

Hannes Strass

Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Cooperative Games

Lecture 10, 3rd Jul 2023 // Algorithmic Game Theory, SS 2023

Previously ...

- General Game Playing is concerned with computers learning to play previously unknown games without human intervention.
- The **game description language** (GDL) is used to declaratively specify (deterministic) games (with complete information about game states).
- The syntax of GDL game descriptions is that of normal logic programs;
 various restrictions apply to obtain a finite, unique interpretation.
- The semantics of GDL is given through a state transition system.
- GDL-II allows to represent moves by Nature and information sets.
- The semantics of GDL-II can be given through extensive-form games.
- Conversely, GDL-II can express any finite extensive-form game.

Written Exam

27th July 2023, 07:30-08:30hrs BAR/SCHOE/E

Overview

Cooperative Games with Transferable Utility

Solution Concept: The Core

Solution Concept: Stable Sets

Cooperative Games: Motivation

- In a noncooperative game, players cannot enter binding agreements.
- (Players can still cooperate if it pays off for them.)
- In a cooperative game, players form coalitions.
- The coalition gets some (overall) payoff, which is then to be distributed among the coalition's members.
- Players are still assumed to be rationally maximising their individual payoffs.

Example: Hospitals and X-Ray Machines

- Three hospitals (in the same city) are planning to buy x-ray machines.
- However, not every hospital necessarily needs its own machine.
- The smallest machine costs \$5*m* and could cover the needs of any two hospitals.
- A larger machine costs \$9*m* and could cover the needs of all three hospitals.
- Hospitals forming a coalition C can jointly save the difference to each individual hospital $i \in C$ buying its own \$5m machine.
- It is in society's interest to save money while covering patients' needs.

What should the hospitals do?

Cooperative Games with Transferable Utility

Cooperative Games with Transferable Utility

Definition

A **cooperative game with transferable utility** is a pair G = (P, v) where

- $P = \{1, 2, \dots, n\}$ is the set of players and
- $v: 2^P \to \mathbb{R}_{>0}$ is the **characteristic function** of *G*.
- Intuition: Coalition $C \subseteq P$ earns v(C) by cooperating.
- Terminology: We will occasionally omit "with transferable utility".

Assumption

For any cooperative game G = (P, v), we have:

- 1. Normalisation: $v(\emptyset) = 0$.
- 2. Monotonicity: $C \subseteq D \subseteq P$ implies $v(C) \le v(D)$.

Note that a cooperative game with n players requires a representation of a size that is exponential in n.

Cooperative Games: Example

Hospitals and X-Ray Machines

Three hospitals are planning to buy x-ray machines. However, not every hospital necessarily needs its own machine. A small machine costs \$5m and could cover the needs of any two hospitals. A larger machine costs \$9m and could cover the needs of all three hospitals. Hospitals forming a coalition C can jointly save the difference to each individual hospital $i \in C$ buying its own \$5m machine.

•
$$P = \{1, 2, 3\},$$

•
$$v(P) = 6$$
,

•
$$v(C) = 5$$
 for $|C| = 2$,

•
$$v(\{i\}) = 0 \text{ for } i \in P$$
.

Coalition Structure

Definition

Let G = (P, v) be a cooperative game (with transferable utility).

A **coalition structure** for *G* is a partition $\mathcal{C} = \{C_1, \dots, C_k\}$ of *P*, that is,

- $C_1, \ldots, C_k \subseteq P$,
- $C_1 \cup \ldots \cup C_k = P$, and
- $C_i \cap C_j = \emptyset$ for all $1 \le i \ne j \le k$.
- The coalition structure $\mathcal{C} = \{P\}$ is called the **grand coalition**.
- v(C) is the collective payoff of a coalition; it remains to be specified how to distribute the gains to the coalition's members.

Hospitals and X-Ray Machines

For $P = \{1, 2, 3\}$, some possible coalition structures are $\mathcal{C}_1 = \{\{1, 2, 3\}\}$, $\mathcal{C}_2 = \{\{1, 3\}, \{2\}\}$, and $\mathcal{C}_3 = \{\{1\}, \{2\}, \{3\}\}$.

Outcome of a Cooperative Game

Definition

Let G = (P, v) be a cooperative game (with transferable utility).

