Exercise 9: Semi-Positive Datalog

Database Theory
2022-06-14
Maximilian Marx, Markus Krötzsch

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Definition (Lecture 12, Slide 17)

- ▶ A Datalog rule $H \leftarrow B$ is safe if all variables in H also occur in B.
- ▶ A Datalog program P is safe if all rules $r \in P$ are safe.

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Definition (Lecture 12, Slide 17)

- ▶ A Datalog rule $H \leftarrow B$ is safe if all variables in H also occur in B.
- A Datalog program P is safe if all rules $r \in P$ are safe.

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Definition (Lecture 12, Slide 17)

- ▶ A Datalog rule $H \leftarrow B$ is safe if all variables in H also occur in B.
- ▶ A Datalog program P is safe if all rules $r \in P$ are safe.

Solution.

Consider a (possibly unsafe) Datalog program *P*.

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Definition (Lecture 12, Slide 17)

- ▶ A Datalog rule $H \leftarrow B$ is safe if all variables in H also occur in B.
- A Datalog program P is safe if all rules $r \in P$ are safe.

- Consider a (possibly unsafe) Datalog program P.
- ▶ We define a new Datalog program P':

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Definition (Lecture 12, Slide 17)

- ▶ A Datalog rule $H \leftarrow B$ is safe if all variables in H also occur in B.
- ▶ A Datalog program P is safe if all rules $r \in P$ are safe.

- Consider a (possibly unsafe) Datalog program P.
- ▶ We define a new Datalog program P':
 - we add a fresh predicate Top,

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Definition (Lecture 12, Slide 17)

- ▶ A Datalog rule $H \leftarrow B$ is safe if all variables in H also occur in B.
- A Datalog program P is safe if all rules $r \in P$ are safe.

- Consider a (possibly unsafe) Datalog program P.
- ▶ We define a new Datalog program P':
 - we add a fresh predicate Top,
 - ▶ for every ℓ -ary EDB predicate r occurring in P and all $1 \le i \le \ell$, we add a new rule $Top(x_i) \leftarrow r(x_1, \dots, x_\ell)$,

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Definition (Lecture 12, Slide 17)

- ▶ A Datalog rule $H \leftarrow B$ is safe if all variables in H also occur in B.
- A Datalog program P is safe if all rules $r \in P$ are safe.

- Consider a (possibly unsafe) Datalog program P.
- ▶ We define a new Datalog program P':
 - we add a fresh predicate Top,
 - ▶ for every ℓ -ary EDB predicate r occurring in P and all $1 \le i \le \ell$, we add a new rule $Top(x_i) \leftarrow r(x_1, \dots, x_\ell)$,
 - for every constant c occurring in P, we add a new fact Top(c),

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Definition (Lecture 12, Slide 17)

- ▶ A Datalog rule $H \leftarrow B$ is safe if all variables in H also occur in B.
- ▶ A Datalog program P is safe if all rules $r \in P$ are safe.

- Consider a (possibly unsafe) Datalog program P.
- ▶ We define a new Datalog program P':
 - we add a fresh predicate Top,
 - ▶ for every ℓ -ary EDB predicate r occurring in P and all $1 \le i \le \ell$, we add a new rule $Top(x_i) \leftarrow r(x_1, \dots, x_\ell)$,
 - for every constant c occurring in P, we add a new fact Top(c),
 - ▶ for every rule $(H \leftarrow B)[x_1, ..., x_n] \in P$, we add the rule $H \leftarrow B \land \mathsf{Top}(x_1) \land \cdots \land \mathsf{Top}(x_\ell)$.

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Definition (Lecture 12, Slide 17)

- ▶ A Datalog rule $H \leftarrow B$ is safe if all variables in H also occur in B.
- A Datalog program P is safe if all rules $r \in P$ are safe.

- Consider a (possibly unsafe) Datalog program P.
- ▶ We define a new Datalog program P':
 - we add a fresh predicate Top,
 - ▶ for every ℓ -ary EDB predicate r occurring in P and all $1 \le i \le \ell$, we add a new rule $Top(x_i) \leftarrow r(x_1, \dots, x_\ell)$,
 - for every constant c occurring in P, we add a new fact Top(c),
 - for every rule $(H \leftarrow B)[x_1, \dots, x_n] \in P$, we add the rule $H \leftarrow B \land \mathsf{Top}(x_1) \land \dots \land \mathsf{Top}(x_\ell)$.
- Then for every fact φ over the signature of P, we have that P' entails φ over an instance D iff P entails φ over D.

Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size of the original program and given schema.

Definition (Lecture 12, Slide 17)

- ▶ A Datalog rule $H \leftarrow B$ is safe if all variables in H also occur in B.
- ▶ A Datalog program P is safe if all rules $r \in P$ are safe.

