

COMPLEXITY THEORY

Lecture 7: NP Completeness

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach Knowledge-Based Systems

TU Dresden, 6th Nov 2023

More recent versions of infi since deck might be available. For the most current version of this course, see https://iccl.inf.tu-dresden.de/web/Complexity_Theory/

Are NP Problems Hard?

The Structure of NP

Idea: polynomial many-one reductions define an order on problems

NP-Hardness and NP-Completeness

Definition 7.1:

- (1) A language **H** is NP-hard, if $L \leq_p H$ for every language $L \in NP$.
- (2) A language C is NP-complete, if C is NP-hard and $C \in NP$.

NP-Completeness

- NP-complete problems are the hardest problems in NP.
- They constitute the maximal class (wrt. \leq_p) of problems within NP.
- They are all equally difficult an efficient solution to one would solve them all.

Theorem 7.2: If **L** is NP-hard and $\mathbf{L} \leq_p \mathbf{L}'$, then \mathbf{L}' is NP-hard as well.

Proving NP-Completeness

How to show NP-completeness

To show that ${\bf L}$ is NP-complete, we must show that every language in NP can be reduced to ${\bf L}$ in polynomial time.

Alternative approach

Given an NP-complete language ${\bf C}$, we can show that another language ${\bf L}$ is NP-complete just by showing that

- **C** ≤_p **L**
- $L \in NP$

However: Is there any NP-complete problem at all?

Yes, thousands of them!

The Cook-Levin Theorem

The Cook-Levin Theorem

Theorem 7.3 (Cook 1970, Levin 1973): SAT is NP-complete.

Proof:

(1) SAT $\in NP$

Take satisfying assignments as polynomial certificates for the satisfiability of a formula.

(2) SAT is hard for NP

Proof by reduction from any word problem of some polynomially time-bounded NTM.

Proving the Cook-Levin Theorem: Main Objective

Given:

- a polynomial *p*
- a *p*-time bounded 1-tape NTM $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$
- a word w

Intended reduction: Define a propositional logic formula $\varphi_{p,\mathcal{M},w}$ such that

- (1) $\varphi_{p,\mathcal{M},w}$ is satisfiable if and only if \mathcal{M} accepts w in time p(|w|)
- (2) $\varphi_{p,\mathcal{M},w}$ is polynomial with respect to |w|

Proving the Cook-Levin Theorem: Rationale

Given: polynomial p, NTM \mathcal{M} , word w

Intended reduction: Define a propositional logic formula $\varphi_{p,\mathcal{M},w}$ such that

- (1) $\varphi_{p,\mathcal{M},w}$ is satisfiable if and only if \mathcal{M} accepts w in time p(|w|)
- (2) $\varphi_{p,\mathcal{M},w}$ is polynomial with respect to |w|

Why does this prove NP-hardness of SAT?

Because it leads to a reduction $L \leq_p Sat$ for every language $L \in NP$:

- If $L \in NP$, then there is an NTM \mathcal{M} that is time-bounded by some polynomial p, such that $L(\mathcal{M}) = L$.
- The function $f_{\mathcal{M},p}: w \mapsto \varphi_{p,\mathcal{M},w}$ shows $\mathbf{L} \leq_p \mathbf{Sat}$:
 - -f is a many-one reduction due to item (1) above
 - -f is polynomial due to item (2) above

Note: We do not claim the transformation $\langle p, \mathcal{M}, w \rangle \mapsto \varphi_{p,\mathcal{M},w}$ to be polynomial in the size of p, \mathcal{M} , and w. Indeed, this would not hold true under reasonable encodings of p. But being (multi-)exponential in p is not a concern since the many-one reductions $f_{\mathcal{M},p}$ each use a fixed p and only care about the asymptotic complexity as w grows.

Proving Cook-Levin: Encoding Configurations

Idea: Use logic to describe a run of \mathcal{M} on input w by a formula.

