a mode M of a program P is minimal iff a model M ′ of P different from M such that M ′ ⊂ M
does not exist.

2.2. Logic Programs: Semantics

In this section, we introduce two logic programming semantics: Stable model and P-stable semantics.
Stable model semantics is one of the most influencing logic programming semantics in the non-

monotonic reasoning community and is defined as follows:

Definition 2.1. [10] Let P be a normal logic program. For any set S ⊆ LP , let PS be the definite logic
program obtained from P by deleting

(i) each rule that has a formula not l in its body with l ∈ S, and then

(ii) all formulæ of the form not l in the bodies of the remaining rules.

Hence S is a stable model of P iff S is a minimal model of PS .

From hereon, whenever we say Gelfond-Lifschitz (GL) reduction, we mean the reduction PS . As
we can observe GL reduction is the core of the stable model semantics.

There is an extension of the stable model semantics which is called p-stable semantics [17]. Like
stable model semantics, p-stable semantics is defined in terms of a single reduction which is defined as
follows:

Definition 2.2. [17] Let P be a normal program and M be a set of literals. We define RED(P,M) :=
{l← B+, not (B− ∩M)|l← B+, not B− ∈ P}.

As we can see, GL reduction and RED reduction have different behaviors. On the one hand, the
output of GL reduction always is a definite program; on the other hand, the output of RED reduction can
contain normal clauses.

By considering the RED reduction, the p-stable semantics for normal logic programs is defined as
follows:
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Definition 2.3. [17] Let P be a normal program and M be a set of atoms. We say that M is a p-stable
model of P if RED(P,M)  M . P -stable(P ) denotes the set of p-stable models of P .

In general terms, a 2-valued logic programming semantics SEM is a function from ProgL to 2{0,1}.
Hence, given two logic programming semantics SEM1 and SEM2, SEM1 is stronger than SEM2 iff
SEM1 ⊆ SEM2. Let us observe that the relation stronger than, between logic programming semantics,
is basically an order between logic programming semantics.

2.3. Argumentation theory

In this section, we introduce the definition of some argumentation semantics mainly stable, preferred,
complete, semi-stable and stage semantics. To this end, we start by introducing the basic structure of an
argumentation framework.

Definition 2.4. [7] An argumentation framework is a pair AF := ⟨AR, attacks⟩, where AR is a finite
set of arguments, and attacks is a binary relation on AR, i.e. attacks ⊆ AR×AR.

We say that a attacks b (or b is attacked by a) if attacks(a, b) holds. Similarly, we say that a set S
of arguments attacks b (or b is attacked by S) if b is attacked by an argument in S.

Let us observe that an argumentation framework is a simple structure which captures the conflicts of
a given set of arguments. In order to select coherent points of view from a set of conflicts of arguments,
Dung introduced a set of patterns of selection of arguments. These patterns of selection of arguments
were called argumentation semantics. Dung defined his argumentation semantics based on the basic
concept of admissible set:

Definition 2.5. [7]

• A set S of arguments is said to be conflict-free if there are no arguments a, b in S such that a attacks
b.

• An argument a ∈ AR is acceptable with respect to a set S of arguments if and only if for each
argument b ∈ AR: If b attacks a then b is attacked by S.

• A conflict-free set of arguments S is admissible if and only if each argument in S is acceptable
w.r.t. S.

Before defining some argumentation semantics, let us introduce some notation. Let AF := ⟨AR, attacks⟩
be an argumentation framework and S ⊆ AR. S+ = {b|a ∈ S and (a, b) ∈ attacks}.

Definition 2.6. [7] Let AF := ⟨AR, attacks⟩ be an argumentation framework. An admissible set of
argument S ⊆ AR is:

• stable if and only if S attacks each argument which does not belong to S.

• preferred if and only if S is a maximal (w.r.t. inclusion) admissible set of AF .

• complete if and only if each argument, which is acceptable with respect to S, belongs to S.
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• semi-stable if and only if S is a complete extension such that S ∪ S+ is maximal.

