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Abstract

We introduce and investigate the expressive description logic (DL) ALCSCCY™T, in
which the global and local cardinality constraints introduced in previous papers can be
mixed. On the one hand, we prove that this does not increase the complexity of satisfiability
checking and other standard inference problems. On the other hand, the satisfiability
problem becomes undecidable if inverse roles are added to the languages. In addition, even
without inverse roles, conjunctive query entailment in this DL turns out to be undecidable.
We prove that decidability of querying can be regained if global and local constraints are
not mixed and the global constraints are appropriately restricted. The latter result is
based on a locally-acyclic model construction, and it reduces query entailment to ABox
consistency in the restricted setting, i.e., to ABox consistency w.r.t. restricted cardinality
constraints in ALCSCC, for which we can show an ExpTime upper bound.

1 Introduction

Description Logics (DLs) [7] are a well-investigated family of logic-based knowledge representa-
tion languages, which are frequently used to formalize ontologies for application domains such
as biology and medicine [14]. To define the important notions of such an application domain
as formal concepts, DLs state necessary and sufficient conditions for an individual to belong
to a concept. These conditions can be Boolean combinations of atomic properties required for
the individual (expressed by concept names) or properties that refer to relationships with other
individuals and their properties (expressed as role restrictions). Using an example from [8], the
concept of a motor vehicle can be formalized by the concept description

Vehicle M dpart. Motor,

which uses the concept names Vehicle and Motor and the role name part as well as the concept
constructors conjunction (1) and existential restriction (3r.C). The concept inclusion (CI)

Motor-vehicle C Vehicle M dpart. Motor
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then states that every motor vehicle needs to belong to this concept description. Numerical
constraints on the number of role successors (so-called number restrictions) have been used early
on in DLs [10, 16, 15]. For example, using number restrictions, motorcycles can be constrained
to being motor vehicles with exactly two wheels:

Motorcycle © Motor-vehicle M (< 2 part. Wheel) 1 (> 2 part. Wheel).

The exact complexity of reasoning in ALCQ, the DL that has all Boolean operations and
number restrictions of the form (< nr.C) and (= nr.C) as concept constructors, was determined
by Stephan Tobies [23, 25]: it is PSpace-complete without CIs and ExpTime-complete w.r.t.
CIs, independently of whether the numbers occurring in the number restrictions are encoded
in unary or binary. Note that, using unary coding of numbers, the number n is assumed to
contribute n to the size of the input, whereas with binary coding the size of the number n is
logn. Thus, for large numbers, using binary coding is more realistic.

Whereas number restrictions are local in the sense that they consider role successors of an
individual under consideration (e.g. the wheels that are part of a particular motor vehicle),
cardinality restrictions on concepts (CRs) [5, 24] are global, i.e., they consider all individuals
in an interpretation. For example, the cardinality restriction

(<45000000 ( Car M Jregistered-in. German-district))

states that at most 45 million cars are registered all over Germany. Such cardinality restrictions
can be seens as quantitative extensions of Cls since a CI of the form C' T D can be expressed
by the CR (<0 (C 1 —=D)). The availability of CRs increases the complexity of reasoning: as
mentioned above, consistency in ALCQ w.r.t. Cls is ExpTime-complete, but consistency w.r.t.
CRs is NExpTime-complete if the numbers occurring in the CRs are assumed to be encoded in
binary [24]. With unary coding of numbers, consistency stays ExpTime-complete even w.r.t.
CRs [24], but the above example considering 45 million cars clearly shows that unary coding is
not appropriate if numbers with large values are employed.

In two previous publications we have, on the one hand, extended the DL ALCQ by more
expressive number restrictions using cardinality and set constraints expressed in the quantifier-
free fragment of Boolean Algebra with Presburger Arithmetic (QFBAPA) [17]. In the resulting
DL ALCSCC, which was introduced and investigated in [1], cardinality and set constraints are
applied locally, i.e., they refer to the role successors of an individual under consideration. For
example, we can state that the number of cylinders of a motor must coincide with the number
of spark plugs in this motor, without fixing what this number actually is, using the following
ALCSCC CL:

Motor C succ(|part N Cylinder| = |part N SparkPlug)).