- Consider a (possibly unsafe) Datalog program P.
- ▶ We define a new Datalog program P':
 - we add a fresh predicate Top,
 - ▶ for every ℓ -ary EDB predicate r occurring in P and all $1 \le i \le \ell$, we add a new rule $Top(x_i) \leftarrow r(x_1, \dots, x_\ell)$,
 - for every constant c occurring in P, we add a new fact Top(c),
 - for every rule $(H \leftarrow B)[x_1, \dots, x_n] \in P$, we add the rule $H \leftarrow B \land \mathsf{Top}(x_1) \land \dots \land \mathsf{Top}(x_\ell)$.
- ▶ Then for every fact φ over the signature of P, we have that P' entails φ over an instance D iff P entails φ over D.
- The size of P' is polynomial in the size of P, and P' is safe.

Exercise. Assume that the database uses a binary EDB predicate *edge* to store a directed graph. Try to express the following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

- 1. The database contains an even number of elements.
- 2. The graph contains a node with two outgoing edges.
- 3. The graph is 3-colourable.
- 4. The graph is *not* connected (*).
- 5. The graph does not contain a node with two outgoing edges.
- 6. The graph is a chain.

Exercise. Assume that the database uses a binary EDB predicate *edge* to store a directed graph. Try to express the following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

- 1. The database contains an even number of elements.
- 2. The graph contains a node with two outgoing edges.
- 3. The graph is 3-colourable.
- 4. The graph is *not* connected (*).
- 5. The graph does not contain a node with two outgoing edges.
- 6. The graph is a chain.

Exercise. Assume that the database uses a binary EDB predicate *edge* to store a directed graph. Try to express the following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

- 1. The database contains an even number of elements.
- 2. The graph contains a node with two outgoing edges.
- 3. The graph is 3-colourable.
- 4. The graph is *not* connected (*).
- 5. The graph does not contain a node with two outgoing edges.
- 6. The graph is a chain.

Solution.

1.

$$\begin{aligned} \mathsf{Odd}(x) &\leftarrow \mathsf{first}(x) \\ \mathsf{Odd}(y) &\leftarrow \mathsf{Even}(x), \mathsf{succ}(x,y) \\ \mathsf{Even}(y) &\leftarrow \mathsf{Odd}(x), \mathsf{succ}(x,y) \\ \mathsf{EvenParity}() &\leftarrow \mathsf{Even}(x), \mathsf{last}(x) \end{aligned}$$

Exercise. Assume that the database uses a binary EDB predicate *edge* to store a directed graph. Try to express the following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

- 1. The database contains an even number of elements.
- 2. The graph contains a node with two outgoing edges.
- 3. The graph is 3-colourable.
- 4. The graph is *not* connected (*).
- 5. The graph does not contain a node with two outgoing edges.
- 6. The graph is a chain.

Solution.

2.

$$<(x,y) \leftarrow \text{succ}(x,y) \\ <(x,z) \leftarrow <(x,y), \text{succ}(y,z) \\ <>(x,y), <>(y,x) \leftarrow <(x,y) \\ \text{TwoOutgoingEdges}() \leftarrow \text{edge}(x,y), \text{edge}(x,z), <>(y,z) \\ \end{aligned}$$

Exercise. Assume that the database uses a binary EDB predicate *edge* to store a directed graph. Try to express the following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

- 1. The database contains an even number of elements.
- 2. The graph contains a node with two outgoing edges.
- 3. The graph is 3-colourable.
- 4. The graph is *not* connected (*).
- 5. The graph does not contain a node with two outgoing edges.
- 6. The graph is a chain.

Solution.

2.

$$<(x,y) \leftarrow \text{succ}(x,y) \\ <(x,z) \leftarrow <(x,y), \text{succ}(y,z) \\ <>(x,y), <>(y,x) \leftarrow <(x,y) \\ \text{TwoOutgoingEdges}() \leftarrow \text{edge}(x,y), \text{edge}(x,z), <>(y,z) \\$$

3. This is (most likely) not expressible (unless P = NP), since 3-colourability is NP-complete and Datalog has P data complexity.

Exercise. Assume that the database uses a binary EDB predicate *edge* to store a directed graph. Try to express the following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

- 1. The database contains an even number of elements.
- 2. The graph contains a node with two outgoing edges.
- 3. The graph is 3-colourable.
- 4. The graph is *not* connected (*).
- 5. The graph does not contain a node with two outgoing edges.
- 6. The graph is a chain.

Solution.