An **outcome** of G = (P, v) is a pair $(\mathcal{C}, \mathbf{a})$ where

- C is a coalition structure and
- $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{R}^n$ is a payoff vector such that $a_i \ge 0$ for each $i \in P$ and

$$\sum_{i\in\mathcal{C}}a_i=v(\mathcal{C})\quad\text{for each coalition }\mathcal{C}\in\mathcal{C}.$$

Efficiency: For each coalition $C \in \mathcal{C}$, its payoff v(C) is distributed completely. Transferable Utility: Players within coalitions can transfer payoffs freely.

Hospitals and X-Ray Machines

Outcomes are \mathcal{C}_1 with $\mathbf{a}_1 = (2, 2, 2)$, \mathcal{C}_2 with $\mathbf{a}_2 = (2.5, 0, 2.5)$, and \mathcal{C}_3 with $\mathbf{a}_3 = (0, 0, 0)$, but also \mathcal{C}_2 with $\mathbf{a}_2' = (3, 0, 2)$. No outcome: \mathcal{C}_2 with (2, 1, 2).

Superadditive Games (1)

Definition

Let G = (P, v) be a cooperative game (with transferable utility).

G is called **superadditive** iff for all coalitions $C, D \subseteq P$

$$C \cap D = \emptyset$$
 implies $v(C \cup D) \ge v(C) + v(D)$.

Intuition: $C \cup D$ can achieve what C and D can achieve separately; there might be additional synergistic effects.

Non-Example

- A group C of emacs-using programmers achieves a part of a task T in 8h.
- A (disjoint) group *D* of vi-using programmers achieves the rest of *T* in 8*h*.
- The group $C \cup D$, attempting to work together, might not achieve T in 8h.

We will only consider superadditive games unless specified otherwise.

Superadditive Games (2)

Observation

Let G = (P, v) be a superadditive (cooperative) game.

For every coalition structure $\mathcal{C} = \{C_1, \dots, C_k\}$, we have

$$v(P) \geq v(C_1) + \ldots + v(C_k)$$

→ In superadditive games, we can expect the grand coalition to form. However, it does not automatically mean that the grand coalition is "stable":

Example

- The "Hospitals and X-Ray Machines" game is superadditive.
- In outcome ({{1, 2, 3}}, (2, 2, 2)), e.g. {1, 2} have an incentive to deviate:
- in ({{1,2}, {3}}, (2.5, 2.5, 0)), they would increase their individual payoff.

→ It remains to analyse how to distribute the grand coalition's payoff.

Solution Concept: The Core

Imputations

Definition

Let G = (P, v) be a cooperative game (with transferable utility).

- A payoff vector $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{R}^n$ is **individually rational** iff $a_i \ge v(\{i\})$ for all $i \in P$
- The **imputations for** *G* are the members of the following set:

$$Imp(G) := \left\{ (a_1, \dots, a_n) \in \mathbb{R}^n \,\middle|\, \sum_{i=1}^n a_i = v(P) \text{ and } a_i \ge v(\{i\}) \text{ for all } i \in P \right\}$$

Intuition: Imputations are efficient (w.r.t. to $\{P\}$) and individually rational.

Observation

- 1. $Imp(G) \neq \emptyset$ iff $v(P) \geq \sum_{i \in P} v(\{i\})$.
- 2. If *G* is superadditive, then $Imp(G) \neq \emptyset$.

The Core of a Cooperative Game

Definition

Let G = (P, v) be a cooperative game (with transferable utility).

The **core of** *G* is the following set:

$$Core(G) := \left\{ (a_1, \dots, a_n) \in Imp(G) \middle| \sum_{i \in C} a_i \ge v(C) \text{ for all coalitions } C \subseteq P \right\}$$

Intuition: No group C has an incentive to break off the grand coalition.

Example

In "Hospitals and X-Ray Machines", the core is empty:

- If $(a_1, a_2, a_3) \in Core(G)$, then $a_1 + a_2 + a_3 = 6$ by being an imputation.
- But for any $i, j \in \{1, 2, 3\}$ with $i \neq j$ we also have $a_i + a_j \ge v(\{a_i, a_j\}) = 5$.
- Let $a_i \le a_i \le a_k$, then $a_i + a_i \ge 5$, but $a_k \le 1$ and $a_i + a_i \le 2$, contradiction.

