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Abstract. Given a finite set C := {C1,...,Cnr} of description logic con-
cepts, we are interested in computing the subsumption hierarchy of all
least common subsumers of subsets of C as well as the hierarchy of all
conjunctions of subsets of C. These hierarchies can be used to support
the bottom-up construction of description logic knowledge bases. The
point is to compute the first hierarchy without having to compute the
least common subsumer for all subsets of C, and the second hierarchy
without having to check all possible pairs of such conjunctions explic-
itly for subsumption. We will show that methods from formal concept
analysis developed for computing concept lattices can be employed for
this purpose.

1 Introduction

The notion of a concept as a collection of objects sharing certain properties is
fundamental to both formal concept analysis (FCA) [19] and description logics
(DL) [6]. However, the ways concepts are obtained and described differ sig-
nificantly between these two research areas. In DL, the relevant concepts of the
application domain (its terminology) are formalized by concept descriptions, i.e.,
expressions that are built from atomic concepts (unary predicates) and atomic
roles (binary predicates) using the concept constructors provided by the DL lan-
guage. In a second step, these concept descriptions together with the roles are
used to specify properties of objects occurring in the domain. In FCA, one starts
with a formal context, which (in its simplest form) specifies which (atomic) prop-
erties are satisfied by the objects. A formal concept of such a context is a pair
consisting of a set of objects (the extent) and a set of properties (the intent)
such that the intent consists of exactly those properties that the objects in the
extent have in common, and the extent consists of exactly those objects that
share all the properties in the intent.

There are several differences between these approaches. First, in FCA one
starts with a complete (but simple) extensional description of a domain, and
then derives the formal concepts of this specific domain, which provide a useful
structuring of the domain. In DL, the (intensional) definition of a concept is
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given independently of a specific domain (interpretation), and the description of
the objects is only partial. Second, in FCA the properties are atomic, and the
intensional description of a formal concept (by its intent) is just a conjunction of
such properties. DLs usually provide a rich language for the intensional definition
of concepts, which can be seen as an expressive, yet decidable sublanguage of
first-order predicate logic.

There have been several attempts toward bridging this gap between FCA and
DL. For example, researchers from the FCA community have extended FCA to
incorporate more complex properties [39,31,30,33]. The present paper is con-
cerned with bridging the gap from the other direction. We will describe how tools
from FCA can be used to support the bottom-up construction of DL knowledge
bases, as introduced in [8,9]: instead of directly defining a new concept, the
knowledge engineer introduces several typical examples as objects, which are
then automatically generalized into a concept description by the system. This
description is offered to the knowledge engineer as a possible candidate for a
definition of the concept. The task of computing such a concept description can
be split into two subtasks: computing the most specific concepts of the given
objects, and then computing the least common subsumer of these concepts. The
most specific concept (msc) of an object o (the least common subsumer (lcs)
of concept descriptions C1,...,C},) is the most specific concept description C
expressible in the given DL language that has o as an instance (that subsumes
Cy,...,Cy). The problem of computing the lcs and (to a more limited extent)
the msc has already been investigated in the literature [12,15,8,9, 25,24, 23,4, 3,
2]. Here, we will address two problems that occur in the context of the bottom-up
approach.

First, the methods for computing the least common subsumer are restricted
to rather inexpressive descriptions logics not allowing for disjunction (and thus
not allowing for full negation). In fact, for languages with disjunction, the lcs of
a collection of concepts is just their disjunction, and nothing new can be learned
from building it. In contrast, for languages without disjunction, the lcs extracts
the “commonalities” of the given collection of concepts. Modern DL systems like
FaCT [22] and RACER [21] are based on very expressive DLs, and there exist
large knowledge bases that use this expressive power and can be processed by
these systems [32,36,20]. In order to allow the user to re-use concepts defined
in such existing knowledge bases and still support the user during the definition
of new concepts with the bottom-up approach sketched above, we propose the
following extended bottom-up approach. There is a (background) terminology 7
defined in an expressive DL Lo. When defining new concepts, the user employs
only a sublanguage £; of Ls, for which computing the lcs makes sense. However,
in addition to primitive concepts and roles, the concept descriptions written in
the DL £; may also contain names of concepts defined in 7. When computing
subsumption between such newly defined concepts, this is done w.r.t. 7, using
a subsumption algorithm for the expressive DL £2. When computing the lcs of
such concepts, we basically employ the algorithm for £1, but extend it such that
it can take into account the subsumption relationships between conjunctions of



concept defined in 7. This is where FCA comes into play: it provides us with an
efficient method for computing these relationships. To be more precise, given a
TBox T, we define a formal context whose properties are the defined concepts of
T, and whose concept lattice is isomorphic to the subsumption hierarchy we are
interested in. Then, we employ the so-called “attribute exploration” algorithm
[16,19] to compute this concept lattice. We show that the “expert” for the con-
text required by this algorithm can be realized by the subsumption algorithm
for Lo.

The second problem that we will address is that the choice of the examples
is crucial for the quality of the result obtained by the bottom-up construction of
concepts. If the examples are too similar, the resulting concept might be too spe-
cific. Conversely, if the examples are too different, the resulting concept is likely
to be too general. Thus, it would be good to have a tool that supports the process
of choosing an appropriate set of objects as examples. Assume that Cy,...,C,
are the most specific concepts of a given collection of objects o1, - .., 0,, and that
we intend to use subsets of this collection for constructing new concepts. In order
to avoid obtaining concepts that are too general or too specific, it would be good
to know the position of the corresponding lcs in the subsumption hierarchy of
all least common subsumers of subsets of {C1,...,Cy}. Since there are exponen-
tially many subsets to be considered, and (depending on the DL language) both,
computing the lcs and testing for subsumption, can be expensive operations,
we want to obtain complete information on how this hierarchy looks like with-
out computing the least common subsumers of all subsets of {C1,...,C,}, and
without explicitly making all the subsumption tests between these least common
subsumers. Again, this is where methods of FCA can be utilized. We will define
a formal context that has the property that its concept lattice is isomorphic to
the inverse subsumption hierarchy of all least common subsumers of subsets of
{C1,...,Cy}. The attribute exploration algorithm can again be used to compute
this lattice. In fact, the “expert” required by the algorithm can be realized by
the subsumption algorithm and the algorithm for computing the lcs.

In the next section, we introduce the relevant notions from description logics,
and in Section 3, we introduce as many of the basic notions of formal concept
analysis as are necessary for our purposes. In particular, we sketch the attribute
exploration algorithm. In Section 4 we show how this algorithm can be used to
compute the hierarchy of all conjunctions of concepts defined in a terminology,
and in Section 5 we do the same for the hierarchy of all least common sub-
sumers of subsets of a given finite set of concepts. In Section 6, we describe
some experimental results. In Section 7 we show that the approaches described
in Subsection 4.2 and Section 5 are both instances of a more general approach.
Section 8 concludes with some comments on possible future work.