4. C(x,y) x and y are in the same connected component D(x,y,k) x and y are not reachable via a path of length at most k N(x,y,z,k) there is no path of length k+1 from x to z via y

$$\begin{array}{ll} \mathsf{C}(x,x) \leftarrow & \mathsf{C}(x,y), \mathsf{C}(y,x) \leftarrow \mathsf{edge}(x,y) \\ \mathsf{C}(x,z) \leftarrow \mathsf{C}(x,y), \mathsf{C}(y,z) & \mathsf{D}(x,y,\ell), \mathsf{D}(y,x,\ell) \leftarrow -\mathsf{edge}(x,y), \mathsf{first}(\ell), <>(x,y) \\ \mathsf{N}(x,y,z,k) \leftarrow \mathsf{first}(y), \mathsf{D}(x,y,k) & \mathsf{N}(x,y,z,k) \leftarrow \mathsf{first}(y), \mathsf{D}(y,z,k) \\ \mathsf{N}(x,y',z,k) \leftarrow \mathsf{succ}(y,y'), \mathsf{N}(x,y,z,k), \mathsf{D}(x,y',k) & \mathsf{N}(x,y',z,k) \leftarrow \mathsf{succ}(y,y'), \mathsf{N}(x,y,z,k), \mathsf{D}(y',z,k) \\ \mathsf{D}(x,z,k') \leftarrow \mathsf{succ}(k,k'), \mathsf{D}(x,z,k), \mathsf{last}(y), \mathsf{N}(x,y,z,k) & \mathsf{Ans}() \leftarrow \mathsf{D}(x,y,k), \mathsf{last}(k) \end{array}$$

Exercise. Assume that the database uses a binary EDB predicate *edge* to store a directed graph. Try to express the following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

- 1. The database contains an even number of elements.
- 2. The graph contains a node with two outgoing edges.
- 3. The graph is 3-colourable.
- 4. The graph is *not* connected (*).
- 5. The graph does not contain a node with two outgoing edges.
- 6. The graph is a chain.

Solution.

5.

$$\begin{array}{lll} & \text{oneEdge}(x,y) \leftarrow \text{first}(y), \text{edge}(x,y) & \text{noEdge}(x,y) \leftarrow \text{first}(y), \neg \text{edge}(x,y) \\ & \text{oneEdge}(x,z) \leftarrow \text{noEdge}(x,y), \text{succ}(y,z), \text{edge}(x,z) & \text{noEdge}(x,z) \leftarrow \text{noEdge}(x,y), \text{succ}(y,z), \neg \text{edge}(x,z) \\ & \text{oneEdge}(x,z) \leftarrow \text{oneEdge}(x,y), \text{succ}(y,z), \neg \text{edge}(x,z) \\ & \text{r}(x) \leftarrow \text{last}(y), \text{noEdge}(x,y) & \text{s}(x) \leftarrow \text{first}(x), \text{r}(x) \\ & \text{r}(x) \leftarrow \text{last}(y), \text{oneEdge}(x,y) & \text{s}(y) \leftarrow \text{succ}(x,y), \text{s}(x), \text{r}(y) \\ & \text{NoTwoOutEdges}() \leftarrow \text{s}(x), \text{last}(x) & \text{s}(x) \leftarrow \text{last}(x) & \text{s}(x) \leftarrow \text{last}(x) & \text{s}(x) \leftarrow \text{last}(x), \text{r}(x) & \text{last}(x) &$$

Exercise. Assume that the database uses a binary EDB predicate *edge* to store a directed graph. Try to express the following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

- 1. The database contains an even number of elements.
- 2. The graph contains a node with two outgoing edges.
- 3. The graph is 3-colourable.
- 4. The graph is not connected (*).
- 5. The graph does not contain a node with two outgoing edges.
- 6. The graph is a chain.

Solution.

6.

```
\begin{aligned} & \mathsf{Chain}() \leftarrow \mathsf{Connected}(), \mathsf{NoTwoInEdges}(), \mathsf{NoTwoOutEdges}(), \mathsf{NoCycle}() \\ & \mathsf{Conn}(x), \mathsf{Reachable}(x) \leftarrow \mathsf{first}(x) & \mathsf{Reachable}(x) \leftarrow \mathsf{Reachable}(x), \mathsf{succ}(x,y), \mathsf{Conn}(y) \\ & \mathsf{Conn}(y) \leftarrow \mathsf{Conn}(x), \mathsf{edge}(x,y) & \mathsf{Conn}(y) \leftarrow \mathsf{Conn}(x), \mathsf{edge}(y,x) \\ & \mathsf{Connected}() \leftarrow \mathsf{last}(x), \mathsf{Reachable}(x) \\ & \mathsf{NoInEdge}(x,y) \leftarrow \mathsf{first}(x), \neg \mathsf{edge}(x,y) \\ & \mathsf{NoOutEdge}(x,y) \leftarrow \mathsf{first}(x), \neg \mathsf{edge}(y,x) \\ & \mathsf{NoInEdge}(x',y) \leftarrow \mathsf{succ}(x,x'), \mathsf{NoInEdge}(x,y), \neg \mathsf{edge}(x',y) \\ & \mathsf{NoOutEdge}(x',y) \leftarrow \mathsf{succ}(x,x'), \mathsf{NoOutEdge}(x,y), \neg \mathsf{edge}(y,x') \\ & \mathsf{NoCycle}() \leftarrow \mathsf{last}(x), \mathsf{NoInEdge}(x,y), \mathsf{NoOutEdge}(x,z) \end{aligned}
```

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow$ or $H \leftarrow$ $B_1 \land B_2$. It was claimed that entailment checking in *propHorn2* is P-hard. To support this claim, explain how entailment in propositional Horn logic can be reduced to entailment in *propHorn2*. Argue how this reduction can be accomplished in logarithmic space.