In addition to the argumentation semantics based on admissible sets; in the state of art, there are other
approaches for defining argumentation semantics [2]. One of these approaches is the approach based on
stage semantics which is an argumentation semantics based on conflict-free sets [23]. Stage semantics is
defined as follows:

Definition 2.7. Let AF := ⟨AR, attacks⟩ be an argumentation framework. E is a stage extension iff E
is a conflict free set and E ∪ E+ is maximal w.r.t. set inclusion.

Before moving on, let us observe that both semi-stable and stage semantics are based on the so-called
range which is defined as follows: If E is a set of arguments, then E ∪E+ is called range. According to
the literature, the notion of range was first introduced by Verheij [23].

In Section 3, we will see that the notion of range can be regarded as a logical model. Indeed, we
will see that the notion of range will play an important role for characterizing both semi-table and stage
semantics as 2-valued logical models.

2.4. Mappings from argumentation frameworks into normal programs

The first requirement for studying the structure of an argumentation framework as a logic program is
to manage an argumentation framework as a logic program. To this end, a pair of mappings from an
argumentation framework into a logic programs will be presented. Let us observe that these mappings
are basically declarative representations of an argumentation framework. In particular, these mappings
are based on the ideas of conflictfreeness and reinstatement which are the basic concepts behind the
definition of admissible sets.

In these mappings, the predicate def(x) is used, with the intended meaning of def(x) being “x is a
defeated argument”. A pair of transformation functions w.r.t. an argument is defined as follows.

Definition 2.8. Let AF := ⟨AR, attacks⟩ be an argumentation framework and a ∈ AR. We define a
pair of transformation functions:

Π−(a) =
∪

b:(b,a)∈attacks

{def(a)← not def(b)}

Π+(a) =
∪

b:(b,a)∈attacks

{def(a)←
∧

c:(c,b)∈attacks

def(c)}

Let us observe that Π−(a) suggests that an argument a is defeated when anyone of the arguments
which attack a is not defeated. Π+(a) suggests that an argument a is defeated when all the arguments
that defends1 a are defeated. Moreover, if a given argument a has no attacks, then Π−(a) = {} and
Π+(a) = {}. This situation happens because an argument that has no attacks is an acceptable argument
which means that it belongs to all admissible sets of AF .

By considering Π−(a) and Π+(a), a couple of mappings from argumentation frameworks into logic
programs are introduced.

1We say that c defends a if b attacks a and c attacks b.
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Definition 2.9. Let AF := ⟨AR, attacks⟩ be an argumentation framework. We define their associated
normal programs as follows:

Π−
AF :=

∪
a∈AR

{Π−(a)}

ΠAF := Π−
AF ∪

∪
a∈AR

{Π(a)+}

In Definition 2.9, two mappings from argumentation frameworks into logic programs are presented.
It is obvious that Π−

AF is a subset of ΠAF . However, each mapping is capturing different concepts: Π−
AF

is basically a declarative specification of the idea of conflictfreeness and ΠAF is basically a declarative
specification of the ideas of conflictfreeness and reinstatement. Indeed, one can see that the 2-valued
logical models of Π−

AF characterize the conflict free sets of AF and the 2-valued logical models of ΠAF

characterize the admissible sets of AF .
Before moving on, we want to point out that ΠAF has been shown to be a flexible mapping for study-

ing argumentation theory as logic programming with negation as failure. Until now, the grounded, stable,
preferred, complete and ideal semantics have been characterized by, well-acceptable logic programming
semantics such as, the well-founded, stable, p-stable, Clark’s completion and well-founded+ semantics,
respectively [5, 14, 13]. Moreover Π−

AF , which contains basically the clauses with negation as failure
of ΠAF , has been used for characterizing argumentation semantics such as ground, stable, preferred,
complete, semi-table and CF2 [7, 15, 21]2.

In the following section, we will extend the results of both ΠAF and Π−
AF . More accurately, we will

show that ΠAF is able to characterize the semi-stable semantics; moreover, we will show that Π−
AF is

able to capture the stage semantics.