It was shown in [1] that pure concept satisfiability in ALCSCC is a PSPACE-complete problem,
and concept satisfiability w.r.t. a general TBox is EXPTIME-complete. This shows that the more
expressive number restrictions do not increase the complexity of reasoning since reasoning in
ALCQ has the same complexity, as mentioned above.

On the other hand, we have extended the terminological formalism of the well-known de-
scription logic ALC! from CIs not only to CRs, but to more general cardinality constraints
expressed in QFBAPA [8], which we called extended cardinality constraints (ECBoxes). These

IThe DL .ALC is the fragment of ALCQ in which only number restrictioins of the form (< 07.=C) (written
Vr.C) and (> 1r.C) (written 3r.C) are available.
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constraints are global since they refer to all individuals in the interpretation domain. An ex-
ample of a constraint expressible this way, but not expressible using CRs is

2 - |Carn Jregistered-in. German-district N Ifuel. Diesel]
< | Carn Jregistered-in. German-district N 3fuel. Petrol]

which states that, in Germany, cars running on petrol outnumber cars running on diesel by a
factor of at least two. It was shown in [8] that reasoning w.r.t. ECBoxes is still in NEXPTIME
even if the numbers occurring in the constraints are encoded in binary. The NEXPTIME lower
bound follows from the result of Tobies [24] CRs mentioned above. This complexity can be
lowered to EXPTIME if a restricted form of cardinality constraints (RCBoxes) is used. Such
RCBoxes are still powerful enough to express statistical knowledge bases [19].

An obvious way to generalize these two approaches is to combine the two extensions, i.e.,
to consider extended cardinality constraints, but now on ALCSCC concepts rather than just
ALC concepts. This combination was investigated in [2], where a NExPTIME upper bound was
established for reasoning in ALCSCC w.r.t. ECBoxes. It is also shown in [2] that reasoning
w.r.t. RCBoxes stays in ExpTime also for ALCSCC.

Here we go one step further by allowing for a tighter integration of global and local con-
straints. The resulting logic, which we call ALCSCC*™, allows, for example, to relate the
number of role successors of a given individual with the overall number of elements of a certain
concept. For example, the ALCSCC™™ concept description?

sat(|likes N Cat| = | Cat|)

describes cat lovers, i.e., individuals that like all cats, independently of whether these cats
are related to them by some role or not. More generally, DLs that can express both local
cardinality constraints (i.e., constraints concerning the role successors of specific individuals)
and global cardinality constraints (i.e., constraints on the overall cardinality of concepts) can,
for instance, be used to check the correctness of statistical statements. For example, if a German
car company claims that they have produced more than IV cars in a certain year, and P% of the
tires used for their cars were produced by Betteryear, this may be contradictory to a statement of
Betteryear that they have sold less than M tires in Germany. Such statistical information may,
of course, also influence the answers to queries. If we know that the car company VMW uses
only tires from Betteryear or Badmonth, but the statistical information allows us to conclude
that another car company has actually bought all the tires sold by Betteryear, then we know
that the cars sold by VMW all have tires produced by Badmonth. This motivates investigating
DLs with expressive cardinality constraints, and to consider not just standard inferences such
as satisfiability checking for these DLs, but also query answering.

