TECHNISCHE .
UNVERSITAT @ it
DRESDEN e °

COMPLEXITY THEORY

Lecture 7: NP Completeness

Markus Krotzsch, Stephan Mennicke, Lukas Gerlach

Knowledge-Based Systems

TU Dresden, 6th Nov 2023

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2023)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Stephan_Mennicke
https://iccl.inf.tu-dresden.de/web/Lukas Gerlach
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

Are NP Problems Hard?

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 3 of 25

The Structure of NP

Idea: polynomial many-one reductions define an order on problems

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 4 of 25

NP-Hardness and NP-Completeness

Definition 7.1:
(1) Alanguage H is NP-hard, if L <, H for every language L € NP.
(2) A language C is NP-complete, if C is NP-hard and C € NP.

NP-Completeness
® NP-complete problems are the hardest problems in NP.
® They constitute the maximal class (wrt. <,) of problems within NP.
® They are all equally difficult — an efficient solution to one would solve them all.

Fheorem 7.2: If Lis NP-hard and L <, L', then L’ is NP-hard as well. \

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 5 of 25

Proving NP-Completeness

How to show NP-completeness

To show that L is NP-complete, we must show that every language in NP can be
reduced to L in polynomial time.

Alternative approach

Given an NP-complete language C, we can show that another language L is
NP-complete just by showing that

eCg,L
°* LeNP

However: Is there any NP-complete problem at all?

Yes, thousands of them!

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 6 of 25

The Cook-Levin Theorem

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 7 of 25

The Cook-Levin Theorem

Fheorem 7.3 (Cook 1970, Levin 1973): Sar is NP-complete. \

Proof:
(1) Sare NP

Take satisfying assignments as polynomial certificates for the satisfiability of a
formula.

(2) Saris hard for NP

Proof by reduction from any word problem of some polynomially time-bounded
NTM.

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 8 of 25

Proving the Cook-Levin Theorem: Main Objective

Given:
® a polynomial p
® ap-time bounded 1-tape NTM M = (O, X, T, 6, g0, Gaccept)

® aword w

Intended reduction: Define a propositional logic formula ¢, s, such that
(1) @p,m,w is satisfiable if and only if M accepts w in time p(jwl)
(2) @p,m,w is polynomial with respect to [w|

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory

slide 9 of 25

Proving the Cook-Levin Theorem: Rationale
Given: polynomial p, NTM M, word w

Intended reduction: Define a propositional logic formula ¢, 4, such that
(1) @p,m,w is satisfiable if and only if M accepts w in time p(jwl)
(2) @p, . is polynomial with respect to [w|

Why does this prove NP-hardness of Sar?

Because it leads to a reduction L <, Sar for every language L € NP:
e [fL € NP, then there is an NTM M that is time-bounded by some polynomial p,
such that L(M) = L.
® The function fa, : w = @, pm,w Shows L <, Sar:
— fis a many-one reduction due to item (1) above
— fis polynomial due to item (2) above

Note: We do not claim the transformation (p, M, w) = ¢, ., to be polynomial in the size of p, M,
and w. Indeed, this would not hold true under reasonable encodings of p. But being
(multi-)exponential in p is not a concern since the many-one reductions fj, each use a fixed p
and only care about the asymptotic complexity as w grows.

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 10 of 25

Proving Cook-Levin: Encoding Configurations
Idea: Use logic to describe a run of M on input w by a formula.

Note: On input w of length n := |w|, every computation path of M is of length < p(n) and
uses < p(n) tape cells.