3. Semi-stable and Stage extensions as 2-valued models

In this section, new results about the relationship between argumentation semantics and logic program-
ming semantics are introduced. In particular, we observe that both semi-stable and stage extension can
be characterized by 2-valued logical models.

3.1. Semi-Stable Semantics

We start presenting our results w.r.t. semi-stable semantics. To this end, let us start defining the concept
of a supported model; moreover, we will introduce some notation. Let P be a logic program and M be a
2-valued model of P . M is a supported model of P iff for each a ∈M , there is a0 ← B+, not B− ∈ P
such that a = a0, B+ ∈M and B− ∩M = ∅. Facts(P ) = {a|a← ⊤ ∈ P}.

In order to regard 2-valued models as set of arguments, let us introduces the following functions:
Let EM = {x|def(x) ∈ LΠAF

\M} and E+
M = {x|def(x) ∈ Facts(ΠM

AF )} such that M ⊆ LΠAF
.

Informally speaking, both EM and E+
M consider a set of atoms M as input and return a set of arguments.

As we saw in Definition 2.6, semi-stable extensions are defined in terms of complete extensions.
Moreover, it has been shown that the supported models of ΠAF characterize the complete extensions of
2The mapping introduced by Dung [7] does not really match with Π−

AF ; however, it is easy to see that Π−
AF is equivalent to the

mapping introduced by Dung
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a given argumentation framework AF [19]. By having in mind this result, we introduce the concept of
GL-supported-model.

Definition 3.1. Let AF = ⟨AR,Attacks⟩ be an argumentation framework and M be a supported model
of ΠAF . M is a GL-supported-model of ΠAF iff Facts(ΠM

AF ) ∪ {LΠAF
\M} is maximal w.r.t. set

inclusion.

There are some important observations with respect to Definition 3.1 which we want to point out:

1. M is a supported model of ΠAF iff EM is a complete extension of AF .

2. M is a supported model of ΠAF iff E+
M = E+ such that E is a complete extension of AF .

3. M is a supported model of ΠAF iff EM ∪ E+
M is a range with respect to the complete extension

EM .

From these observations, we can clearly see that the definition of a GL-supported model is similar
to the definition of a semi-stable extension. One of the main constructions of the definition of a GL-
supported model is: Facts(ΠM

AF ). This part of the construction of a GL-supported model is basically
characterizing a set E+ where E is a complete extension. We can see that the GL reduction is quite
important for this construction. As we saw in Definition 2.1, GL reduction is the core of the definition of
stable models.

We want to point out that the definition of GL-supported models can also be based on the RED
reduction which is the reduction used for defining p-stable models (see Definition 2.3). This similarity
between RED and GL reductions argues that both RED and GL reductions can play an important role for
capturing the idea of range of an argumentation framework from a logic programming point of view. As
we will see in the following theorem, GL-supported models characterize semi-stable extensions; hence,
both RED and GL reductions play an important role for capturing semi-stable extension as 2-valued
logical models.

Theorem 3.1. Let AF = ⟨AR,Attacks⟩ be an argumentation framework. M is a GL-supported model
of ΠAF if and only if AR \ {a|def(a) ∈M} is a semi-stable extension of AF .

Proof:
Let us start introducing some observations:

1. E is a complete extension of AF iff E = {x|def(x) ∈ LΠAF
\M and M is a supported model of

ΠAF } [19].

2. If E is a complete extension of AF , then E+ = {x|def(x) ∈ Facts(RED(ΠAF ,M)) and
M is a supported model of ΠAF }.

=> If M is a GL-supported model of ΠAF then Facts(ΠM
AF ) ∪ {LΠAF

\ M} is maximal w.r.t. set
inclusion and M is a supported model. By Observation 1, EM is a complete extension of AF such
that M is a supported model. By observation 2, E+

M = E+ such that M is a supported model and
E is a complete extension. Hence, EM ∪ E+

M is a semi-stable extension of AF .
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<= Similar to the previous case.
⊓⊔

An interesting property of GL-supported models is that they can be characterized by both p-stable
and 2-valued models.

Proposition 3.1. Let AF = ⟨AR,Attacks⟩ be an argumentation framework.