In the present paper, we show that, from a worst-case complexity point of view, the ex-
tended expressivity of ALCSCCT™" comes for free if we consider classical reasoning problems.
Concept satisfiability in ALCSCCT™" has the same complexity as in ALC and ALCSCC with
global cardinality constraints: it is NEXPTIME-complete. However, if we add inverse roles, then
concept satisfiability becomes undecidable. In addition, for effective conjunctive query answer-
ing this logic turns out to be too expressive. We show that conjunctive query entailment w.r.t.
ALCSCCTT knowledge bases is, in fact, undecidable. In contrast, we can show that conjunctive
query entailment w.r.t. (an extension of) ALCSCC ERCBoxes is decidable. It is achieved by
a reduction from query entailement over arbitrary structures to query entailment over locally

2To distinguish between constraint expressions in ALCSCC and in ALCSCCTT, which have a different
semantics, we use different keywords for them.
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acyclic graph, based on the three step model construction. Later, the FxpTime upper bound
is achieved by employing Lutz [18] algorithm for CQ query entailment designed for ALCHQ.

We assume the reader to be sufficiently familiar with all the standard notions of description
logics [6, 9, 22].

2 The logic ALCSCCT

As in [1, 8], we use the quantifier-free fragment of Boolean Algebra with Presburger Arithmetic
(QFBAPA) to express our constraints. In this logic, one can build set terms by applying
Boolean operations (intersection N, union U, and complement -¢) to set variables as well as the
constants ) and U. Set terms s,t can then be used to state set constraints, which are equality
and inclusion constraints of the form s = ¢, s C ¢, where s, ¢ are set terms. Presburger Arithmetic
(PA) expressions are built from integer constants and set cardinalities |s| using addition as well
as multiplication with an integer constant. They can be used to form cardinality constraints
of the form k = ¢,k < ¢, Ndvd ¢, where k, ¢ are PA expressions, N is an integer constant, and
dvd stands for divisibility. A QFBAPA formula is a Boolean combination of set and cardinality
constraints. A solution o of a QFBAPA formula ¢ assigns a finite set o (i) to U and subsets
of o(U) to set variables such that ¢ is satisfied by this assignment (see [1] for more details). A
QFBAPA formula ¢ is satisfiable if it has a solution. In [17] it is shown that the satisfiability
problem for QFBAPA formulae is NP-complete.

We are now ready to define our new logic, which we call ALCSCCH™" to indicate that
it is an extension of the logic ALCSCC introduced in [1]. When defining the semantics of
ALCSCCTT, we restrict the attention to finite interpretations to ensure that cardinalities of
concept descriptions are always well-defined non-negative integers.

Definition 1. Given disjoint finite sets No and N of concept names and role names, respec-
tively, ACCSCCT™ concept descriptions (short: concepts) are Boolean combinations of concept
names and constraint expressions, where a constraint expression is of the form sat(c) for a set
constraint or a cardinality constraint ¢ that uses role names and ALCSCCt™ concept descrip-
tions in place of set variables. As usual, we use T (top) and L (bottom) as abbreviations for
ALl—=A and AN —A, respectively.

A finite interpretation of No and N consists of a finite, non-empty set AT and a mapping
L that maps every concept name A € N¢ to a subset AT of AT and every role name r € Ny to
a binary relation r* over AT. For a given element d € AT we define r*(d) := {e € AT | (d,e) €
rT}. The interpretation function T is inductively extended to ALCSCCT™ concept descriptions
by interpreting the Boolean operators as usual, and the constraint expressions as follows:

sat(c)t := {d € AT | the mapping 1@ satisfies c}, where T4 maps
o () to (e :=0 and U to U .= AT,

o the ALCSCCt™ concept descriptions C' occurring in ¢ to C*é := C7,

e and the role names r occurring in ¢ to r¥¢ .= rZ(d).

The ALCSCC™™ concept description C' is satisfiable if there is a finite interpretation I such
that CT # 0.

Note that the interpretation of concepts as set variables in ALCSCCT is global in the sense

that it does not depend on d, i.e., CZ¢ = CZe for all d,e € AT. In contrast, the interpretation
of role names 7 as set variables is local since only the r-successors of d are considered by -Z¢.
In ALCSCC, also the interpretation of concepts as set variables is local since in the semantics

4
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of ALCSCC the mapping -Z¢ considers only the elements of CZ that are role successors of d for
some role name in Ng.