This paper was intended to be an amalgamation of the results originally
presented in [1] (see Subsection 4.1) and [10] (see Section 5). However, when
reconsidering [1], we saw that in addition to the approach chosen there, one can
also use another approach (see Subsection 4.2) to solve the problem addressed
in [1]. When comparing this new approach with the approach employed in [10],



Table 1. Syntax and semantics of concept descriptions and definitions.

|name of constructor |Syntax| Semantics |A£C|5£|
top-concept T AT x | x
bottom-concept 1 ] X
negation -C AT\ C* X
conjunction cnb ctnp* X | x
disjunction cub ctubD*t x

value restriction vr.C {z € AT | Vy: (z,y) €rt =y e CT}| x
existential restriction| 3r.C |[{z € AT |y : (z,y) erf Ay € CT}]| x |x
|concept definition |A = C| AT =% | X | X |

we saw that both are instances of a more general approach, which is described in
Section 7. The experimental results described in Subsection 6.2 have already been
published in [10], whereas the experimental results described in Subsection 6.1
have not been published before.

2 Description logics

For the purpose of this paper, it is sufficient to restrict the attention to the for-
malism for defining concepts (i.e., we need not introduce ABoxes, which describe
objects and their properties). In order to define concepts in a DL knowledge base,
one starts with a set N¢ of concept names (unary predicates) and a set Ng of role
names (binary predicates), and defines more complex concept descriptions using
the operations provided by the concept description language of the particular
system. In this paper, we consider the DL ALC and its sublanguage ££,' which
allow for concept descriptions built from the indicated subsets of the constructors
shown in Table 1. In this table, r stands for a role name, A for a concept name,
and C, D for arbitrary concept descriptions. A concept definition (as shown in
the last row of Table 1) assigns a concept name A to a complex description C.
A finite set of such definitions is called a TBox iff it is acyclic (i.e., no definition
refers, directly or indirectly, to the name it defines) and unambiguous (i.e., each
name has at most one definition).

The semantics of concept descriptions is defined in terms of an interpretation
T = (A%, T). The domain AT of T is a non-empty set and the interpretation
function -T maps each concept name P € N¢ to a set PT C AT and each role
name r € Ng to a binary relation rZ C AZxAZ. The extension of - to arbitrary
concept descriptions is inductively defined, as shown in the third column of
Table 1. The interpretation Z is a model of the TBox 7 iff it satisfies all its
concept definitions, i.e., AZ = CZ holds for all A= Cin 7.

! It should be noted, however, that the methods developed in this paper in principle
apply to arbitrary concept descriptions languages, as long as the more expressive
one is equipped with a subsumption algorithm and the less expressive one with an
algorithm for computing least common subsumers.



One of the most important traditional inference services provided by DL sys-
tems is computing subconcept/superconcept relationships (so-called subsump-
tion relationships) between concept descriptions. The concept description Co
subsumes the concept description C; (Cy T Cs) iff CT C CF for all interpre-
tations Z; Cy is equivalent to Cy (C; = Cs) iff C; € Cy and Cy C C,. The
subsumption relation C is a quasi order (i.e., reflexive and transitive), but in
general not a partial order since it need not be antisymmetric (i.e., there may
exist equivalent descriptions that are not syntactically equal). As usual, the
quasi order C induces a partial order C= on the equivalence classes of concept
descriptions:

[Ci]z E= [Co]= iff C1 E Oy,

where [C;]= := {D | C; = D} is the equivalence class of C; (i = 1,2). When
talking about the subsumption hierarchy of a set of descriptions, we mean this
induced partial order. In the presence of a TBox, subsumption must be computed
w.r.t. this TBox. The concept description Cy subsumes the concept description
Cy w.r.t. the TBox T (Cy C7 C») iff C¥ C CZ for all models Z of 7. All the
other notions introduced above can be adapted in the obvious way to the case
of subsumption w.r.t. a TBox.

Deciding subsumption between £L-concept descriptions (without or with
TBox) is polynomial [9, 5], whereas the subsumption problem for ALC (with-
out or with TBox) is PSPACE-complete [35, 26].

In addition to subsumption, we are here interested in the non-standard infer-
ence problem of computing the least common subsumer of concept descriptions.

Definition 1 Given two concept descriptions C1,Cs in a DL L, the concept
description C of L is an les of C1,C2 in L (C =lcsz(Cy,Cs)) iff (i) C; E C for
1 =1,2, and (%) C is the least concept description with this property, i.e., if C"
satisfies C; T C' for = 1,2, then C C (.

The lcs of n concept descriptions is obtained by iterating the application of the
binary lcs: lcsg(Ch, ..., Cr) = lese(Ch, ..., lese(Cr—1,Cr) - - ). Depending on
the DL under consideration, the lcs of two or more descriptions need not always
exist, but if it exists, then it is unique up to equivalence. In [9], it is shown that
the lcs of two € L-concept descriptions always exists and that it can be computed
in polynomial time; however, the size of the n-ary lcs can be exponential in the
size of the input descriptions, and thus computing it may require exponential
time.

As an example for the (binary) lcs in £L£, consider the £L-concept descrip-
tions

C' := Jhas-child.(Male M Doctor) and
D := Jhas-child.(Male M Mechanic) M Jhas-child.(Female M Doctor)

respectively describing parents having a child that is a male doctor, and parents
having a son that is a mechanic and a daughter that is a doctor. The lcs of C



and D is given by the £L-concept description
Icse£(C, D) = Jhas-child.Male M Ihas-child.Doctor.

It describes all parents having at least one son and at least one child that is a
doctor. Note that lcs azc(C, D) = C U D.

In order to describe the lcs algorithm for ££ in the general case, we need to
introduce some notation. Let C' be an £L-concept description. Then names(C')
denotes the set of concept names occurring in the top-level conjunction of C,
roles(C) the set of role names occurring in an existential restriction on the top-
level of C, and restrict,.(C') denotes the set of all concept descriptions occurring in
an existential restriction on the role r on the top-level of C. In the above example,
we have names(C) = names(D) = 0, restricty, 1< pild(C) = {Male M Doctor}, and
restricty, 3<_child (D) = {Male I Mechanic, Female 1 Doctor}.

Now, let C, D be £L-concept descriptions. Then we have

|CSg£(C,D) = |_| AN
A€names(C)Nnames(D)

37’,|C555(E, F)
reroles(C)Nroles(D)  E€restrict,-(C), F Erestrict, (D)

Here, the empty conjunction stands for the top concept T. The recursive call of
lcsg o is well-founded since the role depth (i.e., the maximal nesting of existential
restrictions) of the concept descriptions in restrict,.(C) (restrict,.(D)) is strictly
smaller than the role depth of C' (D).