Use propositional variables for describing configurations:
0, foreach g € O means “M s in state g € 0”
P; for each 0 <i < p(n) means “the head is at Position i”

Sq.; foreach a eI"and 0 <i < p(n) means “tape cell i contains Symbol a”

Represent configuration (¢, p, ay . .. a,)) by truth assignments to variables from the set
C:={0y, PiySuilg€Q, acl, 0<i<pm)
using the truth assignment S defined as

s=q i=p

l

p0) =1 Lana
v 0 0 a#a

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 11 of 25

1
P,’ = Sa,‘ =
BP)) {0 B(Sa,) {

Proving Cook-Levin: Validating Configurations

We define a formula Conf(C) for a set of configuration variables

C={Qy, Pi,SailqeQ, acl, 0<i<pn)

as follows:

Conf(Z‘) = “the assignment is a valid configuration”:
\/(Q,, A A ﬁQq,) “TM in exactly one state g € Q"

q€0 q'#q
A \/ (Pp A /\ ﬂPp,) “head in exactly one position p < p(n)”

p<p(n) P'#p
A /\ \/(Su_,,» A /\) “exactly one a € I' in each cell’

0<i<p(n) acl’ b#ael’

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 12 of 25

Proving Cook-Levin: Validating Configurations

For an assignment 3 defined on variables in C define

BQy) =1,
Conf(aﬁ) =9, p,wo - W) | B(P,) =1,
B(S,,) = 1forall0 <i< p(n)
Note: 8 may be defined on other variables besides those in C.

Lemma 7.4: If 3 satisfies Conf(C) then |conf(C,B)| = 1.
We can therefore write conf(C,) = (¢, p, w) to simplify notation.

Observations:

e conf(C,p) is a potential configuration of M, but it may not be reachable from the
start configuration of M on input w.

® Conversely, every configuration (¢, p, wi ... wy) induces a satisfying assignment 8
or which conf(C,B) = (g, p, w1 ... Wym))-

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 13 of 25

Proving Cook-Levin: Transitions Between Configurations

Consider the following formula Next(C, C') defined as
Conf(C) A Conf(C') A NoChange(C, C') A Change(C, C).

NoChange := \/ P A /\ (Sa,—>S’

0<p<p(n) i#p,ael’
Change:= \/ (P, A\ (QASepn \/ @y AS,, APY,)
0<p<p(n) a<Q (¢’ ,b,D)ed(q,a)

ael’

where D(p) is the position reached by moving in direction D from p.

Lemma 7.5: For any assignment 3 defined on C U C':

B satisfies Next(C,C') if and only if conf(C,) Fp(conf(C ,)

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 14 of 25

Proving Cook-Levin: Start and End

Defined so far:
¢ Conf(C): C describes a potential configuration
* Next(C, C'): conf(C, B) F o conf(C, B)

Start configuration: For an input word w = wy - - - w,_; € £*, we define:
Starty,,(C) := Conf(C) A Qgy A Py A NI Sui AN S

Then an assignment S satisfies Start,,(C) if and only if C represents the start
configuration of M on input w.
Accepting stop configuration:

Acc-Conf(C) := Conf(C) A Oy
Then an assignment g satisfies Acc-Conf(C) if and only if C represents an accepting
configuration of M.

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 15 of 25

Proving Cook-Levin: Adding Time

Since M is p-time bounded, each run may contain up to p(n) steps
~> we need one set of configuration variables for each

Propositional variables:
0, forallg e Q,0<1<pn) means “at time ¢, M is in state g € 0"
P;, forall 0 <i,t < p(n) means “at time ¢, the head is at position i~

Saiy forallael and 0 < i, < p(n) means “at time ¢, tape cell i contains symbol «’

Notation:
Ct = {Qq7t7 Pi,h Stl,i,t | qE€ Q70 <i< p(n)’ ac F}

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 16 of 25

Proving Cook-Levin: The Formula
Given:
® a polynomial p
® ap-time bounded 1-tape NTM M = (Q,Z,T", 6, 90, Gaccept)

* awordw
We define the formula ¢, A, as follows:
@p. o = Startp(Co) A \/ [Acc-Conf(Cy A /\ Next(E‘,-,E‘,»H)]
0<t<p(n) 0<i<t

“Cy encodes the start configuration” and, for some polynomial time 7:
“M accepts after r steps” and “Cy, ..., C;, encode a computation path”

Femma 7.6: ¢, M, is satisfiable if and only if M accepts w in time p(|w]). \

Note that an accepting or rejecting stop configuration has no successor.

