
FOUNDATIONS OF COMPLEXITY THEORY

Lecture 16: Alternation

David Carral

Knowledge-Based Systems

TU Dresden, January 1, 2021

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2020)
https://iccl.inf.tu-dresden.de/web/David_Carral/en


Review

David Carral, January 1, 2021 Foundations of Complexity Theory slide 2 of 25



Baker, Gill, Solovay

Theorem 14.18 (Baker, Gill, Solovay, 1975): The answer to P ?
= NP does not

relativise: there are languages A and B such that PA = NPA and PB ! NPB.

In words: The P vs. NP problem does not relativise, and therefore cannot be solved by
any techniques that do.

• Equality was shown using A = True QBF. It is so far not known that this oracle is
not in P, so this might be the world we are living in.

• Inequality was shown using B that diagonalises against all polytime OTM to show
that they cannot decide LB.

David Carral, January 1, 2021 Foundations of Complexity Theory slide 3 of 25



Alternation

David Carral, January 1, 2021 Foundations of Complexity Theory slide 4 of 25



Alternating Computations

Non-deterministic TMs:

• Accept if there is an accepting run.

• Used to define classes like NP

Complements of non-deterministic classes:

• Accept if all runs are accepting.

• Used to define classes like coNP

We have seen that existential and universal modes can also alternate:

• Players take turns in games

• Quantifiers may alternate in QBF

Is there a suitable Turing Machine model to capture this?

David Carral, January 1, 2021 Foundations of Complexity Theory slide 5 of 25



Alternating Turing Machines

Definition 16.1: An alternating Turing machine (ATM) M = (Q,Σ, Γ, δ, q0) is a
Turing machine with a non-deterministic transition function δ : Q × Γ → 2Q×Γ×{ L,R }

whose set of states is partitioned into existential and universal states:

Q∃: set of existential states Q∀: set of universal states

• Configurations of ATMs are the same as for (N)TMs:
tape(s) + state + head position

• A configuration can be universal or existential, depending on whether its state is
universal or existential

• Possible transitions between configurations are defined as for NTMs

David Carral, January 1, 2021 Foundations of Complexity Theory slide 6 of 25



Alternating Turing Machines: Acceptance

Acceptance is defined inductively:

Definition 16.2: The set of accepting configurations of an ATM M is the least set
of configurations C for which either of the following is true:

• C is existential and some successor configuration of C is accepting.

• C is universal and all successor configurations of C are accepting.

M accepts a word w if the start configuration on w is accepting.

Note 1: configurations with no successor are a base case, since we have:

• An existential configuration without any successor configurations is rejecting.

• A universal configuration without any successor configurations is accepting.

Hence we don’t need to specify accepting or rejecting states explicitly.

Note 2: defining this to be the least set implies that infinite runs are never enough to
declare a configuration to be accepting.

David Carral, January 1, 2021 Foundations of Complexity Theory slide 7 of 25



Nondeterminism and Parallelism

ATMs can be seen as a generalisation of non-deterministic TMs:

An NTM is an ATM where all states are existential (besides the single accepting
state, which is always universal according to our definition).

ATMs can be seen as a model of parallel computation:

In every step, fork the current process to create sub-processes that explore each
possible transition in parallel

• for universal states, combine the results of sub-processes with AND

• for existential states, combine the results of sub-processes with OR

Alternative view: an ATM accepts if its computation tree, considered as an AND-OR
tree, evaluates to true

David Carral, January 1, 2021 Foundations of Complexity Theory slide 8 of 25



Example: Alternating Algorithm for MinFormula

MinFormula

Input: A propositional formula ϕ.

Problem: Is ϕ the shortest formula that is satisfied
by the same assignments as ϕ?

MinFormula can be solved by an alternating algorithm:

01 MinFormula(formula ϕ) :

02 universally choose ψ := formula shorter than ϕ

03 existentially guess I := assignment for variables in ϕ
04 if ϕI = ψI :
05 return false
06 else :
07 return true

David Carral, January 1, 2021 Foundations of Complexity Theory slide 9 of 25



Example: Alternating Algorithm for Geography

Recall the Geography game discussed in Lecture 10:

01 AltGeography(directed graph G, start node s) :
02 Visited := {s} // visited nodes
03 cur := s // current node

04 while true :
05 // existential move:

06 if all successors of cur are in Visited:
07 return false
08 existentially guess cur := unvisited successor of cur
09 Visited := Visited ∪ {cur}
10 // universal move:

11 if all successors of cur are in Visited:
12 return true
13 universally choose cur := unvisited successor of cur
14 Visited := Visited ∪ {cur}

David Carral, January 1, 2021 Foundations of Complexity Theory slide 10 of 25



Time and Space Bounded ATMs

As before, time and space bounds apply to any computation path in the computation
tree.

Definition 16.3: Let M be an alternating Turing machine and let f : N → R+ be a
function.