If the £L-concept descriptions C, D contain concept names that are defined
in an ALC-TBox 7T, then it is currently not known how to compute their least
common subsumer, i.e., the least £L-concept description containing defined con-
cepts of 7 that subsumes C' and D w.r.t. 7. If we ignore the TBox by treating
all concept names as primitive, and just compute the lcs of C, D, then we obtain
a common subsumer of C, D also w.r.t. T, but it need not be the least one. As
a simple example, consider the TBox T

NoSon = Vhas-child.Female,
NoDaughter = Vhas-child.-Female,
SonRichDoctor = Vhas-child.(Female LI (Doctor M Rich))
DaughterHappyDoctor = Vhas-child.(—Female LI (Doctor M Happy))
ChildrenDoctor = Vhas-child.Doctor

and the £L-concept descriptions

C' := Jhas-child.(NoSon M DaughterHappyDoctor),
D := Fhas-child.(NoDaughter 1 SonRichDoctor).

If we ignore the TBox, then we obtain the £L-concept description

Jhas-child. T



as common subsumer of C,D. However, if we take into account that both
NoSon M DaughterHappyDoctor and NoDaughter M SonRichDoctor are subsumed
by ChildrenDoctor, then we obtain the more specific common subsumer

Jhas-child.ChildrenDoctor.

This motivates our interest in computing the subsumption hierarchy of all con-
junctions of concepts defined in a given TBox. Before we can show how this
hierarchy can be computed using tools from FCA, we must introduce the rele-
vant notions from FCA.

3 Formal concept analysis

We will introduce only those notions and results from FCA that are necessary for
our purposes. Since it is the main FCA tool that we will employ, we will describe
how the attribute exploration algorithm works. Note, however, that explaining
why it works is beyond the scope of this paper (see [19] for more information on
this and FCA in general).

Definition 2 A formal context is a triple K = (O,P,S), where O is a set of
objects, P is a set of attributes (or properties), and S C O X P is a relation that
connects each object o with the attributes satisfied by o.

Let K = (O,P,S) be a formal context. For a set of objects A C O, the intent
A’ of A is the set of attributes that are satisfied by all objects in A4, i.e.,

A':={peP|VacE A: (a,p) € S}

Similarly, for a set of attributes B C P, the extent B’ of B is the set of objects
that satisfy all attributes in B, i.e.,

B':={o€ O|Vbe B: (0,b) € S}
Tt is easy to see that, for Ay C Ay C O (resp. By C By C P), we have

— Ay C A} (resp. By C BY),
— A; C A" and A, = A" (vesp. B, C B" and B, = B").

A formal concept is a pair (A, B) consisting of an extent A C O and an intent
B C P such that A’ = B and B’ = A. Such formal concepts can be hierarchi-
cally ordered by inclusion of their extents, and this order (denoted by < in the
following) induces a complete lattice, the concept lattice of the context. Given
a formal context, the first step for analyzing this context is usually to compute
the concept lattice.

The following are easy consequences of the definition of formal concepts and
the properties of the -’ operation mentioned above:

Lemma 3 All formal concepts are of the form (A", A") for a subset A of O, and
any such pair is o formal concept. In addition, (A}, A}) < (AY, AY) iff A, C Aj.



Thus, if the context is finite, the concept lattices can in principle be computed
by enumerating the subsets A of O, and applying the operations -’ and -".
However, this naive algorithm is usually very inefficient. In many applications
[37], one has a large (or even infinite) set of objects, but only a relatively small
set of attributes. In such a situation, Ganter’s attribute exploration algorithm
[16,19] has turned out to be an efficient approach for computing the concept
lattice.

In one of the applications considered in this paper, we are faced with the
dual situation: the set of attributes is the infinite set of all possible concept
descriptions of the DL under consideration, and the set of objects is the finite
collection of concept descriptions for which we want to compute the subsumption
hierarchy of least common subsumers. To overcome this problem, one can either
dualize the attribute exploration algorithm and the notions on which it depends,
as done in [10]. In this paper, we follow an alternative approach: we considered
the dual context (which is obtained by transposing the matrix corresponding to
S) and employed the usual attribute exploration for this context. The concept
lattice of the dual context is obviously the dual of the concept lattice of the
original context, i.e., the corresponding orderings on the formal concepts are
inverses of each other.

Attribute exploration

Before we can describe the attribute exploration algorithm, we must introduce
some notation. The most important notion for the algorithm is the one of an
implication between sets of attributes. Intuitively, such an implication B; — Bs
holds if any object satisfying all elements of B; also satisfies all elements of Bs.

Definition 4 Let K = (O, P,S) be a formal context and By, By be subsets of
P. The implication By — By holds in K (K |= By — Bs) iff By C B). An object
o violates the implication By — B iff o € By \ Bj.

It is easy to see that an implication B; — B holds in K iff By C B{. In
particular, given a set of attributes B, the implications B — B"” and B —
(B" \ B) always hold in K. We denote the set of all implications that hold in
K by Imp(K). This set can be very large, and thus one is interested in (small)
generating sets.

Definition 5 Let J be a set of implications, i.e., the elements of J are of the
form By — By for sets of attributes By, By C P. For a subset B of P, the
implication hull of B with respect to J is denoted by J(B). It is the smallest
subset H of P such that

— BCH, and

— By »B;e€ J and By C H imply B C H.

The set of implications generated by J consists of all implications By — Bs
such that By C J(B1). It will be denoted by Cons(J). We say that a set of
implications J is a base of Imp(K) iff Cons(J) = Imp(K) and no proper subset
of J satisfies this property.



If 7 is a base for Imp(K), then it can be shown that B” = 7(B) for all B C P.
The implication hull 7 (B) of a set of attributes B can be computed in time linear
in the size of J and B using, for example, methods for deciding satisfiability of
sets of propositional Horn clauses [13]. Consequently, given a base 7 for Imp(K),
any question of the form “B; — By € Imp(K)?” can be answered in time linear
in the size of J U {B; — Bz}.

There may exist different implication bases of Imp(K), and not all of them
need to be of minimal cardinality. A base J of Imp(K) is called minimal base iff
no base of Imp(K) has a cardinality smaller than the cardinality of 7. Duquenne
and Guigues have given a description of such a minimal base [14]. Ganter’s
attribute exploration algorithm computes this minimal base as a by-product. In
the following, we define the Duquenne-Guigues base and show how it can be
computed using the attribute exploration algorithm.

The definition of the Duquenne-Guigues base given below is based on a modi-
fication of the closure operator B — J(B) defined by a set J of implications. For
a subset B of P, the implication pseudo-hull of B with respect to J is denoted
by J*(B). It is the smallest subset H of P such that

— BC H, and
— By = By € J and B; C H (strict subset) imply By C H.

Given 7, the pseudo-hull of a set B C P can again be computed in time linear
in the size of J and B (e.g., by adapting the algorithm in [13] appropriately). A
subset B of P is called pseudo-closed in a formal context K iff Imp(K)*(B) = B
and B"” # B.

Definition 6 The Duquenne-Guigues base of a formal context K consists of all
implications By — By where By C P is pseudo-closed in K and By = By \ By.