Note: On input w of length n := |w|, every computation path of \mathcal{M} is of length $\leq p(n)$ and uses $\leq p(n)$ tape cells.

Use propositional variables for describing configurations:

 Q_q for each $q \in Q$ means " \mathcal{M} is in state $q \in Q$ "

 P_i for each $0 \le i < p(n)$ means "the head is at Position i"

 $S_{a,i}$ for each $a \in \Gamma$ and $0 \le i < p(n)$ means "tape cell i contains Symbol a"

Represent configuration $(q, p, a_0 \dots a_{p(n)})$ by truth assignments to variables from the set

$$\overline{C} := \{Q_q, P_i, S_{a,i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \le i < p(n)\}$$

using the truth assignment β defined as

$$\beta(Q_s) := \begin{cases} 1 & s = q \\ 0 & s \neq q \end{cases} \qquad \beta(P_i) := \begin{cases} 1 & i = p \\ 0 & i \neq p \end{cases} \qquad \beta(S_{a,i}) := \begin{cases} 1 & a = a_i \\ 0 & a \neq a_i \end{cases}$$

Proving Cook-Levin: Validating Configurations

We define a formula $Conf(\overline{C})$ for a set of configuration variables

$$\overline{C} = \{Q_q, P_i, S_{a,i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \le i < p(n)\}$$

as follows:

$$\begin{aligned} \mathsf{Conf}(\overline{C}) := \\ & \bigvee_{q \in \mathcal{Q}} \left(Q_q \land \bigwedge_{q' \neq q} \neg Q_{q'} \right) \\ & \land \bigvee_{p < p(n)} \left(P_p \land \bigwedge_{p' \neq p} \neg P_{p'} \right) \\ & \land \bigwedge_{0 \leq i < p(n)} \bigvee_{a \in \Gamma} \left(S_{a,i} \land \bigwedge_{b \neq a \in \Gamma} \neg S_{b,i} \right) \end{aligned}$$

"the assignment is a valid configuration":

"TM in exactly one state $q \in Q$ "

"head in exactly one position $p \le p(n)$ "

"exactly one $a \in \Gamma$ in each cell"

Proving Cook-Levin: Validating Configurations

For an assignment β defined on variables in \overline{C} define

$$\operatorname{conf}(\overline{C},\beta) := \left\{ \begin{aligned} &\beta(Q_q) = 1, \\ (q,p,w_0 \dots w_{p(n)}) \mid & \beta(P_p) = 1, \\ &\beta(S_{w_i,i}) = 1 \text{ for all } 0 \leq i < p(n) \end{aligned} \right\}$$

Note: β may be defined on other variables besides those in \overline{C} .

Lemma 7.4: If β satisfies $\operatorname{Conf}(\overline{C})$ then $|\operatorname{conf}(\overline{C},\beta)|=1$. We can therefore write $\operatorname{conf}(\overline{C},\beta)=(q,p,w)$ to simplify notation.

Observations:

- $conf(\overline{C}, \beta)$ is a potential configuration of \mathcal{M} , but it may not be reachable from the start configuration of \mathcal{M} on input w.
- Conversely, every configuration $(q, p, w_1 \dots w_{p(n)})$ induces a satisfying assignment β or which conf $(\overline{C}, \beta) = (q, p, w_1 \dots w_{p(n)})$.

Proving Cook-Levin: Transitions Between Configurations

Consider the following formula $\text{Next}(\overline{C}, \overline{C}')$ defined as

$$\mathsf{Conf}(\overline{C}) \land \mathsf{Conf}(\overline{C}') \land \mathsf{NoChange}(\overline{C}, \overline{C}') \land \mathsf{Change}(\overline{C}, \overline{C}').$$

$$\mathsf{NoChange} := \bigvee_{0 \leq p < p(n)} \left(P_p \land \bigwedge_{i \neq p, a \in \Gamma} (S_{a,i} \to S'_{a,i}) \right)$$

$$\mathsf{Change} := \bigvee_{0 \leq p < p(n)} \left(P_p \wedge \bigvee_{q \in Q \atop a \in \Gamma} \left(Q_q \wedge S_{a,p} \wedge \bigvee_{(q',b,D) \in \delta(q,a)} (Q'_{q'} \wedge S'_{b,p} \wedge P'_{D(p)}) \right) \right)$$

where D(p) is the position reached by moving in direction D from p.