1. M is a GL-supported model of ΠAF iff Facts(ΠM
AF )∪{LΠAF

\M} is maximal w.r.t. set inclusion
such that M is a 2-valued model of ΠAF .

2. M is a GL-supported model of ΠAF iff Facts(ΠM
AF )∪{LΠAF

\M} is maximal w.r.t. set inclusion
such that M is a p-stable model ΠAF .

Proof:
We start introducing the following observations from the state of the art:

1. S is a 2-valued model of ΠAF iff AR \ {x|def(x) ∈ S} is an admissible extension of AF [13].

2. According to Proposition 4 from [4] the following statements are equivalent:

(a) E is a complete extension such that E ∪ E+ is maximal (w.r.t. set inclusion).

(b) E is an admissible set such that E ∪ E+ is maximal (w.r.t. set inclusion).

3. S is a p-stable model of ΠAF iff AR \ {x|def(x) ∈ S} is a preferred extension of AF [5].

Now let us prove each of the points of the proposition:

1. M is a GL-supported model of ΠAF iff Facts(ΠM
AF )∪{LΠAF

\M} is maximal w.r.t. set inclusion
and M is a supported model. By Theorem 3.1, Facts(ΠM

AF ) ∪ {LΠAF
\M} is maximal w.r.t. set

inclusion and M is a supported model iff EM ∪E+
M is maximal and EM is a complete extension of

AF . By Observation 2, EM∪E+
M is maximal and EM is a complete extension of AF iff EM∪E+

M

is maximal and EM is an admissible extension of AF . Hence, the result follows by Observation 1
which argues that any 2-valued model of ΠAF characterizes an admissible set of AF .

2. Let us start by observing that semi-stable extensions can be characterized by preferred extension
with maximal range which mean: E is a semi-stable extension iff E ∪ E+ is maximal (w.r.t. set
inclusion) and E is a preferred extension (see Proposition 13 from [2]). Hence, the result follows
by Observation 3 and Theorem 3.1.

⊓⊔

A direct consequence of Proposition 3.1 and Theorem 3.1 is the following corollary which introduces
a pair of characterizations of semi-stable extensions as 2-valued models and p-stable models of ΠAF .

Corollary 3.1. Let AF = ⟨AR,Attacks⟩ be an argumentation framework.

1. Let M be a p-stable model of ΠAF . AR \ {a|def(a) ∈ M} is a semi-stable extension of AF iff
Facts(ΠM

AF ) ∪ {LΠAF
\M} is maximal w.r.t. set inclusion.
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2. Let M be a 2-valued model of ΠAF . AR \ {a|def(a) ∈ M} is a semi-stable extension of AF iff
Facts(ΠM

AF ) ∪ {LΠAF
\M} is maximal w.r.t. set inclusion.

Observing Corollary 3.1, we can see that there is an interval of logic programming semantics which
characterize semi-stable extensions. This interval of logic programming is defined by the order relation of
stronger than between logic programming semantics. This result is formalized by the following corollary.
To this end, let us introduce the following notation, let P be a logic program, 2SEM(P ) denotes the
2-valued models of P .

Corollary 3.2. Let AF = ⟨AR,Attacks⟩ be an argumentation framework and SEM be a logic pro-
gramming semantics such that SEM is stronger than 2SEM and P -stable is stronger than SEM . If
M ∈ SEM(ΠAF ), then AR \ {a|def(a) ∈ M} is a semi-stable extension of AF iff Facts(ΠM

AF ) ∪
{LΠAF

\M} is maximal w.r.t. set inclusion.

Given the relation of semi-stable extensions with the stable and preferred extensions, we can ob-
serve some relations between GL-supported models w.r.t. the stable model semantics [10] and p-stable
semantics.

Proposition 3.2. Let AF = ⟨AR,Attacks⟩ be an argumentation framework.

