Finite and algorithmic model theory (Dresden, Winter 22/23): Exercises 2 (27.10.22 13:00)

- 1. Show that the random graph contains as a subgraph every finite graph.
- 2. Prove that $\mu_{\infty}(\sigma_{s,t}) = 1$ holds for all extension axioms $\sigma_{s,t}$.¹
- 3. Show that the presence of constants in the signature spoils the 0–1 law of FO.
- 4. Show that the Second Order Logic does not have the 0–1 law.²
- 5. Alternative definition of the random graph.³ Consider a countable graph G whose universe is the set of primes congruent to 1 modulo 4. Put an edge between p and q if p is a quadratic residue modulo q. Prove that G is isomorphic to the random graph.
- 6. Yet another alternative definition of the random graph.⁴ We define the set HF of *heriditarily finite sets* as follows. The empty set \emptyset is in HF and if a_1, \ldots, a_k are in HF (for any $k \in \mathbb{N}$) then $\{a_1, \ldots, a_k\} \in$ HF. Consider a countable graph G whose domain is HF and we put the edge between two nodes u, v iff $u \in v$ or $v \in u$. Prove that G is isomorphic to the random graph.
- 7. Read Section 5.3 from [Grädel's notes] and sketch the proof that FO has 0–1 law for arbitrary purely relational symbols.
- 8. Prove that it is decidable to check for a given $\varphi \in \mathsf{FO}[\{E\}]$ if φ is almost surely true.⁵

¹Hint: Present the proof of Lemma 4.7 from [Grädel's notes]

²Hint: Express even!

³Difficult?

⁴Difficult?

⁵Employ the random graph and the fact that the random graph satisfies φ iff φ is almost surely true.