Example 2. If A is a concept name and 7 is a role name, then the folowing is an ALCSCCT™
concept description:

E :=sat(|A] > 4) N sat(A C r) M sat(|r| < 3).

The first constraint expression requires that the overall size of the concept A is at least 4. Thus,
if Z is an interpretation with |AZ| < 3, then no element of A% can belong to sat(|A| > 4)T.
Otherwise, every element of A belongs to sat(JA| > 4)Z. The second constraint says that
every element of A must be an r successor of the given individual. Thus, sat(A C )T consists
of those elements of AT that are connected, via the role r, with every element of AZ. The
third constraint is satisfied by those element of AZ that have at most 3 r successors. Thus, the
third and the second constraint put together require that A% has at most 3 elements, which
contradicts the first constraint. Thus, we have seen that the concept E is actually unsatisfiable.

Using the syntax for ALCSCC introduced in [1], we can write the following ALCSCC concept
description

E":= succ(A C r) N succ(|r| < 3),

and state the global constraint |A| > 4 in an ECBox. But now we have that E’ is satisfiable
w.r.t. this ECBox since the constraints in E’ are local. In fact, the first constaint in E’ is
satisfied by individuals for which every role successor that belongs to A is also an 7 successors
of this indiviudual. Together with the second constraint, this only implies that an individual
that belongs to E’ has at most three role successors belonging to A, but this does not constrain
the overall number of elements of A, and thus does not contradict the statement in the ECBox,
which is global. For example, an interpretation Z consisting of 4 individuals belonging to A,
none of which has any role successors, is a model of the global constraint |A| > 4, and every of
its elements belongs to E’. In contrast, none of the individuals in Z belongs to the ALCSCCT™
concept C since the second constraint of F is clearly violated.

The local successor constraints of ALCSCC can clearly be simulated in ALCSCC™ ™ by using
C'N(U,eny, ) instead of C when formulating the constraint. Thus, ALCSCC concepts can be
expressed by ALCSCCH™" concepts. In addition, extended cardinality constraints (ECBoxes),
as introduced in [8], are expressible within ALCSCC™™ concept descriptions, as are nominals,
the universal role, and role negation.

Proposition 3. ALCSCCT concepts can polynomially express nominals, role conjunctions,
and ALCSCC ECBoxes, and thus also ABozes, ALC ECBozes and ALCSCC TBozes. In addi-
tion, they have the same expressivity as concepts of ALCSCC extended with the universal role
or with role negation, whereas both of these features are not expressible in plain ALCSCC.

Proof. ECBoxes correspond to Boolean combinations of concept descriptions of the form sat(c)
where ¢ contains only concept descriptions as set variables. Since the concept descriptions
occurring in ¢ are interpreted globally, such a constraint expression sat(c) is satisfied either by
no element of AZ or by all of them. Consequently, their effect is to enforce the constraint on
the whole interpretation domain if they are conjoined to a concept description.

Nominals are concepts that must be interpreted as singleton sets. Given a concept name
A, we can enforce that it is interpreted as a singleton set using the constraint expression
sat(]A| = 1). Regarding role conjunction, the constraint sat(T C sat(t = r Ns)) ensures that,



DLs with Global and Local Cardinality Constraints Baader, Bednarczyk, and Rudolph

for every individual d, its t successors are exactly the individulas that are both its r and s
SUCCESSOrs.

The constraint sat(T C sat(u = U)) ensures that u is the universal role since it says that the
u-successors of every indivudual are all the elements of the interpretatiin domain. Conversely,
if the universal role is available, then every indiuvidual has all indiuviduals as a role successors,
and thus the dofference between th semantics of ALCSCC and ALCSCCH™T goes away.