1. If M is a stable model of ΠAF then M is a GL-supported model of ΠAF .

2. If M is a GL-supported model of ΠAF then M is a p-stable model of ΠAF .

Proof:

1. It follows from Theorem 3.1 and Theorem 2 from [4].

2. It follows from Theorem 3.1 and Theorem 3 from [4].
⊓⊔

Given a logic program P , Stable(P ) denotes the set of stable models of P and GLModels(P )
denotes the GL-supported models of P .

Proposition 3.3. Let AF = ⟨AR,Attacks⟩ be an argumentation framework such that Stable(ΠAF ) ̸=
∅. Stable(ΠAF ) = GLModels(ΠAF ).

Proof:
We know that E is a stable extension of AF iff E = AR \ {x|def(x) ∈ M and M is a stable model
ΠAF } (Theorem 5 from [5]). Hence, the result follows from Theorem 3.1 and Theorem 5 from [4]. ⊓⊔
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3.2. Stage Semantics

We have seen that the idea of range with respect to complete extensions can be captured in terms of
logical models by considering logic programming reductions such as GL and RED. The idea of range
was originally introduced by Verheij [23]. Indeed, by using the idea of range, Verheij introduced the so-
called stage semantics (see Definition 2.7). Unlike semi-stable semantics which is based on admissible
sets (e.g., complete extensions ), stage semantics is based on conflict-free sets. However, one can observe
that semi-stable and stage semantics share similar constructions (see Definition 2.6 and Definition 2.7).
Hence the following question arises:

[Q2] Can the reduction GL (or RED) characterize ranges w.r.t. conflict-free sets in order to
characterize stage extensions as logical models?

In order to give answer the previous question, let us remember that in Section 2.4, we introduced a
couple of mappings: Π−

AF and ΠAF . We have observed that Π−
AF is basically a declarative specification

of conflict-free sets and ΠAF is a declarative specification of admissible sets.
Given that stage semantics is based on conflict free sets, we will consider Π−

AF for exploring stage
extensions as logical models. In the following definition, we introduce the class of GL-stage models
which are based on Π−

AF .

Definition 3.2. Let AF = ⟨AR,Attacks⟩ be an argumentation framework and M be a 2-valued model
of Π−

AF . M is a GL-stage model of ΠAF iff Facts((Π−
AF )

M ) ∪ {LΠAF
\ M} is maximal w.r.t. set

inclusion.

Like GL-supported models, GL-stage models are based on the reduction GL; however, once again,
one can use RED reduction for defining GL-stage models. Moreover, we can observe that:

1. M is a 2-valued model of Π−
AF iff EM is a conflict-free set.

2. M is a 2-valued model of Π−
AF iff E+

M = E+ such that E+ is a conflict free set of AF .

3. M is a 2-valued model of Π−
AF iff E+

M ∪ EM is a range with respect to the conflict free set EM .

Given these observations, one can clearly observe that GL-stage models characterize stage exten-
sions.

Theorem 3.2. Let AF := ⟨AR, attacks⟩ be an argumentation framework. M is a GL-stage model of
Π−

AF iff AR \ {a|def(a) ∈M} is a stage extension of AF .

Proof:
The proof is direct by fact that if M is a GL-stage model of Π−

AF then EM is a conflict free set of AF .
⊓⊔
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4. Related work

In this section, a discussion about related work is presented. In particular, we present some other results
about the characterization of argumentation inferences in terms of logic programming models.

In the literature, there are some other characterizations of semi-stable inference as logic programming
inference [3, 21]. Caminada et al., [3], showed that the semi-stable semantics can be characterized
by the L-stable semantics and the mapping PAF which is defined as follows: Given an argumentation
framework AF := ⟨AR, attacks⟩:

PAF =
∪

x∈AR

{x←
∧

(y,x)∈attacks

not y}

Unlike GL-supported models which are 2-valued models, the models of the L-stable semantics are
3-valued. Moreover, unlike ΠAF which is a declarative specification of admissible sets, PAF seems as a
declarative specification of conflict-free sets.

