Exercise 2: First-Order Queries

Database Theory
2020-04-20
Maximilian Marx, David Carral

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone
UFA	St. Petersburger Str. 24	4825825
Schauburg	Königsbrücker Str. 55	8032185
CinemaxX	Hüblerstr. 8	3158910
\ldots	\ldots	\ldots
Program	\ldots	Time
Cinema	Title	$19: 30$
Schauburg	The Imitation Game	$20: 45$
Schauburg	Dogma	$22: 45$
UFA	The Imitation Game	$19: 30$
CinemaxX	The Imitation Game	

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone
UFA	St. Petersburger Str. 24	4825825
Schauburg	Königsbrücker Str. 55	8032185
CinemaxX	Hüblerstr. 8	3158910
\ldots	\ldots	\ldots
Program		
Cinema	Title	Time
Schauburg	The Imitation Game	$19: 30$
Schauburg	Dogma	$20: 45$
UFA	The Imitation Game	$22: 45$
CinemaxX	The Imitation Game	$19: 30$

Solution.

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.

Films
Title Director Actor The Imitation Game Tyldum Cumberbatch The Imitation Game Tyldum Knightley \ldots \ldots \ldots The Internet's Own Boy Knappenberger Swartz The Internet's Own Boy Knappenberger Lessig The Internet's Own Boy Knappenberger Berners-Lee \ldots \ldots \ldots Dogma Smith Damon Dogma Smith Affleck Dogma Smith Morissette Dogma Smith Smith

Venues

Cinema	Address	Phone
UFA	St. Petersburger Str. 24	4825825
Schauburg	Königsbrücker Str. 55	8032185
CinemaxX	Hüblerstr. 8	3158910
\ldots	\ldots	\ldots
Program		
Cinema	Title	Time
Schauburg	The Imitation Game	$19: 30$
Schauburg	Dogma	$20: 45$
UFA	The Imitation Game	$22: 45$
CinemaxX	The Imitation Game	$19: 30$

Solution.

1. Who is the director of "The Imitation Game"?

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone	
UFA	St. Petersburger Str. 24	4825825	
Schauburg	Königsbrücker Str. 55	8032185	
CinemaxX	Hüblerstr. 8	3158910	
\ldots	\ldots	\ldots	
Program			
Cinema	Title	Time	
Schauburg	The Imitation Game	$19: 30$	
Schauburg	Dogma	$20: 45$	
UFA	The Imitation Game	$22: 45$	
CinemaxX	The Imitation Game	$19: 30$	

Solution.

1. Who is the director of "The Imitation Game"?
$\exists y_{A}$. Films("The Imitation Game", $\left.x_{D}, y_{A}\right)\left[x_{D}\right]$

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone	
UFA	St. Petersburger Str. 24	4825825	
Schauburg	Königsbrücker Str. 55	8032185	
CinemaxX	Hüblerstr. 8	3158910	
\ldots	\ldots	\ldots	
Program			
Cinema	Title	Time	
Schauburg	The Imitation Game	$19: 30$	
Schauburg	Dogma	$20: 45$	
UFA	The Imitation Game	$22: 45$	
CinemaxX	The Imitation Game	$19: 30$	

Solution.

1. Who is the director of "The Imitation Game"?

$$
\left.\exists y_{A} \text {. Films("The Imitation Game", } x_{D}, y_{A}\right)\left[x_{D}\right]
$$

2. Which cinemas feature "The Imitation Game"?

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone	
UFA	St. Petersburger Str. 24	4825825	
Schauburg	Königsbrücker Str. 55	8032185	
CinemaxX	Hüblerstr. 8	3158910	
\ldots	\ldots	\ldots	
	\ldots		
Program			
Cinema	Title	Time	
Schauburg	The Imitation Game	$19: 30$	
Schauburg	Dogma	$20: 45$	
UFA	The Imitation Game	$22: 45$	
CinemaxX	The Imitation Game	$19: 30$	

Solution.

1. Who is the director of "The Imitation Game"?

$$
\left.\exists y_{A} \text {. Films("The Imitation Game", } x_{D}, y_{A}\right)\left[x_{D}\right]
$$

2. Which cinemas feature "The Imitation Game"?

$$
\exists y_{T} \text {. Program }\left(x_{C} \text {, "The Imitation Game", } y_{T}\right)\left[x_{C}\right]
$$

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone	
UFA	St. Petersburger Str. 24	4825825	
Schauburg	Königsbrücker Str. 55	8032185	
CinemaxX	Hüblerstr. 8	3158910	
\ldots	\ldots	\ldots	
	\ldots		
Program			
Cinema	Title	Time	
Schauburg	The Imitation Game	$19: 30$	
Schauburg	Dogma	$20: 45$	
UFA	The Imitation Game	$22: 45$	
CinemaxX	The Imitation Game	$19: 30$	

Solution.

3. What are the address and phone number of "Schauburg"?

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone	
UFA	St. Petersburger Str. 24	4825825	
Schauburg	Königsbrücker Str. 55	8032185	
CinemaxX	Hüblerstr. 8	3158910	
\ldots	\ldots	\ldots	
Program			
Cinema	Title	Time	
Schauburg	The Imitation Game	$19: 30$	
Schauburg	Dogma	$20: 45$	
UFA	The Imitation Game	$22: 45$	
CinemaxX	The Imitation Game	$19: 30$	

Solution.