Regarding role negation, for given role names r,7, the constraint sat(T C sat(r NT C 0))
enforces that, for every individual, the sets of its r and 7 successors are disjoint. In addition,
the constraint sat(T C sat(|r| + |F| = |U])) says that elements of the domain that are not r
successors of a given individual must be 7 successors. Thus, we can express in ALCSCCTT
that the role 7 is interpreteted as the complement of r, i.e. 7% = AT x AT\ 7% for every finite
interpretation Z. Conversely, role negation allows us to express the universal role in ALCSCC:
the ALCSCC constraint sat(rU—r = u) is satisfied by an individual d if the set of its u successors
consists of it r and its —r successors, and thus all elements of the interpretation domain. Thus,
conjoining thus constraint at every place where u is used ensures that u really acts as the
universal role. O

3 Satisfiability of ALCSCC*" concept descriptions

In the following we consider an ALCSCC™™ concept description E and show how to test E
for satisfiability by reducing this problem to the problem of testing satisfiability of QFBAPA
formulae. Since the reduction is exponential and satisfiability in QFBAPA is in NP, this yields
a NEXPTIME upper bound for satisfiability of ALCSCCT™ concept descriptions. This bound
is optimal since consistency of extended cardinality constraints in ALC, as introduced in [8],
is already NEXPTIME hard, and can be expressed as an ALCSCCH™ satisfiability problem by
Proposition 3.

Our NEXPTIME algorithm combines ideas from the satisfiability algorithm for ALCSCC
concept descriptions [1] and the consistency procedure for ALC ECBoxes [8]. In particular,
we use the notion of a type, as introduced in [8]. This notion is also similar to the Venn
regions employed in [1]. Given a set of concept descriptions M, the type of an individual in an
interpretation consists of the elements of M to which the individual belongs. Such a type ¢ can
also be seen as a concept description C}, which is the conjunction of all the elements of . We
assume in the following that M consists of all subdescriptions of the concept description E as
well as the negations of these subdescriptions. In Example 2, the set M consists of

E,-E, sat(|A| > 4),—sat(|A] > 4), sat(A C r),—sat(A C r), sat(|r] < 3),-sat(|r| < 3), 4, -A.
Definition 4. A subset t of M is a type for E if it satisfies the following properties:

1. for every concept description -C € M, either C' or =C belongs to t;

2. for every concept description C M1 D € M, we have that CTM D €t iff C €t and D € t;

3. for every concept description C' U D € M, we have that CUD €t iff C €t or D € t.

We denote the set of all types for E with types(E). Given an interpretation T and an individual
d € AZ, the type of d is the set tz(d) := {C € M | d € CT}.

It is easy to show that the type of an individual really satisfies the conditions stated in the
definition of a type. In our example, the following are the only types containing E:

t {E, sat(J]A] > 4), sat(A C r), sat(|r] < 3), A}, (1)
to = {E,sat(|A| > 4),sat(A Cr),sat(|r] < 3),-A}. (2)
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Due to Condition (1) in the definition of types, concept descriptions Cy, Cp induced by
different types t # t' are disjoint, and all concept descriptions in M can be obtained as the
disjoint union of the concept descriptions induced by the types containing them, i.e., we have

ct= \J cf

t type with C €t

for all C' € M and finite interpretations Z. In particular, the following holds for all finite

interpretations Z:
cfl= > ICfl and |CF=[()C7,

t type with C€t Cet

where the latter identity is an immediate consequence of the definition of C; as the conjunction
of all the elements of ¢. In our example, we have |E%| = |CL | + |CE|.

Given a type t, the constraints occurring in the top-level Boolean structure of ¢ induce a
QFBAPA formula 1, in which the concepts C and roles r occurring in these constraints are
replaced by set variables X and X/, respectively. In our example, ¢; and to contain the same
constraints, and the associated QFBAPA formulae are clearly unsatisfiable:

Wy, = |XA| >4NX»y ngf /\|Xff

<3 fori=1,2.