Strass [21] has also showed that the semi-stable semantics can by characterized by both the so-called
L-supported models and L-Stable models. Unlike Caminada’s characterization and our characterizations,
Strass considered the mapping Π−

AF . As we have observed in Section 2.4, the clauses of Π−
AF is a subset

of ΠAF which is the mapping that we considered in both Theorem 3.1 and Corollary 3.2. It is worth
mentioning that the mapping introduced by Dung [7] can be transformed into Π−

AF .
We cannot argue that one characterization is better than the other; however, we can observe that

all these characterizations, including the ones introduced in this paper, offer different interpretations of
semi-stable inference. Moreover, given that semi-stable inference has been characterized in terms of both
L-stable semantics and L-supported modes, it seems that these semantics are related to GL-supported
semantics.

In the literature, there are different characterizations of argumentation semantics in terms of logic
programming semantics. A summary of these characterization is presented in Table 1.

According to Table 1, there are three main mappings which have been explored in order to map
argumentation frameworks into logic programs. ΠAF and Π−

AF are basically declarative specifications
of the concept of a conflict free set. On the other hand, ΠAF is basically a declarative specification of an
admissible set.

On one way or another, Table 1 argues for a strong relationship between argumentation inference and
logic programming inference. Moreover, we can observe that the argumentation semantics which have
been able to be characterized as logic programming inferences have been studies from different points
of view, e.g., Labellings [2]. This evidence argues that any well-defined argumentation semantics must
be characterized by a logic programming semantics. However, further research is required in order to
identify the necessary conditions which could support a basic definition of a Well-defined Non-monotonic
Inference of any argumentation semantics.

The exploration of argumentation as logic programming inference is not limited to the characteriza-
tion of argumentation semantics in terms logic programming semantics. Since Dung’s presented his sem-
inal paper [7], he showed that logic programming can support the construction of argumentation-based
systems. Currently there are quite different logic-based argumentation engines which support the infer-
ence of argumentation semantics [8, 22, 11, 6]. It is well-known that the computational complexity of the
decision problems of argumentation semantics ranges from NP-complete to Π

(p)
2 -complete. In this set-
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Table 1. Characterization of argumentation semantics as logic programming inferences.

Argumentation
semantics

Logic pro-
gramming
semantics
using PAF

Logic pro-
gramming
semantics
using ΠAF

Logic pro-
gramming
semantics
using Π−

AF

Grounded
Semantics

Well-founded
semantics [3],
the Kripke-
Kleene model
[21]

Well-founded
semantics [5]

Well-founded
semantics [7],
the Kripke-
Kleene model
[21]

Stable Seman-
tics

Stable model
semantics
[3, 16], Sup-
ported models
[21]

Stable model
semantics [5]

Stable mod-
els semantics
[7], Supported
models [21]

Preferred Se-
mantics

Regular se-
mantics [3],
M-supported
models, M-
stable models
[21]

P-stable Seman-
tics [5]

M-supported
models, M-
stable models
[21]

Complete
Semantics

3-valued sta-
ble semantics
[24, 21],
3-valued sup-
ported models
[21]

Supported
Models [19]

3-valued sta-
ble semantics,
3-valued sup-
ported models
[21]

Semi-stable Se-
mantics

L-Stable [3, 21],
L-Supported
models [21]

GL-supported
models (Theo-
rem 3.1)

L-supported
models, L-
stable models
[21]

Ideal Semantics WFS+ [13]

CF2 Semantics MM∗ [15]

Stage Seman-
tics

GL-stage mod-
els (Theorem
3.2)
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ting, Answer Set Programming has been consolidated as a strong approach for building argumentation-
based systems [8, 12, 16, 22, 6].

Before moving on let us observe that from the logic programming side, most of the logic program-
ming semantics used for characterizing argumentation inference have some relations with the stable
model semantics [10]. We know that semi-stable semantics is an extension of stable semantics; however,
none of the logic programming semantics which characterize semi-stable semantics are really presented
as extensions of stable model semantics. Hence an interesting research question can be:

[Q3] Is there an extension of stable model semantics which characterizes semi-stable se-
mantics?

