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Review

There are many well-defined static optimisation tasks that are independent of the
database
{ query equivalence, containment, emptiness

Unfortunately, all of them are undecidable for FO queries
{ Slogan: “all interesting questions about FO queries are undecidable”

{ Let’s look at simpler query languages
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Optimisation for Conjunctive Queries

Optimisation is simpler for conjunctive queries

Example 10.1: Conjunctive query containment:

Q1 : ∃x, y, z. R(x, y) ∧ R(y, y) ∧ R(y, z)

Q2 : ∃u, v, w, t. R(u, v) ∧ R(v, w) ∧ R(w, t)

Q1 find R-paths of length two with a loop in the middle
Q2 find R-paths of length three

{ in a loop one can find paths of any length
{ Q1 v Q2
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Deciding Conjunctive Query Containment

Consider conjunctive queries Q1[x1, . . . , xn] and Q2[y1, . . . , yn].

Definition 10.2: A query homomorphism from Q2 to Q1 is a mapping µ

from terms (constants or variables) in Q2 to terms in Q1 such that:

• µ does not change constants, i.e., µ(c) = c for every constant c

• xi = µ(yi) for each i = 1, . . . , n

• if Q2 has a query atom R(t1, . . . , tm)
then Q1 has a query atom R(µ(t1), . . . , µ(tm))

Theorem 10.3 (Homomorphism Theorem): Q1 v Q2 if and only if there is a
query homomorphism Q2 → Q1.

{ decidable (only need to check finitely many mappings from Q2 to Q1)
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Example

Q1 : ∃x, y, z. R(x, y) ∧ R(y, y) ∧ R(y, z)

Q2 : ∃u, v, w, t. R(u, v) ∧ R(v, w) ∧ R(w, t)

x
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z

u

v

w

t
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Review: CQs and Homomorphisms

If 〈d1, . . . , dn〉 is a result of Q1[x1, . . . , xn] over database I then:

• there is a mapping ν from variables in Q1 to the domain of I

• di = ν(xi) for all i = 1, . . . , m

• for all atoms R(t1, . . . , tm) of Q1, we find 〈ν(t1), . . . , ν(tm)〉 ∈ RI

(where we take ν(c) to mean c for constants c)

{ I |= Q1[d1, . . . , dn] if there is such a homomorphism ν from Q1 to I

(Note: this is a slightly different formulation from the “homomorphism problem” discussed in a previous lecture,

since we keep constants in queries here)
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Proof of the Homomorphism Theorem

“⇐”: Q1 v Q2 if there is a query homomorphism Q2 → Q1.

(1) Let 〈d1, . . . , dn〉 be a result of Q1[x1, . . . , xn] over database I.

(2) Then there is a homomorphism ν from Q1 to I.

(3) By assumption, there is a query homomorphism µ : Q2 → Q1.

(4) But then the composition ν ◦ µ, which maps each term t to ν(µ(t)), is a
homomorphism from Q2 to I.

(5) Hence 〈ν(µ(y1)), . . . , ν(µ(yn))〉 is a result of Q2[y1, . . . , yn] over I.

(6) Since ν(µ(yi)) = ν(xi) = di, we find that 〈d1, . . . , dn〉 is a result of Q2[y1, . . . , yn] over
I.

Since this holds for all results 〈d1, . . . , dn〉 of Q1, we have Q1 v Q2.

(See board for a sketch showing how we compose homomorphisms here)
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Proof of the Homomorphism Theorem

“⇒”: there is a query homomorphism Q2 → Q1 if Q1 v Q2.

(1) Turn Q1[x1, . . . , xn] into a database I1 in the natural way:
– The domain of I1 are the terms in Q1
– For every relation R, we have 〈t1, . . . , tm〉 ∈ RI1 exactly if R(t1, . . . , tm) is an

atom in Q1

(2) Then Q1 has a result 〈x1, . . . , xn〉 over I1

(the identity mapping is a homomorphism – actually even an isomorphism)

(3) Therefore, since Q1 v Q2, 〈x1, . . . , xn〉 is also a result of Q2 over I1

(4) Hence there is a homomorphism ν from Q2 to I1

(5) This homomorphism ν is also a query homomorphism Q2 → Q1.
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Implications of the Homomorphism Theorem

The proof has highlighted another useful fact:

The following two are equivalent:

• Finding a homomorphism from Q2 to Q1

• Finding a query result for Q2 over I1

{ all complexity results for CQ query answering apply

Theorem 10.4: Deciding if Q1 v Q2 is NP-complete.

If Q2 is a tree query (or of bounded treewidth, or of bounded hypertree width)
then deciding if Q1 v Q2 is polynomial (in fact LOGCFL-complete).

Note that even in the NP-complete case the problem size is rather small (only queries,
no databases)
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Application: CQ Minimisation

Definition 10.5: A conjunctive query Q is minimal if:

• for all subqueries Q′ of Q (that is, queries Q′ that are obtained by dropping
one or more atoms from Q),

• we find that Q′ . Q.

A minimal CQ is also called a core.

It is useful to minimise CQs to avoid unnecessary joins in query answering.
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CQ Minimisation the Direct Way

A simple idea for minimising Q:

• Consider each atom of Q, one after the other

• Check if the subquery obtained by dropping this atom
is contained in Q
(Observe that the subquery always contains the original query.)

• If yes, delete the atom; continue with the next atom

Example 10.6: Example query Q[v, w]:

∃x, y, z.R(a, y) ∧ R(x, y) ∧ S(y, y) ∧ S(y, z) ∧ S(z, y) ∧ T(y, v) ∧ T(y, w)

{ Simpler notation: write as set and mark answer variables

{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, v̄), T(y, w̄)}
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CQ Minimisation Example

{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, v̄), T(y, w̄)}

Can we map the left side homomorphically to the right side?