3. What are the address and phone number of "Schauburg"?

$$
\text { Venues("Schauburg", } \left.x_{A}, x_{P}\right)\left[x_{A}, x_{P}\right]
$$

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone	
UFA	St. Petersburger Str. 24	4825825	
Schauburg	Königsbrücker Str. 55	8032185	
CinemaxX	Hüblerstr. 8	3158910	
\ldots	\ldots	\ldots	
Program			
Cinema	Title	Time	
Schauburg	The Imitation Game	$19: 30$	
Schauburg	Dogma	$20: 45$	
UFA	The Imitation Game	$22: 45$	
CinemaxX	The Imitation Game	$19: 30$	

Solution.

3. What are the address and phone number of "Schauburg"?

$$
\text { Venues("Schauburg", } \left.x_{A}, x_{P}\right)\left[x_{A}, x_{P}\right]
$$

4. Boolean query: Is a film directed by "Smith" playing in Dresden?

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone	
UFA	St. Petersburger Str. 24	4825825	
Schauburg	Königsbrücker Str. 55	8032185	
CinemaxX	Hüblerstr. 8	3158910	
\ldots	\ldots	\ldots	
Program			
Cinema	Title	Time	
Schauburg	The Imitation Game	$19: 30$	
Schauburg	Dogma	$20: 45$	
UFA	The Imitation Game	$22: 45$	
CinemaxX	The Imitation Game	$19: 30$	

Solution.

3. What are the address and phone number of "Schauburg"?

$$
\text { Venues("Schauburg", } \left.x_{A}, x_{P}\right)\left[x_{A}, x_{P}\right]
$$

4. Boolean query: Is a film directed by "Smith" playing in Dresden?

$$
\exists y_{T}, y_{A}, y_{C}, z_{T} \text {. Films }\left(y_{T}, \text { "Smith", } y_{A}\right) \wedge \operatorname{Program}\left(y_{C}, y_{T}, z_{T}\right)
$$

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone	
UFA	St. Petersburger Str. 24	4825825	
Schauburg	Königsbrücker Str. 55	8032185	
CinemaxX	Hüblerstr. 8	3158910	
\ldots	\ldots	\ldots	
	\ldots		
Program			
Cinema	Title	Time	
Schauburg	The Imitation Game	$19: 30$	
Schauburg	Dogma	$20: 45$	
UFA	The Imitation Game	$22: 45$	
CinemaxX	The Imitation Game	$19: 30$	

Solution.

5. List the pairs of persons such that the first directed the second in a film, and vice versa.

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone	
UFA	St. Petersburger Str. 24	4825825	
Schauburg	Königsbrücker Str. 55	8032185	
CinemaxX	Hüblerstr. 8	3158910	
\ldots	\ldots	\ldots	
	\ldots		
Program			
Cinema	Title	Time	
Schauburg	The Imitation Game	$19: 30$	
Schauburg	Dogma	$20: 45$	
UFA	The Imitation Game	$22: 45$	
CinemaxX	The Imitation Game	$19: 30$	

Solution.

5. List the pairs of persons such that the first directed the second in a film, and vice versa.

$$
\exists y_{T}, z_{T} \text {. Films }\left(y_{T}, x_{D}, x_{A}\right) \wedge \operatorname{Films}\left(z_{T}, x_{A}, x_{D}\right)\left[x_{D}, x_{A}\right]
$$

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone	
UFA	St. Petersburger Str. 24	4825825	
Schauburg	Königsbrücker Str. 55	8032185	
CinemaxX	Hüblerstr. 8	3158910	
\ldots	\ldots	\ldots	
	\ldots		
Program			
Cinema	Title	Time	
Schauburg	The Imitation Game	$19: 30$	
Schauburg	Dogma	$20: 45$	
UFA	The Imitation Game	$22: 45$	
CinemaxX	The Imitation Game	$19: 30$	

Solution.

5. List the pairs of persons such that the first directed the second in a film, and vice versa.

$$
\exists y_{T}, z_{T} . \operatorname{Films}\left(y_{T}, x_{D}, x_{A}\right) \wedge \operatorname{Films}\left(z_{T}, x_{A}, x_{D}\right)\left[x_{D}, x_{A}\right]
$$

6. List the names of directors who have acted in a film they directed.

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone	
UFA	St. Petersburger Str. 24	4825825	
Schauburg	Königsbrücker Str. 55	8032185	
CinemaxX	Hüblerstr. 8	3158910	
\ldots	\ldots	\ldots	
	\ldots		
Program			
Cinema	Title	Time	
Schauburg	The Imitation Game	$19: 30$	
Schauburg	Dogma	$20: 45$	
UFA	The Imitation Game	$22: 45$	
CinemaxX	The Imitation Game	$19: 30$	

Solution.

5. List the pairs of persons such that the first directed the second in a film, and vice versa.

$$
\exists y_{T}, z_{T} . \operatorname{Films}\left(y_{T}, x_{D}, x_{A}\right) \wedge \operatorname{Films}\left(z_{T}, x_{A}, x_{D}\right)\left[x_{D}, x_{A}\right]
$$

6. List the names of directors who have acted in a film they directed.

$$
\exists y_{T} \text {. Films }\left(y_{T}, x_{D}, x_{D}\right)\left[x_{D}\right]
$$

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone	
UFA	St. Petersburger Str. 24	4825825	
Schauburg	Königsbrücker Str. 55	8032185	
CinemaxX	Hüblerstr. 8	3158910	
\ldots	\ldots	\ldots	
Program			
Cinema	Title	Time	
Schauburg	The Imitation Game	$19: 30$	
Schauburg	Dogma	$20: 45$	
UFA	The Imitation Game	$22: 45$	
CinemaxX	The Imitation Game	$19: 30$	

Solution.