(1) M is f -time bounded if it halts on every input w ∈ Σ∗ and on every
computation path after ≤f (|w|) steps.

(2) M is f -space bounded if it halts on every input w ∈ Σ∗ and on every
computation path using ≤f (|w|) cells on its tapes.

(Here we typically assume that Turing machines have a separate input tape
that we do not count in measuring space complexity.)

David Carral, January 1, 2021 Foundations of Complexity Theory slide 11 of 25



Defining Alternating Complexity Classes

Definition 16.4: Let f : N→ R+ be a function.

(1) ATime(f (n)) is the class of all languages L for which there is an O(f (n))-time
bounded alternating Turing machine deciding L.

(2) ASpace(f (n)) is the class of all languages L for which there is an
O(f (n))-space bounded alternating Turing machine deciding L.

David Carral, January 1, 2021 Foundations of Complexity Theory slide 12 of 25



Common Alternating Complexity Classes

AP = APTime =
!

d≥1

ATime(nd) alternating polynomial time

AExp = AExpTime =
!

d≥1

ATime(2nd
) alternating exponential time

A2Exp = A2ExpTime =
!

d≥1

ATime(22nd

) alt. double-exponential time

AL = ALogSpace = ASpace(log n) alternating logarithmic space

APSpace =
!

d≥1

ASpace(nd) alternating polynomial space

AExpSpace =
!

d≥1

ASpace(2nd
) alternating exponential space

Example 16.5: Geography ∈ APTime.

David Carral, January 1, 2021 Foundations of Complexity Theory slide 13 of 25



Alternating Complexity Classes: Basic Properties

Nondeterminism:
ATMs can do everything that the corresponding NTMs can do, e.g., NP ⊆ APTime

Reductions: Polynomial many-one reductions can be used to show membership in many
alternating complexity classes, e.g., if L ∈ APTime and L′ ≤p L then L′ ∈ APTime.

In particular: PSpace ⊆ APTime (since Geography ∈ APTime)

Complementation: ATMs are easily complemented:

• LetM be an ATM accepting language L(M)
• LetM′ be obtained fromM by swapping existential and universal states

• Then L(M′) = L(M)

For alternating algorithms this means: (1) negate all return values, (2) swap universal
and existential branching points

David Carral, January 1, 2021 Foundations of Complexity Theory slide 14 of 25



Example: Complement of MinFormula
Original algorithm:

01 MinFormula(formula ϕ) :
02 universally choose ψ := formula shorter than ϕ
03 existentially guess I := assignment for variables in ϕ
04 if ϕI = ψI :
05 return false
06 else :
07 return true

Complemented algorithm:

01 ComplMinFormula(formula ϕ) :
02 existentially guess ψ := formula shorter than ϕ
03 universally choose I := assignment for variables in ϕ
04 if ϕI = ψI :
05 return true
06 else :
07 return false

David Carral, January 1, 2021 Foundations of Complexity Theory slide 15 of 25



Alternating Time vs. Deterministic Space

David Carral, January 1, 2021 Foundations of Complexity Theory slide 16 of 25



From Alternating Time to Deterministic Space

Theorem 16.6: For f (n) ≥ n, we have ATime(f ) ⊆ DSpace(f 2).

Proof: We simulate an ATMM using a TM S:

• S performs a depth-first search of the configuration tree ofM
• The acceptance status of each node is computed recursively

(similar to typical PSpace algorithms we have seen before)

• M accepts exactly if the root of the configuration tree is accepting

The maximum recursion depth is f (n). The maximum size of a configuration is O(f (n)).
Hence the claim follows. □

Note: The result can be strengthened to ATime(f ) ⊆ DSpace(f ) by not storing the whole
configuration. See [Sipser, Lemma 10.22].

David Carral, January 1, 2021 Foundations of Complexity Theory slide 17 of 25



From Nondeterministic Space to Alternating Time

Theorem 16.7: For f (n) ≥ n, we have NSpace(f ) ⊆ ATime(f 2).

Proof: We simulate an NTMM using an ATM S.
Challenge: the computing paths ofM might be up to 2df (n) in length.
Solution: recursively solve Yieldability problems, as in Savitch’s Theorem:

• We want to check ifM can go from configuration C1 to C2 in at most k steps

• To do this, existentially guess an intermediate configuration C′.

• Universally check ifM can go from C1 to C′ in k/2 steps, and from C′ to C2 in k/2
steps.

Storing one intermediate configuration C′ takes space O(f (n)). Maximal recursion depth
is O(f (n)). Hence the result follows. □

David Carral, January 1, 2021 Foundations of Complexity Theory slide 18 of 25



Harvest: Alternating Time = Deterministic Space

For f (n) ≥ n, we have shown

ATime(f ) ⊆ DSpace(f 2) and DSpace(f ) ⊆ NSpace(f ) ⊆ ATime(f 2).