Let us observe that by giving answer to this question, semi-stable inference will be related to An-
swer Set Programming’s inference (ASP). Currently, there are several extensions of stable models which
start from stable model’s definition for defining new logic programming semantics [1]. A common ap-
proach for extending stable models is following an abductive approach. Following ideas of abductive
reasoning, in [18], the stable_abductive argumentation semantics was introduced. This semantics is
based on the stable model semantics; moreover, like semi-stable semantics, stable_abductive argumenta-
tion is an intermediate semantics between stable and preferred semantics. Indeed, empirically speaking,
we can observe that both semantics coincide. For instance, if we consider the argumentation framework:
AF = ⟨{a, b, c}, {(a, a), (b, c), (c, b)}⟩, both semantics have the same extensions: {b} and {c}. We have
showed that both semantics satisfy common properties such as relevance [18]. This evidence makes us
conjecture that stable_abductive argumentation semantics is equivalent to semi-stable semantics. In our
future work, we will show this equivalence. Let us observe that if this conjecture is true, we will have
an abductive construction of semi-stable semantics based on stable model semantics. Hence, this result
will argue that semi-stable semantics is close to stable model semantics. In case that semi-stable and sta-
ble_abductive argumentation semantics are different, it will be relevant to observe which argumentation
semantics is stronger than the other.

5. Conclusions

Argumentation inference is strongly influenced by Dung’s argumentation style. Since Dung’s approach
was introduced, it has been showed that this approach can be regarded as logic programming infer-
ence. Currently, most of the well acceptable argumentation semantics have been characterized as logic
programming inference. This evidence argue that whenever appears a new semantics it is totally reason-
able to ask to be characterized as logic programming inference. However, further research is required
in order to identify the necessary conditions which could support a basic definition of a Well-defined
Non-monotonic Inference of any argumentation semantics.

According to Theorem 3.1, semi-stable semantics share the same mapping (i.e. ΠAF ) with grounded,
stable, preferred, complete and ideal semantics for been characterized as logic programming inference.
This result argue that all these argumentation semantics can share the same interpretation of an argumen-
tation framework as a logic program. Certainly, the logic programming semantics which are consider for
characterizing these argumentation semantics share also a common interpretation of the argumentation
inference which is restricted to the class of programs defined by ΠAF .
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We have also showed that stage semantics can be also characterized by a logic programming seman-
tics (see Theorem 3.2). This result argues that stage semantics has also logic programming foundations.

An interesting observation, from the results of this paper, is that the concept of range which is funda-
mental for defining semi-stable and stage semantics can be captured from the logic programming point of
view by considering well-acceptable reductions from logic programming. Mainly GL-supported models
and GL-stage models were defined by using GL reduction; moreover, it was observed that these models
can also be defined by RED reduction. It is worth mentioning that reductions as GL and RED sug-
gest some general rules for managing negation as failure. Hence, it could be interesting to explore if
GL-supported models and GL-stage models are relevant from the logic point of view.

Acknowledgment

This research has been partially supported by VINNOVA (The Swedish Governmental Agency for Inno-
vation Systems), the Swedish Brain Power Program and CONACyT (the Mexican Governmental Agency
for science and technology) [CB-2008-01 No.101581].

References
[1] Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving, Cambridge University

Press, Cambridge, 2003.

[2] Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics, Knowledge Eng.
Review, 26(4), 2011, 365–410.

[3] Caminada, M., Sá, S., Alcântara, J.: On the Equivalence between Logic Programming Semantics and Argu-
mentation Semantics, Technical Report ABDN-CS-13-01, University of Aberdeen, 2013.

[4] Caminada, M. W. A., Carnielli, W. A., Dunne, P. E.: Semi-stable semantics, Journal of Logic and Computa-
tion, 22(5), 2012, 1207–1254.

[5] Carballido, J. L., Nieves, J. C., Osorio, M.: Inferring Preferred Extensions by Pstable Seman-
tics, Iberoamerican Journal of Artificial Intelligence (Inteligencia Artificial) ISSN: 1137-3601, (doi:
10.4114/ia.v13i41.1029), 13(41), 2009, 38–53.