7. Always return $\{$ Title \mapsto "Apocalypse Now", Director \mapsto "Coppola"\} as the answer.

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone	
UFA	St. Petersburger Str. 24	4825825	
Schauburg	Königsbrücker Str. 55	8032185	
CinemaxX	Hüblerstr. 8	3158910	
\ldots	\ldots	\ldots	
Program			
Cinema	Title	Time	
Schauburg	The Imitation Game	$19: 30$	
Schauburg	Dogma	$20: 45$	
UFA	The Imitation Game	$22: 45$	
CinemaxX	The Imitation Game	$19: 30$	

Solution.

7. Always return $\{$ Title \mapsto "Apocalypse Now", Director \mapsto "Coppola"\} as the answer.

$$
\{\text { DirectedBy("Apocalypse Now", "Coppola")\} }
$$

Note: FO queries always use the unnamed perspective.

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone
UFA	St. Petersburger Str. 24	4825825
Schauburg	Königsbrücker Str. 55	8032185
CinemaxX	Hüblerstr. 8	3158910
\ldots	\ldots	\ldots
Program	Title	Time
Cinema	The Imitation Game	$19: 30$
Schauburg	Dogma	$20: 45$
Schauburg	The Imitation Game	$22: 45$
UFA	The Imitation Game	$19: 30$
CinemaxX	The	

Solution.

7. Always return $\{$ Title \mapsto "Apocalypse Now", Director \mapsto "Coppola"\} as the answer.

$$
\{\text { DirectedBy("Apocalypse Now", "Coppola")\} }
$$

Note: FO queries always use the unnamed perspective.
8. Find the actors cast in at least one film by "Smith".

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone
UFA	St. Petersburger Str. 24	4825825
Schauburg	Königsbrücker Str. 55	8032185
CinemaxX	Hüblerstr. 8	3158910
\ldots	\ldots	\ldots
Program	Title	Time
Cinema	The Imitation Game	$19: 30$
Schauburg	Dogma	$20: 45$
Schauburg	The Imitation Game	$22: 45$
UFA	The Imitation Game	$19: 30$
CinemaxX	The	

Solution.

7. Always return $\{$ Title \mapsto "Apocalypse Now", Director \mapsto "Coppola"\} as the answer.

$$
\{\text { DirectedBy("Apocalypse Now", "Coppola")\} }
$$

Note: FO queries always use the unnamed perspective.
8. Find the actors cast in at least one film by "Smith".

$$
\exists y_{T} \text {. Films }\left(y_{T}, \text { "Smith", } x_{A}\right)\left[x_{A}\right]
$$

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.

Films
Title Director Actor The Imitation Game Tyldum Cumberbatch The Imitation Game Tyldum Knightley \ldots \ldots \ldots The Internet's Own Boy Knappenberger Swartz The Internet's Own Boy Knappenberger Lessig The Internet's Own Boy Knappenberger Berners-Lee \ldots \ldots \ldots Dogma Smith Damon Dogma Smith Affleck Dogma Smith Morissette Dogma Smith Smith

Venues

Cinema	Address	Phone
UFA	St. Petersburger Str. 24	4825825
Schauburg	Königsbrücker Str. 55	8032185
CinemaxX	Hüblerstr. 8	3158910
\ldots	\ldots	\ldots
Program		
Cinema	Title	Time
Schauburg	The Imitation Game	$19: 30$
Schauburg	Dogma	$20: 45$
UFA	The Imitation Game	$22: 45$
CinemaxX	The Imitation Game	$19: 30$

Solution.

9. Find the actors cast in every film by "Smith."

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.

Films
Title Director Actor The Imitation Game Tyldum Cumberbatch The Imitation Game Tyldum Knightley \ldots \ldots \ldots The Internet's Own Boy Knappenberger Swartz The Internet's Own Boy Knappenberger Lessig The Internet's Own Boy Knappenberger Berners-Lee \ldots \ldots \ldots Dogma Smith Damon Dogma Smith Affleck Dogma Smith Morissette Dogma Smith Smith

Venues

Cinema	Address	Phone	
UFA	St. Petersburger Str. 24	4825825	
Schauburg	Königsbrücker Str. 55	8032185	
CinemaxX	Hüblerstr. 8	3158910	
\ldots	\ldots	\ldots	
	\ldots		
Program			
Cinema	Title	Time	
Schauburg	The Imitation Game	$19: 30$	
Schauburg	Dogma	$20: 45$	
UFA	The Imitation Game	$22: 45$	
CinemaxX	The Imitation Game	$19: 30$	

Solution.

9. Find the actors cast in every film by "Smith."

$$
\exists y_{T}, y_{D} .\left(\operatorname{Films}\left(y_{T}, y_{D}, x_{A}\right) \wedge \forall z_{T}, z_{A} .\left(\operatorname{Films}\left(z_{T}, \text { "Smith", } z_{A}\right) \rightarrow \operatorname{Films}\left(z_{T}, \text { "Smith", } x_{A}\right)\right)\right)\left[x_{A}\right]
$$

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.

