The guarded fragment of $F O$
$\forall x \rightarrow k(\vec{x})$
$\forall \vec{x} \quad R(\vec{x}) \rightarrow \varphi(\vec{x})$
$\left.\exists \vec{x} R()^{2}\right) \wedge \varphi(\otimes)$

Only relational symbols!
Complete for two exponential time $2 E_{x p} T_{\text {me }}$-complete

$$
\begin{aligned}
& \varepsilon_{x p} \subseteq N \varepsilon_{x p} \subseteq 2 E_{x p} \\
& \uparrow F^{2} \quad \mathrm{O}^{2} \quad 6 F
\end{aligned}
$$

we will form on $6 F^{2}$ but the prevented methods can be generalised to 6F.

Lemma: For every $6 F^{2}$ formula φ there exist an equi-sat formula ψ (computable in NP) that is a conjunction of:
(1) $\exists x \quad \alpha(x) \wedge \lambda(x)$
(2) $\forall x$
$\alpha(x) \rightarrow \lambda(x)$
witheonfifer-free, d, i, R
(3) $\underset{x=x \rightarrow 0}{\forall x} \forall y \quad \beta(x, y) \rightarrow \lambda(x, y)$
(4) $\forall x \alpha(x) \rightarrow(\exists y[\beta(x, y) \wedge \lambda(x, y)])$

Main idea: For a node v copy all its successors below v and preserve all the original connections between v and their copies

Lemma: For every $6 F^{2}$ formula φ there exist an equi-sat formula ψ (computable in NP) that is a conjunction of:
(1) $\exists x \quad \alpha(x) \wedge \lambda(x)$
(2) $\forall x \alpha(x) \rightarrow \lambda(x)$ withentifer-free, d,, icc
(3) $\underset{x=x \rightarrow 2}{\forall x} \forall y \quad \beta(x, y) \rightarrow \lambda(x, y)$
(4) $\forall x \alpha(x) \rightarrow(\exists y[\beta(x, y) \wedge \lambda(x, y)])$

TFCAE :

- 夰 $\vDash \varphi$

$$
F \varphi \text { }^{F} \text { obvious } \downarrow \text { uravelling }
$$

> infinite tree-like

$$
\text { fobvious } \sum \text { pruning }
$$

infinite hree-like structure of small degree of eveng node

$$
\uparrow p o l y(|\varphi|)
$$

\} finite tree-like structure of depth $\approx \exp (|\varphi|) \rightleftharpoons \varphi$ and small branclug
olvars sot at φ is a conjunction of:
(1) $\exists x$ the root
(3) $\underset{x=x \rightarrow 0}{\forall x}, \forall y \quad \beta(x, y) \rightarrow \lambda(x, y)$
$\alpha(x) \rightarrow \lambda(x)$

(1) $\exists x \alpha(x) \wedge \lambda(x)$
(2) $\forall x$
(4) $\forall x \alpha(x) \rightarrow(\exists y[\beta(x, y) \wedge \lambda(x, y)])$

I select the minimal number of chilren of v serving as witnesses for $\forall x \nexists_{y}$ conjuncts and remove all other children of v except the selected elemats
v offer surgery has small branching $\leqslant|\varphi|$ and the resulting structure is still a model of φ.
always sat at φ is a conjunction of:
the root
(1) $\exists x \quad \alpha(x) \wedge \lambda(x)$
(2) $\forall x \alpha(x) \rightarrow \lambda(x)$

(3) $\underset{x=x \rightarrow 0}{\forall x} \forall y \quad \beta(x, y) \rightarrow \lambda(x, y)$
(4) $\forall x \alpha(x) \rightarrow(\exists y[\beta(x, y) \wedge \lambda(x, y)])$

∞

$$
\operatorname{sig}(\varphi)=\Sigma
$$

$\leq 2^{(\Sigma)}$ different 1-types
small-branchy

$$
\vDash \varphi
$$

For every branch in ξ if it has a branch of sine $>2^{|\Sigma|}+1$ we select two clement on such a branch with equal 1 -types (pidgeon principle) and remove all the elenats below the second selected element.

If $\varphi \in G F^{2}$ has a model then it has a tree-like "nearly model" of depth $=\underbrace{2^{|\varphi|}}+1$ and degree of every element $\leqslant|\varphi|$. because ve can alleys to be a sub model in which every branch ends on an element having a repetition of its 1 -hype above

Goal: Design an algorithm that check whether such a structure exists.
We employ $\underbrace{\text { APSpace }}_{V}=$ Exp Time
Polynomial space algorithm

* guessing poly-size things
* run thing in parallel (rum things on separate polynomiclly man threats)