Cores of Cooperative Games: Example (1)

Chess Pairings

A group of $n \ge 3$ people want to play chess. Every pair of players appointed to play against each other receives \$1.

$$P = \{1, ..., n\}$$

$$v(C) = \begin{cases} \frac{|C|}{2} & \text{if } |C| \text{ is even,} \\ \frac{|C|-1}{2} & \text{otherwise} \end{cases}$$

- For $n \ge 4$ even, the payoff vector $\mathbf{a}_n := \left(\frac{1}{2}, \dots, \frac{1}{2}\right)$ is in the core:
 - deviation by an odd group $C \subseteq P$ would yield $\nu(C) = \frac{|C|-1}{2} < \frac{1}{2} \cdot |C|$;
 - deviation by an even group $C \subseteq P$ would yield $v(C) = \frac{|C|}{2} = \frac{1}{2} \cdot |C|$.
- In fact, for $n \ge 4$ even, we have $Core(G) = \{a_n\}$:
 - Assume $\mathbf{a} \in Core(G)$, then for any $\{a_i, a_j\} \subseteq P$, it follows that $a_i + a_j \ge v(C) = 1$.
 - From $\mathbf{a} \in Imp(G)$, we get $a_1 + \ldots + a_n = \frac{n}{2}$, and we obtain $a_i = \frac{1}{2}$ for all $i \in P$.
- For $n \ge 3$ odd, the core is empty: (One player remains without a partner.)
 - For n = 3 and **a** ∈ *Core*(*G*), we get $a_1 + a_2 + a_3 = 1$, so e.g. $a_1 > 0$.
 - But then $a_2 + a_3 = 1 a_1 < 1$ although $v(\{a_2, a_3\}) = 1$, contradicting $\mathbf{a} \in Core(G)$.

Cores of Cooperative Games: Example (2)

Shoe Makers

Of 201 shoe makers, (the first) 100 have made one left shoe each, (the remaining) 101 have made one right shoe each. A pair of shoes consists of one left and one right shoe (ignoring sizes), and can be sold for \$10.

$$P = \{1, 2, ..., 201\}$$

$$v(C) = 10 \cdot \min \{|C_L|, |C_R|\}$$
where
$$C_L := \{c \in C \mid c \le 100\}$$

$$C_R := \{c \in C \mid c \ge 101\}$$

- The grand coalition makes a total of \$1000 from selling all 100 pairs.
- The core of this game contains as only imputation $\mathbf{a} = (a_1, a_2, ..., a_{201})$ with $a_1 = a_2 = ... = a_{100} = 10$ and $a_{101} = a_{102} = ... = a_{201} = 0$:
- For any imputation **b** with $b_i > 0$ for some $101 \le i \le 201$, the coalition $P \setminus \{i\}$ would obtain $v(P \setminus \{i\}) = v(P) > \sum_{j \in C, i \ne i} b_j$ on their own.
- Intuitively: Left shoes are scarce, right shoes are overabundant.

Linear Programming (in a Nutshell)

Definition

• A **linear program** is of the form

```
maximise \mathbf{c}^T \mathbf{x}
subject to \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0,
and \mathbf{x} \in \mathbb{R}^k
```

where \mathbf{x} is a vector of **decision variables**, and \mathbf{A} , \mathbf{b} , \mathbf{c} are a matrix and two vectors of real values; the expression $\mathbf{c}^T \mathbf{x}$ is the **objective function**.

- If there is no objective function the program is a **feasibility problem**.
- A solution is a variable-value assignment that satisfies all constraints.
- A linear program is a special case of a mixed integer program (Lecture 2).
- Linear programming problems can be solved in polynomial time.

Computing the Core

For a given cooperative game G = (P, v), its core is given by the feasible region of the following linear program over variables a_1, \ldots, a_n :

find
$$a_1, \dots, a_n$$
 subject to $a_i \ge 0$ for all $i \in P$
$$\sum_{i \in P} a_i = v(P)$$

$$\sum_{i \in C} a_i \ge v(C)$$
 for all $C \subseteq P$

Observe: The problem specification contains $2^n + n + 1$ constraints.

Corollary

For a cooperative game G = (P, v) whose characteristic function v is explicitly represented, its core can be computed in deterministic polynomial time.

