Foundations of Constraint Programming Tutorial 1 (on October 15th)

Lukas Schweizer

WS 2018

Exercise 1.1:

Consider the task of assigning to each node of a finite graph a color in such a way that no two adjacent nodes have the same color. Such an assignment is called a coloring of the graph. Formulate the problem of given only 3-colors as constraint satisfaction problem.

Exercise 1.2:

Consider the depicted graph (to the right), consisting of 7 nodes to which the numbers $1, \ldots, 7$ must be assigned. Each of the nodes has at least one neighbor, whereas the sum of all neighbors of a node must be the sum given in the following table. E.g. if 3 is the assigned node value, then its neighbors must sum up to 14 .

node value	1	2	3	4	5	6	7
	$=$	$=$	$=$	$=$	$=$	$=$	$=$
sum of its neighbors	20	18	14	19	2	7	8

Formulate the riddle as CSP.

Exercise 1.3:

A coloring of a graph involving the minimal number of colors is called the chromatic number of the graph. Formulate the problem of finding the chromatic number of a graph as a constrained optimization problem.

Exercise 1.4:

Formulate the following problem as a constrained optimization problem: Place a minimum number of queens on the chess board so that each unoccupied field comes under attack.