The quadratic increase is swallowed by (super)polynomial bounds:

Corollary 16.8 (“Alternating Time = Deterministic Space”): APTime = PSpace
and AExpTime = ExpSpace.

Proof:

• ATime(nd) ⊆ DSpace(n2d) ⊆ PSpace
DSpace(nd) ⊆ NSpace(nd) ⊆ ATime(n2d) ⊆ APTime

• Second claim is left as an exercise □

One can also read this as “Parallel Time = Sequential Space.”

David Carral, January 1, 2021 Foundations of Complexity Theory slide 19 of 25



Alternating Space vs. Deterministic Time

David Carral, January 1, 2021 Foundations of Complexity Theory slide 20 of 25



From Alternating Space to Deterministic Time

In this direction, the increase is exponential:

Theorem 16.9: For f (n) ≥ log n, we have ASpace(f ) ⊆ DTime(2O(f )).

Proof: The proof is similar to the exponential deterministic simulation of space-bounded
NTMs in Lecture 9 (Theorem 9.7):

• Construct configuration graph of ATM

• Iteratively compute acceptance status of each configuration

• Check if starting configuration is accepting

Each step can be done in exponential time (in particular, computing the acceptance
condition in each step is no more difficult than for plain NTMs). □

David Carral, January 1, 2021 Foundations of Complexity Theory slide 21 of 25



From Deterministic Time To Alternating Space

The exponential blow-up can be reversed when going back to ATMs:

Theorem 16.10:
If f (n) ≥ log n is space-constructible, then DTime(2O(f )) ⊆ ASpace(f ).

Proof: We show: for any g(n) ≥ n, we have DTime(g) ⊆ ASpace(log g).

We simulate a TMM using an ATM S. This is not so easy:

• A computation ofM is exponentially longer than the space available to S
" we solved this before with Yieldability

• A configuration ofM is exponentially longer than the space available to S
" this is more tricky . . .

There is a coarse proof sketch in [Sipser, Lemma 10.25]. We follow a more detailed proof from the
lecture notes of Erich Grädel [Complexity Theory, WS 2009/10] (link).

David Carral, January 1, 2021 Foundations of Complexity Theory slide 22 of 25

http://logic.rwth-aachen.de/files/KTQC/KTQC-script.pdf


From Deterministic Time To Alternating Space (2)

Notation: The proof is easier if we write a configuration σ1 · · ·σi−1qσiσi+1 · · ·σm

as a sequence
∗ σ1 · · · σi−1 〈q,σi〉 σi+1 · · · σm ∗

of symbols from the set Ω = {∗} ∪ Γ ∪ (Q × Γ).

Then the Ω-symbol (state and tape) at position i follows deterministically from the
Ω-symbols at positions i − 1, i, and i + 1 in the previous step.
We writeM(ωi−1,ωi,ωi+1) for this symbol.

Proof idea:

• Only store a pointer to one cell in one configuration ofM
• Verify the contents of current cell i in step j by guessing the previous cell contents
ωi−1,ωi,ωi+1 in step j.

• Check iteratively that the guessed symbols are correct

David Carral, January 1, 2021 Foundations of Complexity Theory slide 23 of 25



From Deterministic Time To Alternating Space (3)
Let h : N→ R be a function in O(g) that defines the exact time bound forM (no
O-notation), and that can be computed in space O(log g).

01 AtmSimulateTm(TMM, input word w, time bound h) :
02 existentially guess s ≤ h(|w|) // halting step
03 existentially guess i ∈ {0, . . . , s} // halting position
04 existentially guess ω ∈ Q × Γ // halting cell + state
05 if M would not halt in ω :
06 return false
07 for j = s, . . . , 1 do :
08 existentially guess 〈ω−1,ω0,ω1〉 ∈ Ω3

09 if M(ω−1,ω0,ω+1) ! ω :
10 return false
11 universally choose ℓ ∈ {−1, 0, 1}
12 ω := ωℓ
13 i := i + ℓ
14 // after tracing back s steps, check input configuration:
15 return “input configuration ofM on w has ω at position i”

David Carral, January 1, 2021 Foundations of Complexity Theory slide 24 of 25



Summary and Outlook
For f (n) ≥ log n, we have shown ASpace(f ) = DTime(2O(f )).

Corollary 16.11 (“Alternating Space = Exponential Deterministic Time”):
AL = P and APSpace = ExpTime.

We can sum up our findings as follows:

L ⊆ PTime ⊆ PSpace ⊆ ExpTime ⊆ ExpSpace

= = = =

ALogSpace ⊆ APTime ⊆ APSpace ⊆ AExpTime

What’s next?

• Alternation as a resource that can be bounded

• A hierarchy between NP and PSpace

• End-of-year consultation

David Carral, January 1, 2021 Foundations of Complexity Theory slide 25 of 25