Films
Title Director Actor The Imitation Game Tyldum Cumberbatch The Imitation Game Tyldum Knightley \ldots \ldots \ldots The Internet's Own Boy Knappenberger Swartz The Internet's Own Boy Knappenberger Lessig The Internet's Own Boy Knappenberger Berners-Lee \ldots \ldots \ldots Dogma Smith Damon Dogma Smith Affleck Dogma Smith Morissette Dogma Smith Smith

Venues

Cinema	Address	Phone	
UFA	St. Petersburger Str. 24	4825825	
Schauburg	Königsbrücker Str. 55	8032185	
CinemaxX	Hüblerstr. 8	3158910	
\ldots	\ldots	\ldots	
	\ldots		
Program			
Cinema	Title	Time	
Schauburg	The Imitation Game	$19: 30$	
Schauburg	Dogma	$20: 45$	
UFA	The Imitation Game	$22: 45$	
CinemaxX	The Imitation Game	$19: 30$	

Solution.

9. Find the actors cast in every film by "Smith."

$$
\exists y_{T}, y_{D} .\left(\operatorname{Films}\left(y_{T}, y_{D}, x_{A}\right) \wedge \forall z_{T}, z_{A} .\left(\operatorname{Films}\left(z_{T}, \text { "Smith", } z_{A}\right) \rightarrow \operatorname{Films}\left(z_{T}, \text { "Smith", } x_{A}\right)\right)\right)\left[x_{A}\right]
$$

10. Find the actors cast only in films by "Smith."

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone	
UFA	St. Petersburger Str. 24	4825825	
Schauburg	Königsbrücker Str. 55	8032185	
CinemaxX	Hüblerstr. 8	3158910	
\ldots	\ldots	\ldots	
	\ldots		
Program			
Cinema	Title	Time	
Schauburg	The Imitation Game	$19: 30$	
Schauburg	Dogma	$20: 45$	
UFA	The Imitation Game	$22: 45$	
CinemaxX	The Imitation Game	$19: 30$	

Solution.

9. Find the actors cast in every film by "Smith."

$$
\exists y_{T}, y_{D} .\left(\operatorname{Films}\left(y_{T}, y_{D}, x_{A}\right) \wedge \forall z_{T}, z_{A} .\left(\operatorname{Films}\left(z_{T}, \text { "Smith", } z_{A}\right) \rightarrow \operatorname{Films}\left(z_{T}, \text { "Smith", } x_{A}\right)\right)\right)\left[x_{A}\right]
$$

10. Find the actors cast only in films by "Smith."

$$
\exists y_{T}, y_{D} .\left(\text { Films }\left(y_{T}, y_{D}, x_{A}\right) \wedge \forall z_{T} . \exists z_{D} .\left(\text { Films }\left(z_{T}, z_{D}, x_{A}\right) \rightarrow z_{D} \approx \text { "Smith" }\right)\right)\left[x_{A}\right]
$$

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.

Films
Title Director Actor The Imitation Game Tyldum Cumberbatch The Imitation Game Tyldum Knightley \ldots \ldots \ldots The Internet's Own Boy Knappenberger Swartz The Internet's Own Boy Knappenberger Lessig The Internet's Own Boy Knappenberger Berners-Lee \ldots \ldots \ldots Dogma Smith Damon Dogma Smith Affleck Dogma Smith Morissette Dogma Smith Smith

Venues

Cinema	Address	Phone	
UFA	St. Petersburger Str. 24	4825825	
Schauburg	Königsbrücker Str. 55	8032185	
CinemaxX	Hüblerstr. 8	3158910	
\ldots	\ldots	\ldots	
Program			
Cinema	Title	Time	
Schauburg	The Imitation Game	$19: 30$	
Schauburg	Dogma	$20: 45$	
UFA	The Imitation Game	$22: 45$	
CinemaxX	The Imitation Game	$19: 30$	

Solution.

11. Find all pairs of actors who act together in at least one film.

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone
UFA	St. Petersburger Str. 24	4825825
Schauburg	Königsbrücker Str. 55	8032185
CinemaxX	Hüblerstr. 8	3158910
\ldots	\ldots	\ldots
	\ldots	
Program		
Cinema	Title	Time
Schauburg	The Imitation Game	$19: 30$
Schauburg	Dogma	$20: 45$
UFA	The Imitation Game	$22: 45$
CinemaxX	The Imitation Game	$19: 30$

Solution.

11. Find all pairs of actors who act together in at least one film.

$$
\exists y_{T}, y_{D} \text {. Films }\left(y_{T}, y_{D}, x_{A}\right) \wedge \operatorname{Films}\left(y_{T}, y_{D}, x_{A^{\prime}}\right) \wedge x_{A} \not \approx x_{A^{\prime}}\left[x_{A}, x_{A^{\prime}}\right]
$$

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone	
UFA	St. Petersburger Str. 24	4825825	
Schauburg	Königsbrücker Str. 55	8032185	
CinemaxX	Hüblerstr. 8	3158910	
\ldots	\ldots	\ldots	
	\ldots		
Program			
Cinema	Title	Time	
Schauburg	The Imitation Game	$19: 30$	
Schauburg	Dogma	$20: 45$	
UFA	The Imitation Game	$22: 45$	
CinemaxX	The Imitation Game	$19: 30$	

Solution.