The ε -Core

Definition

Let G = (P, v) be a cooperative game (with transferable utility) and $\varepsilon \in \mathbb{R}$.

1. The set of **pre-imputations of** *G* is

$$PreImp(G) := \{(a_1, ..., a_n) \in \mathbb{R}^n \mid \sum_{i \in P} a_i = v(P)\}$$

2. The ε -core of G is the following set:

$$\varepsilon\text{-}Core(G) := \left\{ (a_1, \dots, a_n) \in PreImp(G) \, \middle| \, \sum_{i \in C} a_i \ge v(C) - \varepsilon \text{ for all } C \subseteq P \right\}$$

- Intuition: Coalitions $C \subsetneq P$ that leave P have to pay a penalty of at least ε .
- For $\varepsilon = 0$, we have 0-Core(G) = Core(G).
- If $Core(G) = \emptyset$, then there is some $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$, for which ε - $Core(G) \neq \emptyset$.
- If $Core(G) \neq \emptyset$, then there is some $\varepsilon \in \mathbb{R}$, $\varepsilon < 0$, for which ε - $Core(G) = \emptyset$.

The Least Core

Definition

Let G = (P, v) be a cooperative game (with transferable utility).

The **least core of** G is the intersection of all non-empty ε -cores of G.

Alternatively: The least core of G is $\tilde{\varepsilon}$ -Core(G) for $\tilde{\varepsilon} \in \mathbb{R}$ such that $\tilde{\varepsilon}$ -Core(G) $\neq \emptyset$ and ε -Core(G) $= \emptyset$ for all $\varepsilon < \tilde{\varepsilon}$.

The value of the least core can be computed via linear programming:

minimise
$$\varepsilon$$
 subject to $a_i \ge 0$ for all $i \in P$
$$\sum_{i \in P} a_i = v(P)$$

$$\sum_{i \in C} a_i \ge v(C) - \varepsilon$$
 for all $C \subseteq P$

The Cost of Stability

Idea: If $Core(G) = \emptyset$, stabilise *G* by subsidising the grand coalition.

Modelling Assumptions

- Some external authority has an interest in a stable grand coalition.
- The supplemental payment y gets distributed among P along with v(P).

Definition

Let G = (P, v) be a cooperative game (with transferable utility).

1. For a supplemental payment $y \ge 0$, the **adjusted game** $G_y = (P, v')$ has

$$v'(C) := \begin{cases} v(P) + y & \text{if } C = P, \\ v(C) & \text{otherwise.} \end{cases}$$

2. The **cost of stability of** *G* is inf $\{y \in \mathbb{R} \mid y \geq 0 \text{ and } Core(G_y) \neq \emptyset\}$.

Computing the Cost of Stability

Example: Hospitals and X-Ray Machines

The cost of stability is y = 1.5: In G_y , we have $v'(\{1, 2, 3\}) = 6 + 1.5 = 7.5$ whence for no $C \subseteq \{1, 2, 3\}$ with |C| = 2 it would pay to deviate (as v'(C) = 5).

The cost of stability can be computed by linear programming:

minimise
$$y$$
 subject to $y \ge 0$ $a_i \ge 0$ for all $i \in P$
$$\sum_{i \in P} a_i = v(P) + y$$

$$\sum_{i \in C} a_i \ge v(C)$$
 for all $C \subseteq P$

Least Core vs. Cost of Stability

Observation

For any cooperative game *G*, the following are equivalent:

- 1. $Core(G) = \emptyset$.
- 2. The value ε of the least core is strictly positive.
- 3. The cost *y* of stability is strictly positive.

What is the relationship between the values ε and γ ?

- Least core: Punish undesired behaviour

 → a fine for leaving the grand coalition.
- Cost of stability: Encourage desired behaviour

 → a subsidy for staying in the grand coalition.