Note that set variables corresponding to concepts are independent of the type t, i.e., they are
shared by all types, whereas the set variables corresponding to roles are different for different
types. This corresponds to the fact that roles are evaluated locally, but concepts are evaluated
globally in the semantics of ALCSCCT™. In order to ensure that the Boolean structure of
concepts is respected by the set variables, we introduce the formula

B = /\ Xenp = Xe N Xp A /\ Xeup = XcUXp A /\ X_c = (X¢o)".
cnbDeM cuDeM -CeM

Overall, we translate the ALCSCC™™ concept E into the QFBAPA formula

op:=(Xel =) ABA N ([)Xel=0)V e

tetypes(E) Céet

Intuitively, to satisfy F, we need to have at least one element in it, which explains the first
conjunct. The third conjunct together with 5 ensures that, for any type that is realized (i.e.,
has elements), the constraints of this type are satisfied.

In our example, § ensures that Xg = ﬂCetl Xco U mCet2 X is satisfied. Together with
| XE| > 1 this implies that there is an 7 € {1, 2} such that |[s¢, Xc| > 0 must hold. But then
we need to satisfy 1);,, which is impossible since this QFBAPA formula is unsatisfiable. Thus,
we have seen that dg is not solvable, which corresponds to the fact E is unsatisfiable.

The following two lemmas state that there is indeed a 1-1-relationship between solvability
of g and satisfiability of E.

Lemma 5. If the ACCSCCT™" concept description E is satisfiable, then the QFBAPA formula
g 1is also satisfiable.

Proof. Assume that the finite interpretation Z satisfies E, i.e., there is a dy € AT such that
do € ET. We define 0(X¢) := C7 for all concepts C € M. Then we have dy € 0(Xg), and thus
o satisfies the cardinality constraint |Xg| > 1. In addition, o clearly satisfies . For example,

7
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o(Xerp) = (CN D) =CTNDT =0(Xc)No(Xp) =0(XeNXp). For every type t we have
CT =Neer CF = Neer (Xe) = 0(Nee Xe), and thus o(|Nee, Xe|) = 0 iff CF = 0.

Let t by a type such that o(](oe, Xc|) # 0. Then there is an individual d € AT such that
d € C. The semantics of ALCSCC™™ then implies that we can extend o to a solution of 1
by interpreting the set variables with superscript ¢ using the role successors of d:

o(X!) = {e]| (d,e) € rT}.

If t is a type such that o(| (o, Xco|) = 0, then it is not necessary for o to satisfy ;. We
can thus extend o to the set variables with superscript ¢ in an arbitrary way, e.g. by interpreting
all of them as the empty set. Overall, this show that we can use an interpretation satisfying F
to define a solution o of dg. O

Next, we show that the converse of Lemma 5 holds as well.

Lemma 6. If the QFBAPA formula 8 is satisfiable, then the ACCSCCT™ concept description
E is also satisfiable.

Proof. Assume that there is a solution o of 6. We claim that, for every element e € o(U),
there is a unique type ¢, such that e € (o, o(Xc). In fact, we can define t. as

te:={CeMleca(Xo)}

Since o satisfies 3, the set t. is indeed a type. For example, assume that C' LI D € t.. Then
e€o(Xeup) =0(Xe)Uo(Xp)iffee o(Xg)ore € o(Xp)iff C € te or D € t,. Satisfaction of
the other conditions in the definition of a type can be shown similarly. Regarding uniqueness,
assume that ¢ is a type different from t.. Then there is an element C' € M such that (modulo
removal of double negation) C € t. and —C € t. But then e € o(X¢) implies e € o((X¢)°) =
o(X-c), and thus e & (N, 0(Xp).

Let

T, := {t | t type with o(| [] Xc|) # 0}
Cet

be the set of all types that are realized by o. Note that, by what we have shown above, we
have T, = {t. | e € o(U)}.