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow$ or $H \leftarrow$ 0. It was claimed that entailment checking in *propHorn2* is P-hard. To support this claim, explain how entailment in propositional Horn logic can be reduced to entailment in *propHorn2*. Argue how this reduction can be accomplished in logarithmic space.

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow$ $B_1 \land B_2$. It was claimed that entailment checking in *propHorn2* is P-hard. To support this claim, explain how entailment in propositional Horn logic can be reduced to entailment in *propHorn2*. Argue how this reduction can be accomplished in logarithmic space.

Solution.

Let *P* be a propositional Horn logic program.

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow$ or $H \leftarrow$ $B_1 \land B_2$. It was claimed that entailment checking in *propHorn2* is P-hard. To support this claim, explain how entailment in propositional Horn logic can be reduced to entailment in *propHorn2*. Argue how this reduction can be accomplished in logarithmic space.

- Let *P* be a propositional Horn logic program.
- ▶ Then, let P' be the proposition Horn logic program such that, for all formulas Body $\rightarrow H \in P$,

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow$ or

- Let *P* be a propositional Horn logic program.
- ▶ Then, let P' be the proposition Horn logic program such that, for all formulas Body $\rightarrow H \in P$,
 - ▶ if Body = B consists of a single atom, then add $B \land B \rightarrow H \in P'$,

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow$ or

- Let *P* be a propositional Horn logic program.
- ▶ Then, let P' be the proposition Horn logic program such that, for all formulas Body $\rightarrow H \in P$,
 - ▶ if Body = B consists of a single atom, then add $B \land B \rightarrow H \in P'$,
 - ▶ if Body = $B_1 \wedge \ldots \wedge B_n$ with $n \geq 3$, then add $B_1 \wedge B_2 \to F_2$, $F_2 \wedge B_3 \to F_3$, ..., $F_{n-1} \wedge B_n \to H \in P'$ where F_2, \ldots, F_{n-1} are fresh propositional variables.

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow$ or

- Let *P* be a propositional Horn logic program.
- ▶ Then, let P' be the proposition Horn logic program such that, for all formulas Body $\rightarrow H \in P$,
 - ▶ if Body = B consists of a single atom, then add $B \land B \rightarrow H \in P'$,
 - if Body = $B_1 \wedge ... \wedge B_n$ with $n \geq 3$, then add $B_1 \wedge B_2 \rightarrow F_2, F_2 \wedge B_3 \rightarrow F_3, ..., F_{n-1} \wedge B_n \rightarrow H \in P'$ where $F_2, ..., F_{n-1}$ are fresh propositional variables.
 - ▶ otherwise, add $Body \rightarrow H \in P'$.

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow$ or

- Let *P* be a propositional Horn logic program.
- ▶ Then, let P' be the proposition Horn logic program such that, for all formulas Body $\rightarrow H \in P$,
 - ▶ if Body = B consists of a single atom, then add $B \land B \rightarrow H \in P'$,
 - if Body = $B_1 \wedge ... \wedge B_n$ with $n \geq 3$, then add $B_1 \wedge B_2 \rightarrow F_2, F_2 \wedge B_3 \rightarrow F_3, ..., F_{n-1} \wedge B_n \rightarrow H \in P'$ where $F_2, ..., F_{n-1}$ are fresh propositional variables.
 - ▶ otherwise, add $Body \rightarrow H \in P'$.
- For all propositional variables V occurring in P, we have that $P \models V$ if and only if $P \models V'$.

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow$ or

- Let *P* be a propositional Horn logic program.
- ▶ Then, let P' be the proposition Horn logic program such that, for all formulas Body $\rightarrow H \in P$,
 - ▶ if Body = B consists of a single atom, then add $B \land B \rightarrow H \in P'$,
 - if Body = $B_1 \wedge ... \wedge B_n$ with $n \geq 3$, then add $B_1 \wedge B_2 \rightarrow F_2, F_2 \wedge B_3 \rightarrow F_3, ..., F_{n-1} \wedge B_n \rightarrow H \in P'$ where $F_2, ..., F_{n-1}$ are fresh propositional variables.
 - ▶ otherwise, add $Body \rightarrow H \in P'$.
- ▶ For all propositional variables V occurring in P, we have that $P \models V$ if and only if $P \models V'$.
- ▶ The program P' can be computed with a LogSpace transducer:

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow$ or

- Let *P* be a propositional Horn logic program.
- ▶ Then, let P' be the proposition Horn logic program such that, for all formulas Body $\rightarrow H \in P$,
 - ▶ if Body = B consists of a single atom, then add $B \land B \rightarrow H \in P'$,
 - if Body = $B_1 \wedge ... \wedge B_n$ with $n \geq 3$, then add $B_1 \wedge B_2 \rightarrow F_2, F_2 \wedge B_3 \rightarrow F_3, ..., F_{n-1} \wedge B_n \rightarrow H \in P'$ where $F_2, ..., F_{n-1}$ are fresh propositional variables.
 - ▶ otherwise, add $Body \rightarrow H \in P'$.
- ▶ For all propositional variables V occurring in P, we have that $P \models V$ if and only if $P \models V'$.
- ► The program *P'* can be computed with a LogSpace transducer:
 - count number of body atoms to generate these rules