When trying to use this definition for actually computing the dual Duquenne-
Guigues base of a formal context, one encounters two problems:

1. The definition of pseudo-closed refers to the set of all valid implications
Imp(K), and our goal is to avoid explicitly computing all of them.

2. The closure operator B — B is used, and computing it via B — B’ — B"
may not be feasible for a context with a larger or infinite set of objects.

Ganter solves the first problem by enumerating the pseudo-closed sets of X in a
particular order, called lectic order. This order makes sure that it is sufficient to
use the already computed part 7 of the base when computing the pseudo-hull.
To define the lectic order, fix an arbitrary linear order on the set of attributes
P={p1,..-,pn}, say p1 < -+ < pp. For all j,1 < j <n,and B;,By CP we
define

B <; B, iff p; € B2\B]_ and Blﬂ{pl,...,pjfl} = B> ﬂ{pl,...,pjfl}.

The lectic order < is the union of all relations <; for y =1,...,n. It is a linear
order on the powerset of P. The lectic smallest subset of P is the empty set.



The second problem is solved by constructing an increasing chain of finite
subcontexts of K. The context K; = (O;, P;, S;) is a subcontext of K iff O; C O,
P;i = P,and S; = SN (O; x P). The closure operator B — B is always
computed with respect to the current finite subcontext X;. To avoid adding a
wrong implication, an “expert” is asked whether the implication B — B” \ B
really holds in the whole context /C. If it does not hold, the expert must provide
a counterexample, i.e., an object o from O\ O; that violates the implication.
This object is then added to the current context. Technically, this means that
the expert must provide an object o, and must say which of the attributes in P
are satisfied for this object.

The following algorithm computes the set of all intents of formal concepts of
K as well as the Duquenne-Guigues base of L. The concept lattice is then given
by the inverse inclusion ordering between the intents.

Algorithm 7 (Attribute exploration)

Initialization: One starts with the empty set of implications, i.e., Jo := 0, the
empty set of concept intents Co := 0, and the empty subcontext Ko of K, i.e.,
Qo := 0. The lectic smallest subset of P is By := {.

Tteration: Assume that K;, J;, Ci, and B; (i > 0) are already computed.
Compute B] with respect to the current subcontext KC;. Now the expert is asked
whether the implication B; — B! \ B; holds in K.2

If the answer is “no”, then let o; € O be the counterexample provided by the
expert. Let Biy1 := B;, Jiy1 = Ji, and let Kip1 be the subcontext of K with
Oit1 := 0; U{o;}. The iteration continues with Kiy1, Jit1, Ciy1, and Biyy.

If the answer is “yes”, then K;y1 := K; and

Coor Toony i { € TiU{B: > B{\B}) if B # B,
( i+1, z-‘rl) = (Cz U {Bz}7\7z) ZfB;I — Bi-

To find the new set B;y1, we start with j = n, and test whether

(*) Bi <; T ((Bin{py,-.-,pi1}) U{p;})

holds. The index j is decreased until one of the following cases occurs:

(1) j = 0: In this case, C;11 is the set of all concept intents and Jiy1 the
Duquenne-Guigues base of KC, and the algorithm stops.

(2) (%) holds for j > 0: In this case, Biy1 = J 1 ((Bi N {p1,...,p;—1}) U{p;}),
and the iteration is continued.

4 Subsumption between conjunctions of concepts

Most of the results that we will show are independent of the DL under consid-
eration. The only restriction that we need is that it allows for conjunction.

2 If B/ \ B; = 0, then it is not really necessary to ask the expert because implications
with empty right-hand side hold in any context.



In the following, let 7 be a fixed TBox, and let py,...,p, be the concepts
defined in 7. We are interested in representing all subsumption relationships
(w.r.t. T) between finite conjunctions of these defined concepts. In order to
employ tools from FCA for this purpose, we want to define a formal context
such that the concept lattice of this context is isomorphic to the subsumption
hierarchy we are interested in. In this section, we will describe two possible
ways for defining such a context. The first one (which was first described in
[1]) uses interpretations as objects, whereas the second one uses concepts as
objects. The advantage of the second approach is that one can use an arbitrary
subsumption algorithm for the DL under consideration as expert. Thus, one
can, for example, use highly optimized DL systems like FaCT and RACER for
this purpose. In contrast, the first approach requires an extended subsumption
algorithm. Though this extended algorithm exists for most of the standard DLs
(in particular, for ALC), one cannot use standard implementations.

4.1 The semantic context

The idea underlying the following definition is that a counterexample to a sub-
sumption relationship C' Ty D is a model Z of T together with an element
d € AT such that d € CT \ DZ. The objects of the context are all possible such
counterexamples.

Definition 8 The context K+ = (O, P,S) is defined as follows:

O :={(Z,d) | T is a model of T and d € AT},
P:={p1,...,Pn}s
S:={((Z,d),p)|dep"}.

For a nonempty subset B = {pi,,...,p;.} of P, we denote the conjunction
pi; M...Mp;, by MB. For the empty set, we define N := T.

Lemma 9 Let By, By be subsets of P. The implication By — Ba holds in Ky
fo MBy C7 MBs.

Proof. Assume that By — Bs does not hold in Kq. This is the case iff there
exists an object (Z,d) € Bj \ B). By definition of S and of the operator B — B’,
this means that (1) d € p* for all p € By, and (2) there exists p' € By such
that d ¢ p'Z. By the semantics of the conjunction operator, (1) is equivalent to
d € (NBy)%, and (2) is equivalent to d & (MBz)%. Since Z is a model of T, this
shows that the subsumption relationship MB; T MB; does not hold. Obviously,
all of the conclusions we have made are reversible. O

Thus, the Duquenne-Guigues base £ of K7 also yields a representation of all
subsumption relationships of the form MBy T4 MBs for subsets By, Bs of P. As
mentioned in Section 3, any question “rMB; T MBy?” can then be answered in
time linear in the size of LU {B; — Bs}.



Theorem 10 The concept lattice of the context K1 is isomorphic to the sub-
sumption hierarchy of all conjunctions of subsets of P w.r.t. T.

Proof. In order to obtain an appropriate isomorphism, we define a mapping m
from the formal concepts of the context 7 to the set of all (equivalence classes
of) conjunctions of subsets of P as follows:

7(A, B) = [NB]=.

For formal concepts (A1, B1), (Aa, B2) of K+ we have (A1, B;) < (Az,Bs) iff
By C Bj. Since Bj is the intent of the formal concept (A1, By), we have By =
Ay = A" = BY, and thus By C By iff By C By iff the implication B; — By
holds in K4 iff MB; C4 MBs. Overall, we have thus shown that 7 is an order
embedding (and thus injective): (41, B1) < (Ag, B) iff [(B;]= C= [MBs]=.