Least Core v. Cost of Stability: Examples

Let $n \ge 2$ and consider the following two games (i.e. where $P = \{1, ..., n\}$):

$$G_1 = (P, V_1)$$

$$G_2 = (P, V_2)$$

$$v_1(C) = \begin{cases} n-1 & \text{if } C \cap \{1,2\} \neq \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

$$v_2(C) = \begin{cases} 1 & \text{if } C \neq \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

$$G_2 = (P, V_2)$$

$$v_2(C) = \begin{cases} 1 & \text{if } C \neq \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

$$G_3 = (P, V_3)$$

$$v_3(C) = \begin{cases} \frac{2n-2}{n} & \text{if } C \cap \{1, 2\} \neq \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

- In both games G_1 and G_2 , the core is empty.
- The cost of stability in both games is y = n 1:

$$\mathbf{a}_1 = (n-1, n-1, 0, \dots, 0)$$
 vs. $\mathbf{a}_2 = (1, 1, 1, \dots, 1)$

- The value of the least core in G_1 is $\varepsilon_1 = \frac{n-1}{2}$, via $\left(\frac{n-1}{2}, \frac{n-1}{2}, 0, \dots, 0\right)$.
- The value of the least core in G_2 is $\varepsilon_2 = \frac{n-1}{n}$, via $\left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right)$.
- For G_3 , we have $\varepsilon_3 = \frac{n-1}{n}$ via $\mathbf{a}_3 = \left(\frac{n-1}{n}, \frac{n-1}{n}, 0, \dots, 0\right)$ and $y_3 = \frac{2n-2}{n}$ via $\mathbf{a}_3' = \left(\frac{2n-2}{n}, \frac{2n-2}{n}, 0, \dots, 0\right)$.

Solution Concept: Stable Sets

Stable Sets

Definition [von Neumann and Morgenstern, 1941]

Let G = (P, v) be a cooperative game, and let **a** and **b** be imputations for G.

- a dominates b via a coalition C with $\emptyset \subseteq C \subseteq P$, written $a \succ_C b$, iff
 - $a_i < b_i$ for all $i \in C$, and
 - $\sum_{i \in C} a_i$ ≤ v(C).
- a dominates b, written a > b, iff a dominates b via some coalition $C \subseteq P$.
- A set $S \subseteq Imp(G)$ of imputations is a **stable set of** G iff
 - Internal stability: For any two **a**, **b** \in *S*, we have **a** \not **b**.
 - External stability: For every \mathbf{b} ∈ $Imp(G) \setminus S$, there is some \mathbf{a} ∈ S with $\mathbf{a} \succ \mathbf{b}$.
- If $a_i > b_i$ for all $i \in C$, then every member of C is better off in **a** than in **b**.
- If $\sum_{i \in C} a_i \le v(C)$, then C can plausibly threaten to leave the grand coalition.
- Internal stability: No imputations need to be removed from *S*.
- External stability: No imputations can be added to S.

Stable Sets: Example

Recall Hospitals and X-Ray Machines with $P = \{1, 2, 3\}$ and

$$v(C) = \begin{cases} 6 & \text{if } C = P, \\ 5 & \text{if } |C| = 2, \\ 0 & \text{otherwise.} \end{cases}$$

$$S = \{(1, x, 5 - x) \mid x \in [0, 5]\}$$
 is a stable set of $G = (P, v)$:

- Internal stability:
 - Consider (1, x, 5 x) ∈ S and (1, y, 5 y) ∈ S.
 - If x > y, then 5 x < 5 y, thus $(1, x, 5 x) \not\downarrow_{\{2,3\}} (1, y, 5 y)$.
- External stability:
 - Consider $\mathbf{b} = (b_1, b_2, b_3) \in Imp(G) \setminus S$. Then $b_1 + b_2 + b_3 = 6$ and $b_1 \neq 1$.

 - If b_1 < 1, then min { b_2 , b_3 } ≤ 3 whence (1, 4, 1) $\succ_{\{1,2\}}$ **b** or (1, 1, 4) $\succ_{\{1,3\}}$ **b**. If b_1 > 1, then b_2 + b_3 < 5, whence we can choose **a** ∈ S such that **a** $\succ_{\{2,3\}}$ **b**.

The Core vs. Stable Sets (1)

Proposition

Let G = (P, v) be a cooperative game.

- 1. *Core*(*G*) is contained in every (if any) stable set of *G*.
- 2. If *Core*(*G*) is a stable set of *G*, then it is the only stable set of *G*.

Proof.