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow$ or

- Let *P* be a propositional Horn logic program.
- ▶ Then, let P' be the proposition Horn logic program such that, for all formulas Body $\rightarrow H \in P$,
 - ▶ if Body = B consists of a single atom, then add $B \land B \rightarrow H \in P'$,
 - ▶ if Body = $B_1 \land ... \land B_n$ with $n \ge 3$, then add $B_1 \land B_2 \to F_2$, $F_2 \land B_3 \to F_3$, ..., $F_{n-1} \land B_n \to H \in P'$ where $F_2, ..., F_{n-1}$ are fresh propositional variables.
 - ▶ otherwise, add $Body \rightarrow H \in P'$.
- ▶ For all propositional variables V occurring in P, we have that $P \models V$ if and only if $P \models V'$.
- ► The program *P'* can be computed with a LogSpace transducer:
 - count number of body atoms to generate these rules
 - count number of rules to have fresh identifiers for every newly translated rule, and

Exercise. A Horn logic program is in *propHorn2* if every rule it contains is of the form $H \leftarrow$ or $H \leftarrow$ or

- Let *P* be a propositional Horn logic program.
- ▶ Then, let P' be the proposition Horn logic program such that, for all formulas Body $\rightarrow H \in P$,
 - ▶ if Body = B consists of a single atom, then add $B \land B \rightarrow H \in P'$,
 - ▶ if Body = $B_1 \land ... \land B_n$ with $n \ge 3$, then add $B_1 \land B_2 \to F_2$, $F_2 \land B_3 \to F_3$, ..., $F_{n-1} \land B_n \to H \in P'$ where $F_2, ..., F_{n-1}$ are fresh propositional variables.
 - ▶ otherwise, add $Body \rightarrow H \in P'$.
- ▶ For all propositional variables V occurring in P, we have that $P \models V$ if and only if $P \models V'$.
- ► The program *P'* can be computed with a LogSpace transducer:
 - count number of body atoms to generate these rules
 - count number of rules to have fresh identifiers for every newly translated rule, and
 - count the length of any propositional variable name to have unique identifiers

Exercise. Prove that entailment checking in propositional Horn logic is P-hard.

Exercise. Prove that entailment checking in propositional Horn logic is P-hard. Solution.

Exercise. Prove that entailment checking in propositional Horn logic is $\operatorname{P-hard.}$ Solution.

▶ Consider a P-TM $\mathcal{M} = \langle Q, \Gamma, \Sigma, q_0, q_f, \delta \rangle$ and an input word $w = w_1, \dots, w_n \in \Sigma^*$.

Exercise. Prove that entailment checking in propositional Horn logic is P-hard. Solution.

- ▶ Consider a P-TM $\mathcal{M} = \langle Q, \Gamma, \Sigma, q_0, q_f, \delta \rangle$ and an input word $w = w_1, \dots, w_n \in \Sigma^*$.
- ▶ We define a Datalog program P such that P entails a predicate Accept() iff the TM M accepts w.

- ▶ Consider a P-TM $\mathcal{M} = \langle Q, \Gamma, \Sigma, q_0, q_f, \delta \rangle$ and an input word $w = w_1, \dots, w_n \in \Sigma^*$.
- ▶ We define a Datalog program *P* such that *P* entails a predicate *Accept()* iff the TM *M* accepts *w*.
- ▶ Since \mathcal{M} is polynomial, \mathcal{M} halts after at most n^k steps for some $k \ge 0$.

- ▶ Consider a P-TM $\mathcal{M} = \langle Q, \Gamma, \Sigma, q_0, q_f, \delta \rangle$ and an input word $w = w_1, \dots, w_n \in \Sigma^*$.
- ▶ We define a Datalog program *P* such that *P* entails a predicate *Accept()* iff the TM *M* accepts *w*.
- ▶ Since \mathcal{M} is polynomial, \mathcal{M} halts after at most n^k steps for some $k \ge 0$.
- Constants:
 - cell_{i,j} for all $1 \le i \le j \le n^k + 1$, and
 - ▶ all elements q ∈ Q and γ ∈ Γ