11. Find all pairs of actors who act together in at least one film.

$$
\exists y_{T}, y_{D} \text {. Films }\left(y_{T}, y_{D}, x_{A}\right) \wedge \operatorname{Films}\left(y_{T}, y_{D}, x_{A^{\prime}}\right) \wedge x_{A} \not \approx x_{A^{\prime}}\left[x_{A}, x_{A^{\prime}}\right]
$$

12. Find all pairs of actors cast in exactly the same films.

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.
Films

Title	Director	Actor
The Imitation Game	Tyldum	Cumberbatch
The Imitation Game	Tyldum	Knightley
\ldots	\ldots	\ldots
The Internet's Own Boy	Knappenberger	Swartz
The Internet's Own Boy	Knappenberger	Lessig
The Internet's Own Boy	Knappenberger	Berners-Lee
\ldots	\ldots	\ldots
Dogma	Smith	Damon
Dogma	Smith	Affleck
Dogma	Smith	Morissette
Dogma	Smith	Smith

Venues

Cinema	Address	Phone
UFA	St. Petersburger Str. 24	4825825
Schauburg	Königsbrücker Str. 55	8032185
CinemaxX	Hüblerstr. 8	3158910
\ldots	\ldots	\ldots
Program	Title	Time
Cinema	The Imitation Game	$19: 30$
Schauburg	Dogma	$20: 45$
Schauburg	Dogma	$22: 45$
UFA	The Imitation Game	$19: 30$
CinemaxX	The Imitation Game	

Solution.

11. Find all pairs of actors who act together in at least one film.

$$
\exists y_{T}, y_{D} \text {. Films }\left(y_{T}, y_{D}, x_{A}\right) \wedge \operatorname{Films}\left(y_{T}, y_{D}, x_{A^{\prime}}\right) \wedge x_{A} \not \approx x_{A^{\prime}}\left[x_{A}, x_{A^{\prime}}\right]
$$

12. Find all pairs of actors cast in exactly the same films.

$$
\exists y_{T}, y_{D} .\left(\operatorname{Films}\left(y_{T}, y_{D}, x_{A}\right) \wedge \exists z_{T}, z_{D} . \operatorname{Films}\left(z_{T}, z_{D}, x_{A^{\prime}}\right) \wedge \forall w, v .\left(\operatorname{Films}\left(w, v, x_{A}\right) \leftrightarrow \operatorname{Films}\left(w, v, x_{A^{\prime}}\right)\right)\right)\left[x_{A}, x_{A^{\prime}}\right]
$$

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.

Films
Title Director Actor The Imitation Game Tyldum Cumberbatch The Imitation Game Tyldum Knightley \ldots \ldots \ldots The Internet's Own Boy Knappenberger Swartz The Internet's Own Boy Knappenberger Lessig The Internet's Own Boy Knappenberger Berners-Lee \ldots \ldots \ldots Dogma Smith Damon Dogma Smith Affleck Dogma Smith Morissette Dogma Smith Smith

Venues

Cinema	Address	Phone	
UFA	St. Petersburger Str. 24	4825825	
Schauburg	Königsbrücker Str. 55	8032185	
CinemaxX	Hüblerstr. 8	3158910	
\ldots	\ldots	\ldots	
Program			
Cinema	Title	Time	
Schauburg	The Imitation Game	$19: 30$	
Schauburg	Dogma	$20: 45$	
UFA	The Imitation Game	$22: 45$	
CinemaxX	The Imitation Game	$19: 30$	

Solution.

13. Find the directors such that every actor is cast in one of their films.

Exercise 1

Exercise. Express the queries from Exercise 1.1 as domain-independent FO-queries.

Films
Title Director Actor The Imitation Game Tyldum Cumberbatch The Imitation Game Tyldum Knightley \ldots \ldots \ldots The Internet's Own Boy Knappenberger Swartz The Internet's Own Boy Knappenberger Lessig The Internet's Own Boy Knappenberger Berners-Lee \ldots \ldots \ldots Dogma Smith Damon Dogma Smith Affleck Dogma Smith Morissette Dogma Smith Smith

Venues

Cinema	Address	Phone
UFA	St. Petersburger Str. 24	4825825
Schauburg	Königsbrücker Str. 55	8032185
CinemaxX	Hüblerstr. 8	3158910
\ldots	\ldots	\ldots
	\ldots	
Program		
Cinema	Title	Time
Schauburg	The Imitation Game	$19: 30$
Schauburg	Dogma	$20: 45$
UFA	The Imitation Game	$22: 45$
CinemaxX	The Imitation Game	$19: 30$

Solution.

13. Find the directors such that every actor is cast in one of their films.

$$
\exists y_{T}, y_{A \cdot} \cdot\left(\operatorname{Films}\left(y_{T}, x_{D}, y_{A}\right) \wedge \forall z_{T}, z_{D}, z_{A} \cdot\left(\operatorname{Films}\left(z_{T}, z_{D}, z_{A}\right) \rightarrow \exists w_{T} . \operatorname{Films}\left(w_{T}, x_{D}, z_{A}\right)\right)\right)\left[x_{D}\right]
$$

Exercise 2

Exercise. Let $R[A, B]$ be a table. Express the following $\mathrm{RA}_{\text {named }}$ query as a $\mathrm{Dl}_{\text {unnamed }}$ query:

$$
q[A, B]=\left(\pi_{A}(R) \bowtie \pi_{B}(R)\right)-\left(R \bowtie\left(\delta_{B, A \rightarrow A, B}(R)\right)\right)
$$

Exercise 2

Exercise. Let $R[A, B]$ be a table. Express the following $\mathrm{RA}_{\text {named }}$ query as a $\mathrm{Dl}_{\text {unnamed }}$ query:

$$
q[A, B]=\left(\pi_{A}(R) \bowtie \pi_{B}(R)\right)-\left(R \bowtie\left(\delta_{B, A \rightarrow A, B}(R)\right)\right)
$$

Solution.