It remains to be shown that 7 is surjective as well. Let B be an arbitrary
subset of P. We must show that [MB]= can be obtained as an image under
the mapping 7. We know that (B’, B") is a formal concept of K7, and thus it
is sufficient to show that n(B’, B") = [NB]z, i.e.,, N(B") = NB. Obviously,
B C B" implies M(B") C4 NB. Conversely, the implication B — B holds in
K7, and thus Lemma 9 yields NB T+ NB". O

If we want to apply Algorithm 7 to compute the concept lattice and the
Duquenne-Guigues base, we need an “expert” for the context Ky. This expert
must be able to answer the questions asked by the attribute exploration algo-
rithm, i.e., given an implication By — Bs, it must be able to decide whether
this implication holds in 7. If the implication does not hold, it must be able
to compute a counterexample, i.e., an object o € B} \ Bj.

By Lemma 9, By — Bj holds in Ky iff MB; C4 MB;y. Thus, validity of
implications in K7 can be decided using a standard subsumption algorithm.
A counterexample to the implication By — By is a pair (d,Z) € O such that
d € (MBy)T\ (MBy)Z. Since the usual tableau-based subsumption algorithms [11]
in principle try to generate finite countermodels to subsumption relationships,
they can usually be extended such that they yield such an object in case the
subsumption relationship does not hold. In [1], this is explicitly shown for the
DL ALC.

Proposition 11 Let T be an ALC TBox. The tableau-based subsumption al-
gorithm for ALC can be extended such that it functions as an “expert” for the
context K without increasing its worst-case complexity of PSPACE.

However, the highly optimized algorithms in systems like FaCT and RACER
do not produce such countermodels as output. For this reason, we are interested
in a context that has the same attributes and the same concept lattice (up to
isomorphism), but for which a standard subsumption algorithm can function as
an expert.



4.2 The syntactic context

The intuition underlying this context is that the subsumption relationship C C+
D does not hold iff there is a concept F such that E C+ C and E Z D.

Definition 12 The context K = (O, P,8’) is defined as follows:

O' :={E | E is a concept description of the DL under consideration};
7) = {p17 .. 7pn}7
§"={(E,p) | EC7 p}.

The context K’ satisfies the analogs of Lemma 9 and Theorem 10.

Lemma 13 Let By, By be subsets of P. The implication By — By holds in Ky
iff NBy C NBs.

Proof. First, we prove the only if direction. If the implication B; — Bs holds in

‘-, then this means that the following holds for all objects E € O":if E Cr p
holds for all p € By, then E C4 p also holds for all p € Bs. Thus, if we take MB;
as object E, we obviously have MB; C p for all p € By, and thus MB; C4 p for
all p € By, which shows MB; Cy MNBs.

Second, we prove the if direction. If MB; C7 MBy, then any object E satis-
fying E Cy MNB; also satisfies £ C MB; by the transitivity of the subsumption
relation. Consequently, if E is a subconcept of all concepts in By, then it is also
a subconcept of all concepts in By, i.e., if E satisfies all attributes in By, it also
satisfies all attributes in By. This shows that the implication By — By holds in
K- O

The proof of the following theorem is identical to the proof of Theorem 10.

Theorem 14 The concept lattice of the context Ki- is isomorphic to the sub-
sumption hierarchy of all conjunctions of subsets of P w.r.t. T.

Again, attribute exploration can be used to compute the concept lattice since
any standard subsumption algorithm for the DL under consideration can be used
as an expert for K’

Proposition 15 Any decision procedure for subsumption functions as an erpert
for the context K.

Proof. The attribute exploration algorithm asks questions of the form “B; —
B>?7” By Lemma 13, we can translate these questions into subsumption questions
of the form “MB; C4 MBy?” Obviously, any decision procedure for subsumption
can answer these questions correctly.

Now, assume that By — Bs does not hold in K-, i.e., MBy Z7 MBy. We
claim that MB; is a counterexample, i.e., MBy € By, but MB; ¢ Bj. This is an
immediate consequence of the facts that B, = {E | E Cy NB;} (i = 1,2) and
that [—|B1 ET |—|Bl and |_|B1 z']‘ HBQ. O



5 Computing the hierarchy of least common subsumers

In the following, we assume that in the DL £ under consideration the lcs always
exists and can effectively be computed.

Given a finite set C := {C1,...,Cy} of concept descriptions, we are interested
in the subsumption hierarchy between all least common subsumers of subsets of
C. For sets B C C of cardinality > 2, we have already defined the notion Ics(B).
We extend this notion to the empty set and singletons in the obvious way:
les(0) :== L and les({Ci}) := C.

Our goal is to compute the subsumption hierarchy between all concept de-
scriptions Ics(B) for subsets B of C without explicitly computing all these least
common subsumers. This is again achieved by defining a formal context (with
attribute set C) such that the concept lattice of this context is isomorphic to the
subsumption hierarchy we are interested in. The following context is similar to
the syntactic context defined in the previous section. The main difference is the
definition of the incidence relation, where subsumption is used in the opposite
direction.

Definition 16 Given o DL language L and a finite set C := {Cy,...,Cr} of
L-concept descriptions, the corresponding formal context Kz (C) = (0", P",S8")
is defined as follows:

0" :={D | D is an L-concept description},
P=C
8" :={(D,C) | C C D).

As an easy consequence of the definition of K, (C) and of the lcs, we obtain that
the extent of a set B C P’ is closely related to the lcs of this set:

Lemma 17 Let B, By, By be subsets of P".

1. B'={D € 0" | les(B) C D}.
2. B} C B), iff les(Bz) E les(By).

Proof. First, let B be a subset of P"”. We have D € B' iff C C D for all C € B
iff les(B) CE D.

Second, by 1. we have B} C Bj) iff Ics(B;) C D implies lcs(By) C D for
all D € O". Thus, if B} C B}, then Ics(B;) C les(By) yields les(Bs) C les(By).
Conversely, if lcs(B2) C Ics(By), then lcs(By) C D obviously implies lcs(B2) C D
for arbitrary concepts D. O

Now, we can again show that implications correspond to subsumption rela-
tionships between the corresponding least common subsumers.

Lemma 18 Let By, Bs be subsets of P"”. The implication By — Bs holds in
K.(C) iff les(B2) E les(By).



Proof. B; — Bs holds in K£(C)
iff B! C B (by definition)
iff lcs(Bz) C les(By) (by 2. of the above lemma).
O

As an immediate consequence of this lemma, the Duquenne-Guigues base J
of K (C) yields a representation of all subsumption relationships of the form
lcs(B1) E lcs(Bs) for subsets By, B2 of O. Given this base J, any question of
the form “lcs(By) C lcs(B2)?” can then be answered in time linear in the size
of J U {B1 = B2}. Another easy consequence of the lemma is that the concept
lattice of Kz (C) coincides with the inverse subsumption hierarchy of all least
common subsumers of subsets of C. The proof of this fact (which we include for
the sake of completeness) is very similar to the proof of Theorem 10.