- ▶ Consider a P-TM $\mathcal{M} = \langle Q, \Gamma, \Sigma, q_0, q_f, \delta \rangle$ and an input word $w = w_1, \dots, w_n \in \Sigma^*$.
- ▶ We define a Datalog program *P* such that *P* entails a predicate *Accept*() iff the TM *M* accepts *w*.
- ▶ Since \mathcal{M} is polynomial, \mathcal{M} halts after at most n^k steps for some $k \ge 0$.
- Constants:
 - cell_{i,j} for all $1 \le i \le j \le n^k + 1$, and
 - ▶ all elements $q \in Q$ and $\gamma \in \Gamma$
- Facts:
 - right(cell_{i,j}, cell_{i,j+1}), future(cell_{i,j}, cell_{i+1,j}), for $1 \le i \le j \le n^k$,
 - S(cell_{0,i}, w_i) for $1 \le i \le n$, and S(cell_{0,i}, b) for $n + 1 \le i \le n^k$, and
 - ightharpoonup T(cell_{0,0}, q_0)

- ▶ Consider a P-TM $\mathcal{M} = \langle Q, \Gamma, \Sigma, q_0, q_f, \delta \rangle$ and an input word $w = w_1, \dots, w_n \in \Sigma^*$.
- ▶ We define a Datalog program *P* such that *P* entails a predicate *Accept()* iff the TM *M* accepts *w*.
- ▶ Since \mathcal{M} is polynomial, \mathcal{M} halts after at most n^k steps for some $k \ge 0$.
- Constants:
 - cell_{i,j} for all $1 \le i \le j \le n^k + 1$, and
 - ▶ all elements $q \in Q$ and $\gamma \in \Gamma$
- Facts:
 - right(cell_{i,j}, cell_{i,j+1}), future(cell_{i,j}, cell_{i+1,j}), for $1 \le i \le j \le n^k$,
 - $ightharpoonup S(\text{cell}_{0,i}, w_i)$ for $1 \le i \le n$, and $S(\text{cell}_{0,i}, b)$ for $n+1 \le i \le n^k$, and
 - ightharpoonup T(cell_{0,0}, q_0)
- Rules:
 - ► Accept() \leftarrow T(x, q_t).
 - ► NTR(z) \leftarrow T(x, y) \land right(x, z), NTR(y) \leftarrow NTR(x) \land right(x, y), NTL(z) \leftarrow T(x, y) \land right(z, x), NTL(x) \leftarrow right(x, y) \land NTL(y), NT(x) \leftarrow NTR(x), NT(x) \leftarrow NTL(x), S(y, z) \leftarrow NT(x) \land future(x, y) \land S(x, z),
 - $T(z,q') \leftarrow T(x,q) \land S(x,\gamma) \land \text{future}(x,y) \land \text{right}(z,y), S(y,\gamma') \leftarrow T(x,q) \land S(x,\gamma) \land \text{future}(x,y) \text{ for all } \langle q,\gamma,q',\gamma',L\rangle \in \delta,$
 - and similarly for all $\langle q, \gamma, q', \gamma', R \rangle \in \delta$

- ▶ Consider a P-TM $\mathcal{M} = \langle Q, \Gamma, \Sigma, q_0, q_f, \delta \rangle$ and an input word $w = w_1, \dots, w_n \in \Sigma^*$.
- ▶ We define a Datalog program P such that P entails a predicate Accept() iff the TM M accepts w.
- ▶ Since \mathcal{M} is polynomial, \mathcal{M} halts after at most n^k steps for some $k \ge 0$.
- Constants:
 - cell_{i,j} for all $1 \le i \le j \le n^k + 1$, and
 - ▶ all elements $q \in Q$ and $\gamma \in \Gamma$
- Facts:
 - right(cell_{i,j}, cell_{i,j+1}), future(cell_{i,j}, cell_{i+1,j}), for $1 \le i \le j \le n^k$,
 - S(cell_{0,i}, w_i) for $1 \le i \le n$, and S(cell_{0,i}, b) for $n + 1 \le i \le n^k$, and
 - ightharpoonup T(cell_{0,0}, q_0)
- Rules:
 - ► Accept() \leftarrow T(x, q_t).
 - ► NTR(z) ← T(x, y) \wedge right(x, z), NTR(y) ← NTR(x) \wedge right(x, y), NTL(z) ← T(x, y) \wedge right(z, x), NTL(x) ← right(x, y) \wedge NTL(y), NT(x) ← NTR(x), NT(x) ← NTL(x), S(y, z) ← NT(x) \wedge future(x, y) \wedge S(x, z),
 - T(z, q') \leftarrow T(x, q) \land S(x, y) \land future(x, y) \land right(z, y), S(y, y') \leftarrow T(x, q) \land S(x, y) \land future(x, y) for all $\langle q, \gamma, q', \gamma', L \rangle \in \delta$,
 - and similarly for all $\langle q, \gamma, q', \gamma', R \rangle \in \delta$
- ▶ The grounding of *P* is a Propositional Horn Logic program that is polynomial in the size of *P* (which is polynomial in the size of *n*).