Exercise 2

Exercise. Let $R[A, B]$ be a table. Express the following $\mathrm{RA}_{\text {named }}$ query as a $\mathrm{Dl}_{\text {unnamed }}$ query:

$$
q[A, B]=\left(\pi_{A}(R) \bowtie \pi_{B}(R)\right)-\left(R \bowtie\left(\delta_{B, A \rightarrow A, B}(R)\right)\right)
$$

Solution.

Definition (Lecture 2, Slide 19/20, excerpt)
For an RA query $q\left[a_{1}, \ldots, a_{n}\right]$, let $\varphi_{q}\left[x_{a_{1}}, \ldots, x_{a_{n}}\right]$ be the DI query defined as follows:

- If $q=R$ with signature $R\left[A_{1}, \ldots, A_{n}\right]$, then $\varphi_{q}=R\left(x_{A_{1}}, \ldots, x_{A_{n}}\right)\left[x_{A_{1}}, \ldots, x_{A_{n}}\right]$;
- if $q=\delta_{B_{1}, \ldots, B_{n} \rightarrow A_{1}, \ldots, A_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{B_{1}}, \ldots, y_{B_{n}} .\left(x_{A_{1}} \approx y_{B_{1}}\right) \wedge \ldots \wedge\left(x_{A_{n}} \approx y_{B_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{A_{1}}, \ldots, y_{A_{n}}\right]$; Assumption: A_{1}, \ldots, A_{n} in $\delta_{B_{1}}, \ldots, B_{n} \rightarrow A_{1}, \ldots, A_{n}$ are witten in attribute order; B_{1}, \ldots, B_{n} may be in arbitrary order.
- if $q=\pi_{A_{1}, \ldots, A_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[B_{1}, \ldots, B_{m}\right]$ with $\left\{B_{1}, \ldots, B_{m}\right\}=\left\{A_{1}, \ldots, A_{n}\right\} \cup\left\{C_{1}, \ldots, C_{k}\right\}$, then $\varphi_{q}=\exists x_{C_{1}}, \ldots, x_{C_{k}} \cdot \varphi_{q^{\prime}}$;
- if $q=q_{1} \bowtie q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \varphi_{q_{2}}$; and
- if $q=q_{1}-q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \neg \varphi_{q_{2}}$.

Exercise 2

Exercise. Let $R[A, B]$ be a table. Express the following $\mathrm{RA}_{\text {named }}$ query as a $\mathrm{Dl}_{\text {unnamed }}$ query:

$$
q[A, B]=\left(\pi_{A}(R) \bowtie \pi_{B}(R)\right)-\left(R \bowtie\left(\delta_{B, A \rightarrow A, B}(R)\right)\right)
$$

Solution.

Definition (Lecture 2, Slide 19/20, excerpt)
For an RA query $q\left[a_{1}, \ldots, a_{n}\right]$, let $\varphi_{q}\left[x_{a_{1}}, \ldots, x_{a_{n}}\right]$ be the DI query defined as follows:

- If $q=R$ with signature $R\left[A_{1}, \ldots, A_{n}\right]$, then $\varphi_{q}=R\left(x_{A_{1}}, \ldots, x_{A_{n}}\right)\left[x_{A_{1}}, \ldots, x_{A_{n}}\right]$;
- if $q=\delta_{B_{1}, \ldots, B_{n} \rightarrow A_{1}, \ldots, A_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{B_{1}}, \ldots, y_{B_{n}} .\left(x_{A_{1}} \approx y_{B_{1}}\right) \wedge \ldots \wedge\left(x_{A_{n}} \approx y_{B_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{A_{1}}, \ldots, y_{A_{n}}\right]$;

- if $q=\pi_{A_{1}, \ldots, A_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[B_{1}, \ldots, B_{m}\right]$
with $\left\{B_{1}, \ldots, B_{m}\right\}=\left\{A_{1}, \ldots, A_{n}\right\} \cup\left\{C_{1}, \ldots, C_{k}\right\}$, then $\varphi_{q}=\exists x_{C_{1}}, \ldots, x_{C_{k}} \cdot \varphi_{q^{\prime}}$;
- if $q=q_{1} \bowtie q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \varphi_{q_{2}}$; and
- if $q=q_{1}-q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \neg \varphi_{q_{2}}$.

$$
\varphi_{\pi_{A}(R)}\left[x_{A}\right]=\exists y_{B} . R\left(x_{A}, y_{B}\right)\left[x_{A}\right]
$$

Exercise 2

Exercise. Let $R[A, B]$ be a table. Express the following $\mathrm{RA}_{\text {named }}$ query as a $\mathrm{Dl}_{\text {unnamed }}$ query:

$$
q[A, B]=\left(\pi_{A}(R) \bowtie \pi_{B}(R)\right)-\left(R \bowtie\left(\delta_{B, A \rightarrow A, B}(R)\right)\right)
$$

Solution.