- 1. Let $\mathbf{a} \in Core(G)$ and $\mathbf{b} \in Imp(G)$.
 - Assume (for contradiction) that for some $C \subseteq P$, we have **b** \succ_C **a**.
 - Then $a_i > b_i$ for all i ∈ C and $\sum_{i ∈ C} b_i ≤ v(C)$.
 - But then $\sum_{i \in C} a_i < \sum_{i \in C} b_i \le v(C)$.
 - But $\mathbf{a} \in Core(G)$ means that $\sum_{i \in C} a_i \ge v(C)$. Contradiction.
 - Thus $\mathbf{b} \not\succ \mathbf{a}$ and \mathbf{a} is contained in every (if any) stable set of G.
- 2. No stable set can be a proper subset of another stable set:
 - If $S_1 \subsetneq S_2$ and both are stable then $\mathbf{b} \in S_2 \setminus S_1$ is dominated by some $\mathbf{a} \in S_1$.
 - But then $\mathbf{a} \in S_2$ and S_2 does not satisfy internal stability, contradiction.

The Core vs. Stable Sets (2)

Proposition

For any superadditive cooperative game G = (P, v), we have $Core(G) = \{ \mathbf{a} \in Imp(G) \mid \text{there is no } \mathbf{b} \in Imp(G) \text{ with } \mathbf{b} \succ \mathbf{a} \}.$

Proof.

- Direction ⊆ follows from the previous slide, so it remains to show ⊇.
- Let $\mathbf{b} \in Imp(G) \setminus Core(G)$. Then $\sum_{i \in P} b_i = v(P)$ and $b_i \ge v(\{i\})$ for all $i \in P$.
- Since **b** \notin Core(G), there is a $C \subseteq P$ such that $v(C) > \sum_{i \in C} b_i$, whence $C \neq \emptyset$.
- Denote $\delta := v(C) \sum_{i \in C} b_i$ and define $\mathbf{a} \in Imp(G)$ with $\mathbf{a} \succ_C \mathbf{b}$ by setting

$$a_i := \begin{cases} b_i + \frac{1}{|C|} \cdot \delta & \text{if } i \in C, \\ b_i - \frac{d_i}{\sum_{j \in P \setminus C} d_j} \cdot \delta & \text{otherwise,} \end{cases} \text{ where } d_j := b_j - v(\{j\}) \text{ for each } j \in P \setminus C.$$

• Note that $\sum_{j \in P \setminus C} d_j = \sum_{j \in P \setminus C} b_j - \sum_{j \in P \setminus C} v(\{j\}) \ge \delta = v(C) - \sum_{i \in C} b_i$ because v is superadditive: $\sum_{j \in P \setminus C} b_j + \sum_{i \in C} b_i = v(P) \ge v(C) + \sum_{j \in P \setminus C} v(\{j\})$.

The Core vs. Stable Sets: Example

$$G^{1}$$

$$P = \{1, 2, 3\}$$

$$v(C) = \begin{cases} 1 & \text{if } 1 \in C \text{ and } |C| \ge 2, \\ 0 & \text{otherwise.} \end{cases}$$

- The core of G^1 , $Core(G^1) = \{(1, 0, 0)\}$, is not a stable set of G:
- We have $(1,0,0) \neq (0,0.5,0.5)$ since $(1,0,0) \neq_{\{1\}} (0,0.5,0.5)$.
- → The core does not necessarily satisfy external stability.
- One stable set of G^1 is $S_{1,2} = \{(x, 1-x, 0) \mid x \in [0, 1]\}$:
 - If (x, 1-x, 0), $(y, 1-y, 0) \in S_{1,2}$, then x > y would imply 1-x < 1-y.
 - If $(x, y, z) \in Imp(G^1)$ with z > 0, then $(x + \frac{z}{2}, y + \frac{z}{2}, 0) >_{\{1,2\}} (x, y, z)$.
- Likewise, $S_{1,3} = \{(x, 0, 1 x) \mid x \in [0, 1]\}$ is a stable set of G^1 .

Exercise: Find additional stable sets, if any.

Convex Games

Definition

1. A function $v: 2^P \to \mathbb{R}^+$ is **supermodular** iff for all $C, D \subseteq P$:

$$v(C \cup D) + v(C \cap D) \ge v(C) + v(D)$$

2. A cooperative game G = (P, v) is **convex** iff v is supermodular.

Observation

Function $v: 2^P \to \mathbb{R}^+$ is supermodular iff for all $C \subseteq D \subseteq P$ and all $i \in P \setminus D$:

$$v(C \cup \{i\}) - v(C) \le v(D \cup \{i\}) - v(D) \tag{1}$$

where $v(C \cup \{i\}) - v(C)$ is player *i*'s **marginal contribution** to coalition *C*.