Theorem 19 The concept lattice of K(C) is isomorphic to the inverse sub-
sumption hierarchy of all least common subsumers of subsets of C.

Proof. We define the mapping 7 from the formal concepts of K. (C) to the set
of (equivalence classes of) least common subsumers of subsets of C as follows:

(A, B) := [les(B))=.

For formal concepts (Al,Bl), (AQ,BQ) we have (Al,Bl) S (AQ,Bz) iff Al =
B] C Ay = B iff les(Bs) C Ics(By). As an easy consequence we obtain that 7 is
an order embedding (and thus also injective):

(A1,B1) < (As, By) iff [les(B1)]= D= [les(Ba)]=.

It remains to be shown that 7 is surjective as well. Let B be an arbitrary subset
of C = P"”. We must show that [lcs(B)]= can be obtained as an image under
the mapping 7. By the dual of Lemma 3, (B’, B"”) is a formal concept, and
thus it is sufficient to show that lcs(B) = les(B"'). Obviously, B C B” implies
lcs(B) C lcs(B") (by definition of the lcs). Conversely, the implication B — B”
holds in K, (C), and thus lcs(B") C lcs(B) (by Lemma 18). O

If we want to apply Algorithm 7 to compute the concept lattice and the
Duquenne-Guigues base, we need an “expert” for the context K. (C). This ex-
pert must be able to answer the questions asked by the attribute exploration
algorithm, i.e., given an implication B; — Bs, it must be able to decide whether
this implication holds in Kz (C). If the implication does not hold, it must be able
to compute a counterexample, i.e., an object o € B} \ Bj.

If the language L is such that the lcs is computable and subsumption is
decidable (which is, e.g., the case for £L = £L£), then we can implement such an
expert.

Proposition 20 Given a subsumption algorithm for L as well as an algorithm
for computing the lcs of a finite set of L-concept descriptions, these algorithms
can be used to obtain an expert for the context K (C).



Proof. First, we show how to decide whether a given implication B; — B; holds
in Kz(C) or not. By Lemma 18, we know that B; — By holds in K.(C) iff
lcs(Bg) C les(By). Obviously, les(Bs) C les(By) iff C; C les(By) for all C; € Bs.
Thus, to answer the question “B; — By?” we first compute lcs(Bj) and then use
the subsumption algorithm to test whether C; C lcs(B;) holds for all C; € Bs.

Second, assume that By — By does not hold in K (C), i.e., lcs(Bz) &£ lcs(By).
We claim that Ics(By) is a counterexample, i.e., lcs(By) € B and lcs(By) ¢ Bj,.
This is an immediate consequence of the facts that B} = {D € O" | les(B;) C D}
(1 =1,2) and that lcs(By) C les(By) and les(Bs) IZ les(By).

Of this counterexample, Algorithm 7 really needs the row corresponding to
this object in the matrix corresponding to S”. This row can easily be computed
using the subsumption algorithm: for each C; € C = P”, we use the subsumption
algorithm to test whether C; C lcs(By) holds or not. O

Using this expert, an application of Algorithm 7 yields

— all intents of formal concepts of K. (C), and thus the concept lattice of K (C),
which coincides with the inverse subsumption hierarchy of all least common
subsumers of subsets of C (by Theorem 19);

— the Duquenne-Guigues base of K (C), which yields a compact representation
of this hierarchy (by Lemma 18); and

— a finite subcontext of K. (C) that has the same concept intents as K (C) and
the same - operation on sets of attributes.

Using the output of Algorithm 7, one can then employ the usual tools for drawing
concept lattices [38] in order to present the subsumption hierarchy of all least
common subsumers of subsets of C to the knowledge engineer.

6 Some experimental results

In the previous two sections, we have shown that the attribute exploration al-
gorithm can be used to compute the hierarchy of least common subsumers of a
given set of concept descriptions and the hierarchy of all conjunctions of concepts
defined in a terminology. What remains is to analyze whether attribute explo-
ration really is a good approach for solving this task. Our reason for trying it in
the first place was that computing this hierarchy is the same as computing a cer-
tain concept lattice (as shown above), and that attribute exploration is known to
be a very good method for doing this. The problem with this generic argument
in favor of attribute exploration is, of course, that we consider a very specific
context, and that it might well be that, for this context, attribute exploration is
not the best thing to do.

6.1 Results for computing the hierarchy of conjunctions of defined
concepts

In [29], the approach for computing this hierarchy based on the semantic context
(see Subsection 4.1) was implemented and then evaluated on randomly generated



ALC TBoxes. For each TBox size (where size is the number of defined concepts),
at least 50 different TBoxes were generated and attribute exploration was applied
to the semantic context induced by these TBoxes. The main observations made
during these experiments are the following:

1. For TBoxes of size > 30, the computation of the full hierarchy in all cases
took longer than the time out of 5 minutes imposed on each experiment.

2. The size of the Duquenne-Guigues base was very small compared with the
number of computed counterexamples and the number of formal concepts of
the context. For example, for TBoxes of size 20, there was an average of 13
implications in the base, 850 counterexamples, and 13500 formal concepts.

3. The overhead of the “concept analysis part” of the algorithm was consider-
able. Although calls to the expert are quite expensive (since the expert is
realized by a PSPACE algorithm, the extended subsumption algorithm) less
than 60% of the time was spent by the expert.

4. The time required by the extended subsumption algorithm (computing a
counterexample) was compared with the time required by a normal sub-
sumption algorithm (answering only “yes” or “no” to subsumption queries).
It turned out that for all TBox sizes the runtime of the extended subsumption
algorithm was 2.5 times the runtime of the normal subsumption algorithm.

5. The subsumption hierarchy of all conjunctions of concepts defined in a TBox
can, of course, also be computed by extending the TBox by a new definition
for each such conjunction. However, even if one employs the sophisticated
optimization techniques described in [7] to compute the subsumption hierar-
chy of this extended TBox, the number of calls to the subsumption algorithm
is much larger than the number of expert calls during attribute exploration
of the semantic context of the unextended TBox. For example, for TBoxes
of size 10, attribute exploration required an average of 75 calls of the expert,
whereas computing the subsumption hierarchy of the extended TBoxes re-
quired 19700 calls of the normal subsumption algorithm.

A few comments regarding these results are in order. First, there are two rea-
sons why TBoxes with more than 30 defined concepts could not be handled in
reasonable time. One the one hand, the extended subsumption algorithm was
implemented in a naive and almost unoptimized way, and thus could not handle
the large concept descriptions (obtained by unfolding the TBox definitions) in an
efficient way. On the other hand, for large TBoxes, the size of the concept lattice
was huge (and thus a lot of time was spent in the “concept analysis part” of the
algorithm). The reason for the huge number of formal concepts compared to the
number of implications is probably that the dependencies between the different
attributes was quite low in the semantic contexts induced by the randomly gen-
erated TBoxes. By varying the probability of using an already defined concept
in the definition of a new concept, we were able to generate TBoxes with more or
less dependencies between the attributes. However, even with high dependency
between attributes, the concept lattice was quite large. As long as this is the
case, the “concept analysis part” of the algorithm will require a considerable
amount of time.