We now define a finite interpretation Z and show that it satisfies E. The interpretation
domain consists of copies of the realized types, where the number of copies is determined by o:

AT = {(t,j)|te T, and 1 < j < o] ﬂ Xcl)}-
cet

Since for every element e € o(U) there is a unique type te such that e € (o, o(Xc), there is
a bijection 7 from o(U) to AT such that 7(e) = (¢, ;) implies that t = t..
For concept names A we define

AT = {(t,j) e AT |Aet}
and for role names r
o = {((69),7(0) | (1) € AT Ae € a(XD)}.

Since o solves the constraint Xz > 1, there is a dy € 0(Xg). Let to be the unique type such
that do € (Npey, o(Xc). Then we have o(|(Noey, Xc)|) # 0, and thus (¢, 1) € AT, To show
that 7 satisfies F, it is sufficient to show that (¢, 1) € EZ.

8
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For this, we show the following more general claim: for all concept descriptions C € M and
all (¢,7) € AT we have
(t,j) € CTiff C et (3)

We show (3) by induction on the structure of C:

e Let C = A for A € No. Then (3) is an immediate consequence of the definition of AZ for
concept names A.

e Let C = —D. Then induction yields (t,j) € D? iff D € t. By contraposition, this is the
same as (t,j) € DT iff D € t. By Condition 1 in the definition of types and the semantics of
negation, this is in turn equivalent to (¢, ) € (=D)% iff =D € t.

Let C' = D; M Dy. Then induction yields (¢,j) € D¥ iff Dy € t and (¢,j) € D% iff D, € t.
From this, we obtain (¢, ) € (Dy M Dy)% iff Dy M Dy € t using Condition 2 in the definition
of types and the semantics of conjunction.

The case where C = D7 U Dy can be handled similarly, using Condition 3 in the definition
of types and the semantics of disjunction.

C = sat(c) be a constraint expression. First, assume that C' € ¢. Then the translation ¢/
of ¢ using set variables Xp and X! is a conjunct in ¢;. In addition, since (¢,7) € AT, we
have o(|(\pe Xp|) # 0. Consequently, o satisfies this translation ¢’. Thus, to show that
(t,5) € O, it is sufficient to show that the following holds:

1. n(o(X})) =r%(t,j) and
2. m(0(Xp)) = D?* for all concepts D occurring in the constraint c.

The first statement is an immediate consequence of the definition of the interpretation of the
roles in 7.

To show the second statement, first assume that e € o(Xp). Then w(e) = (t¢,j’) where t.
is the unique type such that e € ﬂFetQ 0(Xp). Thus, e € 0(Xp) implies that D € t.. By
induction, we obtain 7(e) = (t.,j’) € DT. Second, assume that 7(e) = (., ') € D*. Then
induction yields D € t., and thus e € o(Xp).

Conversely, assume that C' € t. Then —succ(c) € ¢, and thus the translation —¢’ of —¢ using
set variables Xp and X! is a conjunct in ;. We can now proceed as in the first case, but
with —c¢ and —¢’ in place of ¢ and ¢'.

This completes the proof of (3) and thus the proof of the lemma. O

We have shown that the question of whether an ALCSCCT™ concept description E is satisfi-
able can be reduced to checking whether the corresponding QFBAPA formula §g is satisfiable.
Since the size of g is exponential in the size of E, this yields the following complexity result.

Theorem 7. Satisfiability of ALCSCCtT™ concept descriptions is NEXPTIME-complete inde-
pendently of whether the numbers occurring in these descriptions are encoded in unary or binary.