- A supermodular function is superadditive (via $\nu(\emptyset) = 0$),
- but not vice versa.

Cores of Convex Games (1)

Theorem [Shapley, 1971]

Every convex game has a nonempty core.

Proof (1/2).

- Given G = (P, v) with $P = \{1, ..., n\}$, we construct $\mathbf{a} = (a_1, ..., a_n) \in Core(G)$.
- Define $a_1 := v(\{1\}), a_2 := v(\{1,2\}) v(\{1\}), \dots, a_n := v(P) v(P \setminus \{n\}).$
- Payoff vector **a** is individually rational: For all $i \in P$, inequality (1) yields

$$a_i = v(\{1, \ldots, i\}) - v(\{1, \ldots, i-1\}) \ge v(\{i\}) - v(\emptyset) = v(\{i\})$$

a is also efficient:

$$\sum_{i \in P} a_i = v(\{1\}) + v(\{1,2\}) - v(\{1\}) + \ldots + v(P) - v(P \setminus \{n\}) = v(P)$$

• Thus $\mathbf{a} \in Imp(G)$. It remains to show $\mathbf{a} \in Core(G)$.

Cores of Convex Games (2)

Theorem [Shapley, 1971]

Every convex game has a nonempty core.

Proof (2/2).

- Consider any coalition $C = \{i, j, ..., k\}$ with $1 \le i < j < ... < k \le n$.
- We have $v(C) = v(\{i\}) v(\emptyset) + v(\{i,j\}) v(\{i\}) + ... + v(C) v(C \setminus \{k\})$.
- Due to *v* being supermodular, inequality (1) yields

$$v(\{i\}) - v(\emptyset) \le v(\{1, ..., i\}) - v(\{1, ..., i-1\}) = a_i$$

$$v(\{i, j\}) - v(\{i\}) \le v(\{1, ..., j\}) - v(\{1, ..., j-1\}) = a_j$$

$$\vdots$$

$$v(C) - v(C \setminus \{k\}) \le v(\{1, ..., k\}) - v(\{1, ..., k-1\}) = a_k$$

• Therefore $v(C) \le a_i + a_j + \ldots + a_k$ and since C was arbitrary, $\mathbf{a} \in Core(G)$. \square

Every convex game G = (P, v) also has a unique stable set S = Core(G).

Reprise: Solution Concepts

We have seen the following solution concepts for cooperative games:

- core [Gillies, 1959]
 - A unique set of imputations, but may be empty.
- ε-core [Shapley and Shubik, 1966]
 - A unique set of imputations, (non-)empty depending on $\varepsilon \in \mathbb{R}$.
- stable sets [von Neumann and Morgenstern, 1941] (called "solutions")
 - There can be zero, one, or more stable sets; every stable set is non-empty.

There are further solution concepts for cooperative games:

- Shapley value [Shapley, 1953]
 - A unique payoff vector that is efficient, symmetric, and additive.
 - For superadditive games, it is also individually rational (thus an imputation).
- kernel [Davis and Maschler, 1965]
 - A set of imputations stating that no player has "bargaining power" over another.
- nucleolus [Schmeidler, 1969]
 - A unique payoff vector that is contained in both core and kernel.

Conclusion

Summary

- In **cooperative** games, players *P* form explicit **coalitions** $C \subseteq P$.
- Coalitions receive payoffs, which are distributed among its members.
- We concentrate on **superadditive** games, where disjoint coalitions can never decrease their payoffs by joining together.
- Of particular interest is the **grand coalition** $\{P\}$ and whether it is *stable*.
- An imputation is an outcome that is efficient and individually rational.
- Various solution concepts formalise stability of the grand coalition:
 - the **core** contains all imputations where no coalition has an incentive to leave;
 - the ε -core disincentivises leaving the grand coalition via a fine of ε ;
 - the **cost of stability** incentivises staying in the grand coalition;
 - stable sets are sets of imputations that do not dominate each other and dominate every imputation not in the set.
- A **convex** game has a non-empty core that equals its unique stable set.