R(a, y)

?

R(a, y)

Keep (cannot map constant a)

R(x, y)

?

R(x, y)

Drop; map R(x, y) to R(a, y)

S(y, y)

?

S(y, y)

Keep (no other atom of form S(t, t))

S(y, z)

?

S(y, z)

Drop; map S(y, z) to S(y, y)

S(z, y)

?

S(z, y)

Drop; map S(z, y) to S(y, y)

T(y, v̄)

?

T(y, v̄)

Keep (cannot map answer variable)

T(y, w̄)

?

T(y, w̄)

Keep (cannot map answer variable)

Core: ∃y.R(a, y) ∧ S(y, y) ∧ T(y, v) ∧ T(y, w)
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R(x, y)

?

R(x, y) Drop; map R(x, y) to R(a, y)

S(y, y)

?

S(y, y) Keep (no other atom of form S(t, t))

S(y, z)

?

S(y, z) Drop; map S(y, z) to S(y, y)

S(z, y)

?

S(z, y) Drop; map S(z, y) to S(y, y)

T(y, v̄)

?

T(y, v̄) Keep (cannot map answer variable)

T(y, w̄)

?

T(y, w̄) Keep (cannot map answer variable)

Core: ∃y.R(a, y) ∧ S(y, y) ∧ T(y, v) ∧ T(y, w)
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CQ Minimisation

Does this algorithm work?

• Is the result minimal?
Or could it be that some atom that was kept can be dropped later, after some other
atoms were dropped?

• Is the result unique?
Or does the order in which we consider the atoms matter?

Theorem 10.7: The CQ minimisation algorithm always produces a core, and this
result is unique up to query isomorphisms (bijective renaming of non-result vari-
ables).

Proof: exercise

Markus Krötzsch, 14th May 2019 Database Theory slide 13 of 17



CQ Minimisation

Does this algorithm work?

• Is the result minimal?
Or could it be that some atom that was kept can be dropped later, after some other
atoms were dropped?

• Is the result unique?
Or does the order in which we consider the atoms matter?

Theorem 10.7: The CQ minimisation algorithm always produces a core, and this
result is unique up to query isomorphisms (bijective renaming of non-result vari-
ables).

Proof: exercise

Markus Krötzsch, 14th May 2019 Database Theory slide 13 of 17



How hard is CQ Minimisation?

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to
decide if there is a homomorphism from Q to Q \ {A}.

Proof: We reduce 3-colourability of connected graphs to this special kind of
homomorphism problem. (If a graph consists of several connected components, then
3-colourability can be solved independently for each, hence 3-colourability is NP-hard
when considering only connected graphs.)

Let G be a connected, undirected graph. Let ≺ be an arbitrary total order on G’s vertices.
Query Q is defined as follows:
• Q contains atoms R(r, g), R(g, r), R(r, b), R(b, r), R(g, b), and R(b, r)

(the colouring template)
• For every undirected edge {e, f } in G with e ≺ f , Q contains an atom R(e, f )
• For a single (arbitrarily chosen) edge {e, f } in G with e ≺ f , Q contains an atom

A = R(f , e)
Claim: G is 3-colourable if and only if there is a homomorphism Q→ Q \ {A}
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Proof

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to
decide if there is a homomorphism from Q to Q \ {A}.

Proof (continued): (⇒) If G is 3-colourable then there is a homomorphism Q→ Q \ {A}.

• Then there is a homomorphism µ from G to the colouring template
• We can extend µ to the colouring template (mapping each colour to itself)
• Then µ is a homomorphism Q→ Q \ {A}

(⇐) If there is a homomorphism Q→ Q \ {A} then G is 3-colourable.
• Let µ be such a homomorphism, and let A = R(f , e).
• Since Q \ {A} contains the pattern R(s, t), R(t, s) only in the colouring template,
µ(e) ∈ {r, g, b} and µ(f ) ∈ {r, g, b}.

• Since the colouring template is not connected to other atoms of Q, µ must
therefore map all elements of Q to the colouring template.

• Hence, µ induces a 3-colouring.
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CQ Minimisation: Complexity

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to
decide if there is a homomorphism from Q to Q \ {A}.

Proof (summary): For an arbitrary connected graph G, we constructed a query Q with
atom A, such that
• G is 3-colourable if and only if
• there is a homomorphism Q→ Q \ {A}.

Since the former problem is NP-hard, so is the latter.
Inclusion in NP is obvious (just guess the homomorphism). �

Checking minimality is the dual problem, hence:

Theorem 10.9: Deciding if a conjunctive query Q is minimal (that is: a core) is
coNP-complete.

However, the size of queries is usually small enough for minimisation to be feasible.

Markus Krötzsch, 14th May 2019 Database Theory slide 16 of 17



CQ Minimisation: Complexity

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to
decide if there is a homomorphism from Q to Q \ {A}.

Proof (summary): For an arbitrary connected graph G, we constructed a query Q with
atom A, such that
• G is 3-colourable if and only if
• there is a homomorphism Q→ Q \ {A}.

Since the former problem is NP-hard, so is the latter.
Inclusion in NP is obvious (just guess the homomorphism). �

Checking minimality is the dual problem, hence:

Theorem 10.9: Deciding if a conjunctive query Q is minimal (that is: a core) is
coNP-complete.

However, the size of queries is usually small enough for minimisation to be feasible.
Markus Krötzsch, 14th May 2019 Database Theory slide 16 of 17



Summary and Outlook

Perfect query optimisation is possible for conjunctive queries
{ Homomorphism problem, similar to query answering
{ NP-complete

Using this, conjunctive queries can effectively be minimised

Coming up next:

• How to study expressivity of queries

• The limits of FO queries

• Datalog
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