Proof. Since satisfiability of QFBAPA formulae can be decided within NP even for binary
coding of numbers [17], it is sufficient to show that the size of the QFBAPA formula dg is at
most exponential in the size of E. This is an easy consequence of the fact that there are at most
exponentially many types t since the cardinality of M is linear in the size of E. This implies
that the conjunction over all types in g has only exponentially many conjuncts. The conjunct
for a type t is of the form (|(o¢, Xo| = 0) V ;. Since every type contains only linearly many

9
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concepts, and these concepts have linear size, both (|(oc, Xc| = 0) and 1 is of polynomial
size. Obviously, (|Xg| > 1) has linear size, and the formula 8 has polynomial size since M
contains linearly many elements of linear size.

The NEXPTIME lower bound is inherited from consistency of ALC ECBoxes [8] due to
Proposition 3. As argued in [8], this lower bound already holds if number are encoded in unary
since one can use small ECBoxes to generate large numbers from small ones. O

Thanks to Proposition 3, the NEXPTIME upper bound carries over to satisfiability of
ALCSCCT knowledge bases, which may feature an ABox, a TBox and an ECBox.

4 Restricted Cardinality Constraints and ABoxes in ALCSCC

Recall that ALCSCC is the restriction of ALCSCCT where concepts C' in constraint expres-
sions occur only in the form C'N (UreNR ). In the syntax of ALCSCC, we dispense with writing
the intersection with (U, y, ) explicitely, and then realize the restriction to the role succes-
sors of the individual in question by defining the semantics of set variables corresponding to
concepts in the constraint expressions accordingly. Syntactically, we write succ(c) instead of
sat(c) to make clear that the constraint is to be interpreted locally by considering only the role
successors of the given individual (see [1] for a detailed introduction of the syntax and seman-
tics of ALCSCC). ALCSCC ECBoxes are basically ALCSCCT concept descriptions that are
Boolean combinations of constraint expressions sat(c) where ¢ contains only ALCSCC concept
descriptions as set variables, but now such expressions are not viewed as concept constructors,
but as terminological statements that may be true or false in an interpretation, corresponding
to the respective settings where the concept description contains all individuals (true) or no
individual (false) (see [8, 2] for a detailed introduction of the syntax and semantics of ECBoxes
in ALC and ALCSCC).

For the sub-logic ALC of ALCSCC, a restricted notion of cardinality boxes, called RCBoxes,
was introduced in [8], and it was shown that this restriction lowers the complexity of the
consistency problem from NExpTime to ExpTime. In [2] it was shown that the same is true for
ALCSCC. Here we prove that this result can be extended to consistency of ALCSCC ABoxes
w.r.t. ALCSCC RCBoxes. In the presence of ECBoxes, this extension is irrelevant since ECBoxes
can express nominals, and thus also ABoxes. However, this is not the case for RCBoxes. Below,
we actually consider an extension of RCBoxes, which were called ERCBoxes in [21].

Definition 8 (Syntax). Semi-restricted ALCSCC cardinality constraints are of the form
Ni1|Ci| + -+ 4+ Ng|Ck| + B < Ni41|Cria| + - -+ + Nite| Crepel, 4)

where C; are ALCSCC concept descriptions, N; are integer constants for 1 <i <k -+ /{, and B
is a non-negative integer constant. An extended restricted ALCSCC cardinality box (ERCBox)
s a positive Boolean combination of semi-restricted ALCSCC cardinality constraints.

An ALCSCC ABox is a finite set of concept assertions of the form C(a) and role assertions
r(a,b), where C is an ALCSCC concept description, r is a role name, and a,b are individual
names from a set Ny of such names, which is disjoint with No and Ngr. The set of all individual
names occurring in an ABox B is denoted as Indg.

The semantics of semi-restricted ALCSCC cardinality constraints and of ABoxes is defined
in the usual way.
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Definition 9 (Semantics). An interpretation T is a model of the semi-restricted ALCSCC
cardinality constraint (4) if

Ni|CE + -+ Ny |CF|+ B < Nk+1|0%+1| +~-~+Nk+e|0%+e|.

The notion of a model is extended to ERCBozxes using the usual interpret