[6] Charwat, G., Dvorák, W., Gaggl, S. A., Wallner, J. P., Woltran, S.: Methods for solving reasoning problems
in abstract argumentation - A survey, Artificial Intelligence, 220, 2015, 28–63.

[7] Dung, P. M.: On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning,
Logic Programming and n-Person Games., Artificial Intelligence, 77(2), 1995, 321–358.

[8] Egly, U., Alice Gaggl, S., Woltran, S.: Answer-set programming encodings for argumentation frameworks,
Argument and Computation, 1(2), 2010, 147–177.

[9] Gelder, A. V., Ross, K. A., Schlipf, J. S.: The Well-Founded Semantics for General Logic Programs., Journal
of the ACM, 38(3), 1991, 620–650.

[10] Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming, 5th Conference on Logic
Programming (R. Kowalski, K. Bowen, Eds.), MIT Press, 1988, 1070–1080.

[11] Gómez-Sebastià, I., Nieves, J. C.: WizArg: Visual Argumentation Framework Solving Wizard, 13th In-
ternational Conference of the Catalan Association for Artificial Intelligence (CCIA), 210, IOS Press, 2010,
249–258.



M. Osorio & J.C. Nieves / Semi-Stable and Stage Extensions as 2-valued Logical Models 15

[12] Guerrero, E., Nieves, J. C., Lindgren, H.: Semantic-based Construction of Arguments: an Answer Set Pro-
gramming Approach, International Journal of Approximate Reasoning, DOI: 10.1016/j.ijar.2015.06.009,
2015.

[13] Nieves, J. C., Osorio, M.: Ideal Extensions as Logical Programming Models, Journal of Logic and Compu-
tation, DOI:10.1093/logcom/exu014, 2014.

[14] Nieves, J. C., Osorio, M., Cortés, U.: Preferred Extensions as Stable Models, Theory and Practice of Logic
Programming, 8(4), July 2008, 527–543.

[15] Nieves, J. C., Osorio, M., Zepeda, C.: A Schema for Generating Relevant Logic Programming Semantics
and its Applications in Argumentation Theory, Fundamenta Informaticae, 106(2-4), 2011, 295–319.

[16] Nieves, J. C., Osorio, M., Zepeda, C., Cortés, U.: Inferring acceptable arguments with Answer Set Program-
ming, Sixth Mexican International Conference on Computer Science (ENC 2005), IEEE Computer Science
Press, September 2005, 198–205.

[17] Osorio, M., Navarro, J. A., Arrazola, J. R., Borja, V.: Logics with Common Weak Completions, Journal of
Logic and Computation, 16(6), 2006, 867–890.

[18] Osorio, M., Nieves, J. C., Carballido, J. L.: The Stable Abducible Argumentation Semantics, Latin American
Workshop on Non-Monotonic Reasoning 2011, 804, 2011, 57–68.

[19] Osorio, M., Nieves, J. C., Santoyo, A.: Complete Extensions as Clark’s Completion Semantics, Mexican
International Conference on Computer Science, IEEE Computer Science Press, 2013, 81–88.

[20] Prakken, H., Vreeswijk, G. A. W.: Logics for defeasible argumentation, in: Handbook of Philosoph-
ical Logic (D. Gabbay, F. Günthner, Eds.), vol. 4, second edition, Kluwer Academic Publishers, Dor-
drecht/Boston/London, 2002, 219–318.

[21] Strass, H.: Approximating operators and semantics for abstract dialectical frameworks, Artif. Intell., 205,
2013, 39–70.

[22] Toni, F., Sergor, M.: Argumentation and Answer Set Programming, in: Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning (M. Balduccini, T. C. Son, Eds.), vol. 6565 of LNCS, Springer,
2011.

[23] Verheij, B.: Two approaches to dialectical argumentation: admissible sets and argumentation stages, Pro-
ceedings of the Eighth Dutch Conference on Artificial Intelligence (NAIC 1996), 1996.

[24] Wu, Y., Caminada, M., Gabbay, D. M.: Complete Extensions in Argumentation Coincide with 3-Valued
Stable Models in Logic Programming, Studia Logica, 93(2-3), 2009, 383–403.