The constant factor of 2.5 between the runtime of the expert and the run-
time of the normal subsumption algorithm is consistent with the theoretical
result that both algorithms belong to the same complexity class (PSPACE). For
practical purposes, the situation is, however, worse than indicated by this rather
small factor. The algorithms we tested were both naive, almost unoptimized
implementations. For the normal subsumption algorithm there are now highly
optimized implementations that are several orders of magnitude better than the
naive implementation, whereas there is no such optimized implementation avail-
able for the extended algorithm. For this reason, using the syntactic context
(which just requires a normal subsumption algorithm as expert) appears to be
the better option (though this must still be verified in experiments).

In spite of the overhead caused by the expert and the “concept analysis part”
of the algorithm, attribute exploration is much better than the naive approach of
extending the TBox by a new definition for each conjunction of defined concepts.
Thus, the generic argument in favor of attribute exploration is indeed supported
by our experiments. As we will see in the next subsection, the same is true for
the problem of computing the hierarchy of least common subsumers.

6.2 Results for computing the hierarchy of least common subsumers

We have used the bottom-up construction of knowledge bases in a chemical
process engineering application [27,34, 28], where the knowledge base describes
standard building blocks of process models (such as certain types of reactors).
When we performed the experiments, this knowledge base consisted of about
600 definitions of building blocks.

In order to test the attribute exploration algorithm, we have taken 7 descrip-
tions of reactors of a similar type, which the process engineers considered to be
good examples for generating a new concept. These descriptions were translated
into concept descriptions Ry, ..., R7, and we applied the attribute exploration
algorithm to this set of attributes. The resulting hierarchy of all least com-
mon subsumers of subsets of C := {Ry,..., Rz} is depicted in Figure 1. The
concept on the top corresponds to the lcs obtained from the whole set of ex-
amples, and the concept at the bottom is the lcs obtained from the empty set,
i.e., the description L. The node labeled lcs(7; .. .4,,) corresponds to the formal
concept with intent R;,,...,R;, , and thus to lcs(R;,,..., R;,). Note that in
many cases Ics(R;,, ..., R;,,) can also be obtained as the lcs of a strict subset of
{Ri,,..-,Ri, }. This can be easily seen by using the least upper-bound opera-
tion of the (inverse) concept lattice. For example, Ics(R;, R7) = les(Ra, ..., Ry)
for all 4,1 <14 < 6.

Tm

Statistical information: The Duquennes-Guigues base of the context consists of
15 implications, and the concept lattice of 30 formal concepts. If we subtract the
trivial least common subsumers 1, Ry,..., R; as well as Ics(Ry, ..., Ry), which
turned out to be equivalent to an already existing description, we end up with 21
candidates for new concepts. Of these 21 interesting least common subsumers,
only 10 have explicitly been computed during the exploration.
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Fig. 1. The hierarchy of least common subsumers of seven reactor descriptions.

During the calls of the “expert”, 255 subsumption tests and 25 n-ary lcs oper-
ations have been executed. Because we re-used already computed least common
subsumers, the 25 n-ary lcs operations only required 25 binary lcs operations.
The number of counterexamples computed by the expert was also 25.

Finally, we measured the time needed for executing the interesting subtasks,
namely computing the lcs, testing subsumption, and realizing the overhead intro-
duced by the attribute exploration algorithm (e.g., computing the - operation,
the pseudo-hull, etc). It turned out that more than 84% of the time was used for
computing least common subsumers, 15% for subsumption tests, and less than
1% for the rest. This shows that, at least for this small example, the exploration
algorithm does not introduce any measurable overhead.? The fact that comput-
ing the lcs needed a lot more time than testing subsumption is probably due to

3 This is in strong contrast to the experimental results described in Subsection 6.1. The
main difference appears to be that, for the present context, the concept lattice and
the number of counterexamples is not much larger than the number of implications
in the base.



the fact that we used a highly optimized subsumption algorithm [22], but only
a first prototypical implementation of the lcs algorithm.

What can be learned from the concept lattice? Two important facts about the
reactor descriptions can be read off immediately. First, there is no subsumption
relationship between any of the 7 concepts since all singleton sets occur as intents.
Second, Reactor 7 is quite different from the other reactors since its lcs with any
of the others yields a very general concept description. Thus, it should not be
used for generating new concepts together with the other ones. In fact, a closer
look at Ry revealed that, though it describes a reactor of a type similar to that
of the other ones, this description was given on a completely different level of
abstraction.

Next, let us consider the question of which of the least common subsumers
occurring in the lattice appear to be good candidates for providing an interesting
new concept. First, the lcs of the whole set is ruled out since it involves Reactor 7,
which does not fit well with the other examples (see above). Second, in order
to avoid concepts that are too specific, least common subsumers that do not
cover more than half of the reactors should also be avoided. If we use these two
criteria, then we are left with 9 candidates (the formal concepts with intents of
cardinality 4, 5, and 6), which is a number of concepts that can well be inspected
by the process engineer. In our example, the 5 least common subsumers on the
first layer of these interesting candidates (the formal concepts with intents of
cardinality 4) were consider by the process engineers to be the most interesting
new concepts among the 9 candidates.

7 A more abstract point of view

The results and proofs presented in Subsection 4.2 and in Section 5 are very
similar, and the proofs are based on rather generic arguments (i.e., they use
almost no specific properties of the lcs or the conjunctions of defined concepts).
Thus, one may ask whether the constructions and arguments used there can be
generalized. The purpose of this section is to show that this is indeed the case.

Consider a partially ordered set (M, <) for which all finite infima exist, i.e.,
if B is a finite subset of M, then there exists an element inf(B) € M that is
the greatest element of M smaller than all elements of B. From the algorithmic
point of view we assume that there are algorithms for deciding the relation < and
for computing inf{B) for all finite subsets B of M. In Subsection 4.2, M is the
set of all concept descriptions of the DL under consideration, < is subsumption
w.r.t. the TBox (C7), and the infimum of a finite set of such descriptions is their
conjunction.* In Section 5, M is again the set of all concept descriptions of the

4 To be more precise, M is the set of all equivalence classes [C]= of concept descriptions
C and the partial order is the partial order C= induced by subsumption w.r.t. 7 on
these equivalence classes.



DL under consideration, < is inverse subsumption (J) and the infimum is given
by the Ics.?

Definition 21 Given o finite subset N of M, its infimum closure is the set
InfC(N) := {inf(B) | BC N}.

In Subsection 4.2, N is the set of all concept names defined in the TBox, and
InfC(N) is the set of all conjunctions of such names. In Section 5, N is a finite set
C of concept descriptions, and InfC(N) is the set of all least common subsumers
of subsets of C.