Definition (Lecture 2, Slide 19/20, excerpt)
For an RA query $q\left[a_{1}, \ldots, a_{n}\right]$, let $\varphi_{q}\left[x_{a_{1}}, \ldots, x_{a_{n}}\right]$ be the DI query defined as follows:

- If $q=R$ with signature $R\left[A_{1}, \ldots, A_{n}\right]$, then $\varphi_{q}=R\left(x_{A_{1}}, \ldots, x_{A_{n}}\right)\left[x_{A_{1}}, \ldots, x_{A_{n}}\right]$;
- if $q=\delta_{B_{1}, \ldots, B_{n} \rightarrow A_{1}, \ldots, A_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{B_{1}}, \ldots, y_{B_{n}} .\left(x_{A_{1}} \approx y_{B_{1}}\right) \wedge \ldots \wedge\left(x_{A_{n}} \approx y_{B_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{A_{1}}, \ldots, y_{A_{n}}\right]$;

- if $q=\pi_{A_{1}, \ldots, A_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[B_{1}, \ldots, B_{m}\right]$
with $\left\{B_{1}, \ldots, B_{m}\right\}=\left\{A_{1}, \ldots, A_{n}\right\} \cup\left\{C_{1}, \ldots, C_{k}\right\}$, then $\varphi_{q}=\exists x_{C_{1}}, \ldots, x_{C_{k}} \cdot \varphi_{q^{\prime}}$;
- if $q=q_{1} \bowtie q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \varphi_{q_{2}}$; and
- if $q=q_{1}-q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \neg \varphi_{q_{2}}$.

$$
\varphi_{\pi_{A}(R)}\left[x_{A}\right]=\exists y_{B} . R\left(x_{A}, y_{B}\right)\left[x_{A}\right]
$$

$$
\varphi_{\pi_{B}(R)}\left[x_{B}\right]=\exists y_{A} \cdot R\left(y_{A}, x_{B}\right)\left[x_{B}\right]
$$

Exercise 2

Exercise. Let $R[A, B]$ be a table. Express the following $\mathrm{RA}_{\text {named }}$ query as a $\mathrm{Dl}_{\text {unnamed }}$ query:

$$
q[A, B]=\left(\pi_{A}(R) \bowtie \pi_{B}(R)\right)-\left(R \bowtie\left(\delta_{B, A \rightarrow A, B}(R)\right)\right)
$$

Solution.

Definition (Lecture 2, Slide 19/20, excerpt)
For an RA query $q\left[a_{1}, \ldots, a_{n}\right]$, let $\varphi_{q}\left[x_{a_{1}}, \ldots, x_{a_{n}}\right]$ be the DI query defined as follows:

- If $q=R$ with signature $R\left[A_{1}, \ldots, A_{n}\right]$, then $\varphi_{q}=R\left(x_{A_{1}}, \ldots, x_{A_{n}}\right)\left[x_{A_{1}}, \ldots, x_{A_{n}}\right]$;
- if $q=\delta_{B_{1}, \ldots, B_{n} \rightarrow A_{1}, \ldots, A_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{B_{1}}, \ldots, y_{B_{n}} .\left(x_{A_{1}} \approx y_{B_{1}}\right) \wedge \ldots \wedge\left(x_{A_{n}} \approx y_{B_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{A_{1}}, \ldots, y_{A_{n}}\right]$;

- if $q=\pi_{A_{1}, \ldots, A_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[B_{1}, \ldots, B_{m}\right]$
with $\left\{B_{1}, \ldots, B_{m}\right\}=\left\{A_{1}, \ldots, A_{n}\right\} \cup\left\{C_{1}, \ldots, C_{k}\right\}$, then $\varphi_{q}=\exists x_{C_{1}}, \ldots, x_{C_{k}} . \varphi_{q^{\prime}}$;
- if $q=q_{1} \bowtie q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \varphi_{q_{2}}$; and
- if $q=q_{1}-q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \neg \varphi_{q_{2}}$.

$$
\begin{aligned}
\varphi_{\pi_{A}(R)}\left[x_{A}\right] & =\exists y_{B} . R\left(x_{A}, y_{B}\right)\left[x_{A}\right] \\
\varphi_{R}\left[x_{A}, x_{B}\right] & =R\left(x_{A}, x_{B}\right)\left[x_{A}, x_{B}\right]
\end{aligned}
$$

$$
\varphi_{\pi_{B}(R)}\left[x_{B}\right]=\exists y_{A} \cdot R\left(y_{A}, x_{B}\right)\left[x_{B}\right]
$$

Exercise 2

Exercise. Let $R[A, B]$ be a table. Express the following $\mathrm{RA}_{\text {named }}$ query as a $\mathrm{Dl}_{\text {unnamed }}$ query:

$$
q[A, B]=\left(\pi_{A}(R) \bowtie \pi_{B}(R)\right)-\left(R \bowtie\left(\delta_{B, A \rightarrow A, B}(R)\right)\right)
$$

Solution.

Definition (Lecture 2, Slide 19/20, excerpt)
For an RA query $q\left[a_{1}, \ldots, a_{n}\right]$, let $\varphi_{q}\left[x_{a_{1}}, \ldots, x_{a_{n}}\right]$ be the DI query defined as follows:

- If $q=R$ with signature $R\left[A_{1}, \ldots, A_{n}\right]$, then $\varphi_{q}=R\left(x_{A_{1}}, \ldots, x_{A_{n}}\right)\left[x_{A_{1}}, \ldots, x_{A_{n}}\right]$;
- if $q=\delta_{B_{1}, \ldots, B_{n} \rightarrow A_{1}, \ldots, A_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{B_{1}}, \ldots, y_{B_{n}} .\left(x_{A_{1}} \approx y_{B_{1}}\right) \wedge \ldots \wedge\left(x_{A_{n}} \approx y_{B_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{A_{1}}, \ldots, y_{A_{n}}\right]$;

Assumption: A_{1}, \ldots, A_{n} in $\delta_{B_{1}}, \ldots, B_{n} \rightarrow A_{1}, \ldots, A_{n}$ are witten in attribute order; B_{1}, \ldots, B_{n} may be in arbitrary order.