- ▶ Consider a P-TM $\mathcal{M} = \langle Q, \Gamma, \Sigma, q_0, q_f, \delta \rangle$ and an input word $w = w_1, \dots, w_n \in \Sigma^*$.
- ▶ We define a Datalog program *P* such that *P* entails a predicate *Accept()* iff the TM *M* accepts *w*.
- ▶ Since \mathcal{M} is polynomial, \mathcal{M} halts after at most n^k steps for some $k \ge 0$.
- Constants:
 - cell_{i,j} for all $1 \le i \le j \le n^k + 1$, and
 - ▶ all elements $q \in Q$ and $\gamma \in \Gamma$
- Facts:
 - right(cell_{i,j}, cell_{i,j+1}), future(cell_{i,j}, cell_{i+1,j}), for $1 \le i \le j \le n^k$,
 - $ightharpoonup S(\operatorname{cell}_{0,i}, w_i)$ for $1 \le i \le n$, and $S(\operatorname{cell}_{0,i}, b)$ for $n+1 \le i \le n^k$, and
 - ightharpoonup T(cell_{0,0}, q_0)
- Rules:
 - ► Accept() \leftarrow T(x, q_t).
 - ► NTR(z) \leftarrow T(x, y) \land right(x, z), NTR(y) \leftarrow NTR(x) \land right(x, y), NTL(z) \leftarrow T(x, y) \land right(z, x), NTL(x) \leftarrow right(x, y) \land NTL(y), NT(x) \leftarrow NTR(x), NT(x) \leftarrow NTL(x), S(y, z) \leftarrow NT(x) \land future(x, y) \land S(x, z),
 - T(z, q') \leftarrow T(x, q) \wedge S(x, y) \wedge future(x, y) \wedge right(z, y), S(y, y') \leftarrow T(x, q) \wedge S(x, y) \wedge future(x, y) for all $\langle q, \gamma, q', \gamma', L \rangle \in \delta$,
 - ▶ and similarly for all $\langle q, \gamma, q', \gamma', R \rangle \in \delta$
- ▶ The grounding of *P* is a Propositional Horn Logic program that is polynomial in the size of *P* (which is polynomial in the size of *n*).
- ground(P) can be computed by a LogSpace transducer.

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper* cycle, i.e., a cycle that is not of the form edge(a, a).

Can you express this property using ...

- 1. ... a successor ordering?
- 2. ... atomic EDB negation?
- 3. ... an equality predicate \approx with the obvious semantics?
- 4. ... an inequality predicate ${\ensuremath{\not{lpha}}}$ with the obvious semantics?

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper* cycle, i.e., a cycle that is not of the form edge(a, a).

Can you express this property using ...

- 1. ... a successor ordering?
- 2. ... atomic EDB negation?
- 3. ... an equality predicate \approx with the obvious semantics?
- 4. ... an inequality predicate $\not\approx$ with the obvious semantics?

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper* cycle, i.e., a cycle that is not of the form edge(a, a).

Can you express this property using ...

- 1. ... a successor ordering?
- 2. ... atomic EDB negation?
- 3. ... an equality predicate \approx with the obvious semantics?
- 4. ... an inequality predicate ≉ with the obvious semantics?

Solution.

0. We know that Datalog is *homomorphism-closed*, but the property of having a proper cycle is not, since any edge-cycle maps homomorphically onto edge(*a*, *a*).

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper* cycle, i.e., a cycle that is not of the form edge(a, a).

Can you express this property using ...

- 1. ... a successor ordering?
- 2. ... atomic EDB negation?
- 3. ... an equality predicate \approx with the obvious semantics?
- 4. ... an inequality predicate ≉ with the obvious semantics?

Solution.

0. We know that Datalog is *homomorphism-closed*, but the property of having a proper cycle is not, since any edge-cycle maps homomorphically onto edge(*a*, *a*).

1.

$$<(x,y) \leftarrow \mathsf{succ}(x,y) \\ <(x,z) \leftarrow <(x,y), \mathsf{succ}(y,z) \\ \mathsf{properPath}(x,y) \leftarrow \mathsf{properEdge}(x,y) \leftarrow \mathsf{edge}(x,y), <(y,x) \\ \mathsf{properPath}(x,z) \leftarrow \mathsf{properPath}(x,y), \mathsf{properEdge}(y,z) \\ \mathsf{properCycle}() \leftarrow \mathsf{properPath}(x,x) \\ \end{aligned}$$

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper* cycle, i.e., a cycle that is not of the form edge(a, a).

Can you express this property using ...

- 1. ... a successor ordering?
- 2. ... atomic EDB negation?
- 3. ... an equality predicate \approx with the obvious semantics?
- 4. ... an inequality predicate ≉ with the obvious semantics?

- 0. We know that Datalog is *homomorphism-closed*, but the property of having a proper cycle is not, since any edge-cycle maps homomorphically onto edge(*a*, *a*).
- Suppose that P is a program entailing Accept iff edge contains a proper cycle.

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper* cycle, i.e., a cycle that is not of the form edge(a, a).

Can you express this property using ...

- 1. ... a successor ordering?
- 2. ... atomic EDB negation?
- 3. ... an equality predicate \approx with the obvious semantics?
- 4. ... an inequality predicate ≉ with the obvious semantics?