Femma 7.7: The size of @, A1, is polynomial in [w|. \

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 17 of 25

The Cook-Levin Theorem

Fheorem 7.3 (Cook 1970, Levin 1973): Sar is NP-complete. \

Proof:
(1) Sare NP

Take satisfying assignments as polynomial certificates for the satisfiability of a
formula.

(2) Saris hard for NP

Proof by reduction from any word problem of some polynomially time-bounded
NTM.

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 18 of 25

Further NP-complete Problems

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 19 of 25

Towards More NP-Complete Problems

Starting with Sar, one can readily show more problems P to be NP-complete, each time
performing two steps:

(1) Show that P € NP
(2) Find a known NP-complete problem P" and reduce P’ <, P

Thousands of problems have now been shown to be NP-complete.
(See Garey and Johnson for an early survey)
In this course:
<, Cuaue <p INDEPENDENT SET
Sat <, 3-Sar <p DIR. HamiLTONIAN PATH

<, SueseT Sum <, KNapsack

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 20 of 25

NP-Completeness of Criaue

\ Theorem 7.8: Cuaue is NP-complete. \

Cuiaue: Given G, k, does G contain a clique of order £?

Proof:
(1) Cuique € NP

Take the vertex set of a clique of order k as a certificate.

(2) Cuaue is NP-hard

We show Sar <, CLiaue

To every CNF-formula ¢ assign a graph G, and a number k, such that

¢ satisfiable <= G, contains clique of order k,

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 21 of 25

Sar <, CLique

To every CNF-formula ¢ assign a graph G, and a number k&, such that
¢ satisfiable if and only if G, contains clique of order k,

Givengp =Cy A~ AN Cy:
® Setk, =k
e For each clause C; and literal L € C; add a vertex v, ;
® Addedge {v.j, vk} ifi # jand L A K is satisfiable (that is: if L # -K and —L # K)

VX1 Yyl V-z1
Example 7.9:
XVYV-Z)ANXVaY)AGXVZ
N — —_— —_— Vx,2 e V-x3
C1 CZ C}
Vay 2 e Vz3

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 22 of 25

Sar <, CLique

To every CNF-formula ¢ assign a graph G, and a number k&, such that
¢ satisfiable if and only if G, contains clique of order k,

Givengp =Cy A~ AN Cy:
® Setk, =k
e For each clause C; and literal L € C; add a vertex v, ;
® Addedge {v.j, vk} ifi # jand L A K is satisfiable (that is: if L # -K and —L # K)

Correctness:
G, has clique of order « iff ¢ is satisfiable.

Complexity:
The reduction is clearly computable in polynomial time.

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 23 of 25

NP-Completeness of INDEPENDENT SET

INDEPENDENT SET
Input: An undirected graph G and a natural number k&

Problem: Does G contain k vertices that share no edges (in-
dependent set)?

Fheorem 7.10: InoepenpenT SET is NP-complete. \

Proof: Hardness by reduction Cuique <,, INDEPENDENT SET:
® Given G := (V, E) construct G := (V. {{u, v} | {u,v} ¢ E and u # v})
e AsetX C Vinduces a clique in G iff X induces an independent set in G.
* Reduction: G has a clique of order k iff G has an independent set of order .

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 24 of 25

Summary and Outlook

NP-complete problems are the hardest in NP
Polynomial runs of NTMs can be described in propositional logic (Cook-Levin)

Cuiaue and InbereNDENT SET are also NP-complete

What’s next?
® More examples of problems
® The limits of NP
® Space complexities

Markus Krétzsch, Stephan Mennicke, Lukas Gerlach; 6th Nov 2023 Complexity Theory slide 25 of 25

	NP Completeness
	Are NP Problems Hard?
	The Cook-Levin Theorem
	Further NP-complete Problems