Since N is finite, (InfC(N), <) is a complete semilattice, and thus a com-
plete lattice. We are interested in computing this lattice. In Subsection 4.2,
(InfC(N), =) is the hierarchy of all conjunctions of defined concepts, and in Sec-
tion 5, (InfC(N), <) is the hierarchy of all least common subsumers of subsets of
C. In order to compute (InfC(N), X), we define a formal context with attribute
set N such that the concept lattice of this context is isomorphic to (InfC(N), <).

Definition 22 Let (M, =) be a partially ordered set for which all finite infima
exist, and let N be a finite subset of M. The formal context K<(N) = (O, P,S)
is defined as follows:

M
N,
{(m,n) | m <n}.

7

» 9 O

Valid implications in K< (V) correspond to <-relationships between infima of
subsets of N. The proof of this result is an easy generalization of the proof of
Lemma 13.

Lemma 23 Let By, By be subsets of P = N. The implication By — Bs holds

Proof. First, we prove the only if direction. If the implication By — Bs holds
in £<(NV), then this means that the following holds for all objects m € O: if
m =< n holds for all n € By, then m < n also holds for all n € B,. Thus, if we
take inf(B;) as object m, we obviously have inf(B;) < n for all n € By, and thus
inf(B;1) <X n for all n € By, which shows inf(B;) < inf(Bs).

Second, we prove the if direction. If inf(B;) < inf(B,), then any object
m satisfying m =< inf(Bjp) also satisfies m =< inf(Bs) by the transitivity of <.
Consequently, if m < n for all n € By, then m =< inf(B;) < inf(Bs) < n for all
n € Bs, i.e., if m satisfies all attributes in By, it also satisfies all attributes in
B,. This shows that the implication B; — By holds in K<(N). O

The proof of the following theorem is an easy generalization of the proof of
Theorem 10 and Theorem 14.

% Since we take inverse subsumption, the lcs, which is the supremum w.r.t. subsump-
tion, is indeed the infimum.



Theorem 24 The concept lattice of the context K<(N) is isomorphic to the
lattice (InfC(N), <).

Proof. In order to obtain an appropriate isomorphism, we define a mapping m
from the formal concepts of the context X< (V) to InfC(N) as follows:

(A, B) = inf(B).

Since B is a finite subset of P = N, the definition of InfC(N) implies that
inf(B) € InfC(N).

For formal concepts (A1, B1), (A2, B2) of K<(N) we have (Ay, By) < (A2, By)
iff By C Bj. Since B is the intent of the formal concept (A1, Bi), we have
Bl = All = A = Bi’7 and thus BQ g Bl iff BQ g Bi’ iff the implication Bl — BQ
holds in K< (N) iff inf(By) < inf(B5). Overall, we have thus shown that 7 is an
order embedding (and thus injective): (A1, B1) < (A2, Bp) iff inf(B;) =< inf(Bs).

It remains to be shown that 7 is surjective as well. Let B be an arbitrary
subset of P = N. We must show that inf(B) can be obtained as an image under
the mapping 7. We know that (B’, B") is a formal concept of X<(N), and thus
it is sufficient to show that w(B’, B") = inf(B), i.e., inf(B") = inf(B). Obviously,
B C B" implies inf(B") < inf(B). Conversely, the implication B — B" holds in
K<(N), and thus Lemma 23 yields inf(B) < inf(B"). Since < is antisymmetric,
this shows inf(B) = inf( B"). O

If we want to apply Algorithm 7 to compute the concept lattice and the
Duquenne-Guigues base of K< (NNV), we need an “expert” for this context. The
proof of the next proposition is a generalization of the proofs of Proposition 20
and of Proposition 15.

Proposition 25 Given a decision procedure for < as well as an algorithm for
computing the infima of all finite subsets of M, these algorithms can be used to
obtain an expert for the context K<(N).

Proof. First, we show how to decide whether a given implication B; — Bz holds
in £<(N) or not. By Lemma 23, we know that By — B holds in K< (N) iff
inf(B;) =< inf(Bs). Obviously, inf(By) < inf(Bs) iff infiB;) < n for all n € Bs.
Thus, to answer the question “B; — Bs?”, we first compute inf(B;) and then
use the decision procedure for < to test whether inf{By) < n holds for all n € Bs.

Second, assume that By — By does not hold in K<(N), ie., inf(By) A
inf(B,). We claim that inf(B;) is a counterexample, i.e., inf{B;) € Bj and
inf(By) ¢ Bj. This is an immediate consequence of the facts that B} = {m €
O|m<Xnforalln € B;} = {m € O | m =< inf(B;)} (i = 1,2) and that
inf(B;) =X inf(By) and inf(B;) A inf(Bs).

Of this counterexample, Algorithm 7 really needs the row corresponding to
this object in the matrix corresponding to S. This row can easily be computed
using the decision procedure for <: for each n € P = N, we use this decision
procedure to test whether inf(B;) < n holds or not. O

To sum up, we have shown that attribute exploration can be used to compute
(a representation of) the lattice (InfC(N), <) provided that < is decidable and



all finite infima are computable. The results presented in Subsection 4.2 and
in Section 5 are instances of this general result. The fact that the approach
described in Section 5 (and first presented in [10]) can be generalized in this
direction has already been mentioned in [18] (Section 3), but not worked out in
detail.

8 Conclusion

We have described two cases where a tool from FCA (attribute exploration) can
be used to compute an extended subsumption hierarchy in DL (the hierarchy of
conjunctions of concepts defined in a terminology, and the hierarchy of all least
common subsumers of a finite set of concept descriptions). The experimental
results show that this approach is much better than the naive approach for
computing these hierarchies. Nevertheless, there is still room for improvements.
For example, in the first case the overhead of the FCA part of the algorithm was
quite high due to the large number of formal concepts in the concept lattice.
For most applications, one does not really need to compute all formal concepts
since the implication base already contains all relevant information. Attribute
exploration (as described in Section 3) generates all intents of formal concepts,
since it enumerates all pseudo-closed sets, which are either concept intents, left-
hand sides of implications in the base, or left-hand sides of implications that are
not valid (i.e., implications that yield a counterexamples during the exploration
process). In contexts whose concept lattice is quite large compared to the size
of the Duquenne-Guigues base and the number of counterexamples, it would be
better to have a modified attribute exploration algorithm that enumerates only
those pseudo-closed sets that are not concept intents (only for those, the expert
is called).

We have also seen that the approaches described in Subsection 4.2 and Sec-
tion 5 are both instances of a more general approach. Thus, one can try to find
other interesting instances of this general approach. One example could be to
compute the hierarchy of all conjunctions of defined concepts and their nega-
tions. In fact, when considering the lcs in DLs that are more expressive than ££
(e.g., in ALE), one must deal with such conjunctions. Since in this case one has
background knowledge about the relationship between different attributes (the
concept A is disjoint from its negation —A), one can probably employ methods
developed for attribute exploration with background knowledge [17].
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