Lemma 7.5: For any assignment β defined on $\overline{C} \cup \overline{C}'$:

$$\beta$$
 satisfies Next $(\overline{C}, \overline{C}')$ if and only if $\operatorname{conf}(\overline{C}, \beta) \vdash_{\mathcal{M}} \operatorname{conf}(\overline{C}', \beta)$

Proving Cook-Levin: Start and End

Defined so far:

- $Conf(\overline{C})$: \overline{C} describes a potential configuration
- $\operatorname{Next}(\overline{C}, \overline{C}')$: $\operatorname{conf}(\overline{C}, \beta) \vdash_{\mathcal{M}} \operatorname{conf}(\overline{C}', \beta)$

Start configuration: For an input word $w = w_0 \cdots w_{n-1} \in \Sigma^*$, we define:

$$\operatorname{Start}_{\mathcal{M},w}(\overline{C}) := \operatorname{Conf}(\overline{C}) \wedge Q_{q_0} \wedge P_0 \wedge \bigwedge_{i=0}^{n-1} S_{w_i,i} \wedge \bigwedge_{i=n}^{p(n)-1} S_{\omega,i}$$

Then an assignment β satisfies $\operatorname{Start}_{\mathcal{M},w}(\overline{C})$ if and only if \overline{C} represents the start configuration of \mathcal{M} on input w.

Accepting stop configuration:

$$\mathsf{Acc} ext{-}\mathsf{Conf}(\overline{C}) := \mathsf{Conf}(\overline{C}) \land \mathcal{Q}_{q_{\mathsf{accept}}}$$

Then an assignment β satisfies $Acc\text{-Conf}(\overline{C})$ if and only if \overline{C} represents an accepting configuration of \mathcal{M} .

Proving Cook-Levin: Adding Time

Since \mathcal{M} is p-time bounded, each run may contain up to p(n) steps \rightarrow we need one set of configuration variables for each

Propositional variables:

 $Q_{q,t}$ for all $q \in Q$, $0 \le t \le p(n)$ means "at time t, \mathcal{M} is in state $q \in Q$ " $P_{i,t}$ for all $0 \le i, t \le p(n)$ means "at time t, the head is at position i" $S_{a,i,t}$ for all $a \in \Gamma$ and $0 \le i, t \le p(n)$ means "at time t, tape cell i contains symbol a"

Notation:

$$\overline{C}_t := \{Q_{q,t}, P_{i,t}, S_{a,i,t} \mid q \in Q, 0 \le i \le p(n), a \in \Gamma\}$$

Proving Cook-Levin: The Formula

Given:

- a polynomial p
- a *p*-time bounded 1-tape NTM $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$
- a word w

We define the formula $\varphi_{p,\mathcal{M},w}$ as follows:

$$\varphi_{p,\mathcal{M},w} := \mathsf{Start}_{\mathcal{M},w}(\overline{C}_0) \wedge \bigvee_{0 \leq t \leq p(n)} \left(\mathsf{Acc\text{-}Conf}(\overline{C}_t) \wedge \bigwedge_{0 \leq i < t} \mathsf{Next}(\overline{C}_i, \overline{C}_{i+1}) \right)$$

" C_0 encodes the start configuration" and, for some polynomial time t:

" \mathcal{M} accepts after t steps" and " $\overline{C}_0, ..., \overline{C}_t$ encode a computation path"

Lemma 7.6: $\varphi_{p,\mathcal{M},w}$ is satisfiable if and only if \mathcal{M} accepts w in time p(|w|).