- 0. We know that Datalog is *homomorphism-closed*, but the property of having a proper cycle is not, since any edge-cycle maps homomorphically onto edge(*a*, *a*).
- Suppose that P is a program entailing Accept iff edge contains a proper cycle.
 - Consider the DB $I = \{ edge(i, j) \mid i, j \in \{1, 2\} \}.$

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper* cycle, i.e., a cycle that is not of the form edge(a, a).

Can you express this property using ...

- 1. ... a successor ordering?
- 2. ... atomic EDB negation?
- 3. ... an equality predicate \approx with the obvious semantics?
- 4. ... an inequality predicate ≉ with the obvious semantics?

- 0. We know that Datalog is *homomorphism-closed*, but the property of having a proper cycle is not, since any edge-cycle maps homomorphically onto edge(*a*, *a*).
- Suppose that P is a program entailing Accept iff edge contains a proper cycle.
 - Consider the DB $I = \{ edge(i,j) \mid i,j \in \{1,2\} \}.$
 - ▶ Then $P, I \models$ Accept, and there must be a derivation of Accept that does not use negation.

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper* cycle, i.e., a cycle that is not of the form edge(a, a).

Can you express this property using ...

- 1. ... a successor ordering?
- 2. ... atomic EDB negation?
- 3. ... an equality predicate \approx with the obvious semantics?
- 4. ... an inequality predicate ≉ with the obvious semantics?

- 0. We know that Datalog is *homomorphism-closed*, but the property of having a proper cycle is not, since any edge-cycle maps homomorphically onto edge(*a*, *a*).
- Suppose that P is a program entailing Accept iff edge contains a proper cycle.
 - Consider the DB $I = \{ edge(i, j) \mid i, j \in \{1, 2\} \}.$
 - ▶ Then $P, I \models$ Accept, and there must be a derivation of Accept that does not use negation.
 - Let $P_+ \subseteq P$ be the negation-free subset of P.

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper* cycle, i.e., a cycle that is not of the form edge(a, a).

Can you express this property using ...

- 1. ... a successor ordering?
- 2. ... atomic EDB negation?
- 3. ... an equality predicate \approx with the obvious semantics?
- 4. ... an inequality predicate ≉ with the obvious semantics?

- 0. We know that Datalog is *homomorphism-closed*, but the property of having a proper cycle is not, since any edge-cycle maps homomorphically onto edge(*a*, *a*).
- Suppose that P is a program entailing Accept iff edge contains a proper cycle.
 - Consider the DB $I = \{ edge(i, j) \mid i, j \in \{1, 2\} \}.$
 - ▶ Then $P, I \models$ Accept, and there must be a derivation of Accept that does not use negation.
 - Let $P_+ \subseteq P$ be the negation-free subset of P.
 - $P_+, I \models$ Accept, and I maps homomorphically onto { edge(a, a)}, contradiction.

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper* cycle, i.e., a cycle that is not of the form edge(a, a).

Can you express this property using ...

- 1. ... a successor ordering?
- 2. ... atomic EDB negation?
- 3. ... an equality predicate \approx with the obvious semantics?
- 4. ... an inequality predicate ≉ with the obvious semantics?

- 0. We know that Datalog is *homomorphism-closed*, but the property of having a proper cycle is not, since any edge-cycle maps homomorphically onto edge(*a*, *a*).
- Suppose that P is a program entailing Accept iff edge contains a proper cycle.
 - Consider the DB $I = \{ edge(i, j) \mid i, j \in \{1, 2\} \}.$
 - ▶ Then $P, I \models$ Accept, and there must be a derivation of Accept that does not use negation.
 - Let $P_+ \subseteq P$ be the negation-free subset of P.
 - $P_+, I \models Accept, and I maps homomorphically onto { edge(a, a) }, contradiction.$
- Since ≈ can be axiomatised using x ≈ x ←, Datalog with an equality predicate is not more expressive than Datalog.

Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a *proper* cycle, i.e., a cycle that is not of the form edge(a, a).

Can you express this property using ...

- 1. ... a successor ordering?
- 2. ... atomic EDB negation?
- 3. ... an equality predicate \approx with the obvious semantics?
- 4. ... an inequality predicate ≉ with the obvious semantics?

- 0. We know that Datalog is *homomorphism-closed*, but the property of having a proper cycle is not, since any edge-cycle maps homomorphically onto edge(*a*, *a*).
- Suppose that P is a program entailing Accept iff edge contains a proper cycle.
 - Consider the DB $I = \{ edge(i, j) \mid i, j \in \{1, 2\} \}.$
 - ▶ Then $P, I \models$ Accept, and there must be a derivation of Accept that does not use negation.
 - Let $P_+ \subseteq P$ be the negation-free subset of P.
 - $P_+, I \models Accept, and I maps homomorphically onto {edge(a, a)}, contradiction.$
- Since ≈ can be axiomatised using x ≈ x ←, Datalog with an equality predicate is not more expressive than Datalog.
- 4.