Note that an accepting or rejecting stop configuration has no successor.

Lemma 7.7: The size of $\varphi_{p,\mathcal{M},w}$ is polynomial in |w|.

The Cook-Levin Theorem

Theorem 7.3 (Cook 1970, Levin 1973): SAT is NP-complete.

Proof:

(1) SAT $\in NP$

Take satisfying assignments as polynomial certificates for the satisfiability of a formula.

(2) SAT is hard for NP

Proof by reduction from any word problem of some polynomially time-bounded NTM.

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023

Further NP-complete Problems

Towards More NP-Complete Problems

Starting with **S**_{AT}, one can readily show more problems **P** to be NP-complete, each time performing two steps:

- (1) Show that $P \in NP$
- (2) Find a known NP-complete problem P' and reduce $P' \leq_p P$

Thousands of problems have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

NP-Completeness of **CLIQUE**

Theorem 7.8: CLIQUE is NP-complete.

CLIQUE: Given G, k, does G contain a clique of order k?

Proof:

(1) CLIQUE $\in NP$

Take the vertex set of a clique of order k as a certificate.

(2) **CLIQUE** is NP-hard

We show **SAT** \leq_p **CLIQUE**

To every CNF-formula φ assign a graph G_{φ} and a number k_{φ} such that

 φ satisfiable $\iff G_{\varphi}$ contains clique of order k_{φ}

$\mathsf{Sat} \leq_p \mathsf{Clique}$

To every CNF-formula φ assign a graph G_{φ} and a number k_{φ} such that

 φ satisfiable if and only if G_{φ} contains clique of order k_{φ}

Given $\varphi = C_1 \wedge \cdots \wedge C_k$:

- Set $k_{\omega} := k$
- For each clause C_i and literal $L \in C_i$ add a vertex $v_{L,i}$
- Add edge $\{v_{L,i}, v_{K,i}\}$ if $i \neq j$ and $L \wedge K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)

Example 7.9: $\underbrace{(X \vee Y \vee \neg Z)}_{C_1} \wedge \underbrace{(X \vee \neg Y)}_{C_2} \wedge \underbrace{(\neg X \vee Z)}_{C_3}$

$\mathsf{Sat} \leq_p \mathsf{Clique}$

To every CNF-formula φ assign a graph G_{φ} and a number k_{φ} such that

arphi satisfiable if and only if G_{arphi} contains clique of order k_{arphi}

Given $\varphi = C_1 \wedge \cdots \wedge C_k$:

- Set $k_{\varphi} := k$
- For each clause C_i and literal $L \in C_i$ add a vertex $v_{L,i}$
- Add edge $\{v_{L,j}, v_{K,i}\}$ if $i \neq j$ and $L \wedge K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)

Correctness:

 G_{φ} has clique of order k iff φ is satisfiable.

Complexity:

The reduction is clearly computable in polynomial time.

NP-Completeness of Independent Set

INDEPENDENT SET

Input: An undirected graph G and a natural number k

Problem: Does G contain k vertices that share no edges (in-

dependent set)?

Theorem 7.10: Independent Set is NP-complete.

Proof: Hardness by reduction CLIQUE \leq_p INDEPENDENT SET:

- Given G := (V, E) construct $\overline{G} := (V, \{\{u, v\} \mid \{u, v\} \notin E \text{ and } u \neq v\})$
- A set $X \subseteq V$ induces a clique in G iff X induces an independent set in \overline{G} .
- Reduction: G has a clique of order k iff \overline{G} has an independent set of order k.

П

Summary and Outlook

NP-complete problems are the hardest in NP

Polynomial runs of NTMs can be described in propositional logic (Cook-Levin)

CLIQUE and INDEPENDENT SET are also NP-complete

What's next?

- More examples of problems
- The limits of NP
- Space complexities