- if $q=\pi_{A_{1}, \ldots, A_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[B_{1}, \ldots, B_{m}\right]$
with $\left\{B_{1}, \ldots, B_{m}\right\}=\left\{A_{1}, \ldots, A_{n}\right\} \cup\left\{C_{1}, \ldots, C_{k}\right\}$, then $\varphi_{q}=\exists x_{C_{1}}, \ldots, x_{C_{k}} \cdot \varphi_{q^{\prime}}$;
- if $q=q_{1} \bowtie q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \varphi_{q_{2}}$; and
- if $q=q_{1}-q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \neg \varphi_{q_{2}}$.

$$
\begin{aligned}
\varphi_{\pi_{A}(R)}\left[x_{A}\right] & =\exists y_{B} . R\left(x_{A}, y_{B}\right)\left[x_{A}\right] \\
\varphi_{R}\left[x_{A}, x_{B}\right] & =R\left(x_{A}, x_{B}\right)\left[x_{A}, x_{B}\right]
\end{aligned}
$$

$$
\begin{aligned}
\varphi_{\pi_{B}(R)}\left[x_{B}\right] & =\exists y_{A} \cdot R\left(y_{A}, x_{B}\right)\left[x_{B}\right] \\
\varphi_{\pi_{A}(R) \bowtie \pi_{B}(R)}\left[x_{A}, x_{B}\right] & =\varphi_{\pi_{A}(R)} \wedge \varphi_{\pi_{B}(R)}\left[x_{A}, x_{B}\right]
\end{aligned}
$$

Exercise 2

Exercise. Let $R[A, B]$ be a table. Express the following $\mathrm{RA}_{\text {named }}$ query as a $\mathrm{Dl}_{\text {unnamed }}$ query:

$$
q[A, B]=\left(\pi_{A}(R) \bowtie \pi_{B}(R)\right)-\left(R \bowtie\left(\delta_{B, A \rightarrow A, B}(R)\right)\right)
$$

Solution.

Definition (Lecture 2, Slide 19/20, excerpt)
For an RA query $q\left[a_{1}, \ldots, a_{n}\right]$, let $\varphi_{q}\left[x_{a_{1}}, \ldots, x_{a_{n}}\right]$ be the DI query defined as follows:

- If $q=R$ with signature $R\left[A_{1}, \ldots, A_{n}\right]$, then $\varphi_{q}=R\left(x_{A_{1}}, \ldots, x_{A_{n}}\right)\left[x_{A_{1}}, \ldots, x_{A_{n}}\right]$;
- if $q=\delta_{B_{1}, \ldots, B_{n} \rightarrow A_{1}, \ldots, A_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{B_{1}}, \ldots, y_{B_{n}} .\left(x_{A_{1}} \approx y_{B_{1}}\right) \wedge \ldots \wedge\left(x_{A_{n}} \approx y_{B_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{A_{1}}, \ldots, y_{A_{n}}\right]$;

Assumption: A_{1}, \ldots, A_{n} in $\delta_{B_{1}}, \ldots, B_{n} \rightarrow A_{1}, \ldots, A_{n}$ are witten in attribute order; B_{1}, \ldots, B_{n} may be in arbitrary order.

- if $q=\pi_{A_{1}, \ldots, A_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[B_{1}, \ldots, B_{m}\right]$
with $\left\{B_{1}, \ldots, B_{m}\right\}=\left\{A_{1}, \ldots, A_{n}\right\} \cup\left\{C_{1}, \ldots, C_{k}\right\}$, then $\varphi_{q}=\exists x_{C_{1}}, \ldots, x_{C_{k}} \cdot \varphi_{q^{\prime}}$;
- if $q=q_{1} \bowtie q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \varphi_{q_{2}}$; and
- if $q=q_{1}-q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \neg \varphi_{q_{2}}$.

$$
\begin{aligned}
\varphi_{\pi_{A}(R)}\left[x_{A}\right] & =\exists y_{B} . R\left(x_{A}, y_{B}\right)\left[x_{A}\right] \\
\varphi_{R}\left[x_{A}, x_{B}\right] & =R\left(x_{A}, x_{B}\right)\left[x_{A}, x_{B}\right] \\
\varphi_{\left(\delta_{B, A \rightarrow A, B}(R)\right)}\left[x_{A}, x_{B}\right] & =\exists y_{B}, y_{A} \cdot\left(x_{A} \approx y_{B}\right) \wedge\left(x_{B} \approx y_{A}\right) \\
& \wedge R\left(y_{A}, y_{B}\right)\left[x_{A}, x_{B}\right]
\end{aligned}
$$

$$
\begin{aligned}
\varphi_{\pi_{B}(R)}\left[x_{B}\right] & =\exists y_{A} \cdot R\left(y_{A}, x_{B}\right)\left[x_{B}\right] \\
\varphi_{\pi_{A}(R) \triangleright \pi_{B}(R)}\left[x_{A}, x_{B}\right] & =\varphi_{\pi_{A}(R)} \wedge \varphi_{\pi_{B}(R)}\left[x_{A}, x_{B}\right]
\end{aligned}
$$

Exercise 2

Exercise. Let $R[A, B]$ be a table. Express the following $\mathrm{RA}_{\text {named }}$ query as a $\mathrm{Dl}_{\text {unnamed }}$ query:

$$
q[A, B]=\left(\pi_{A}(R) \bowtie \pi_{B}(R)\right)-\left(R \bowtie\left(\delta_{B, A \rightarrow A, B}(R)\right)\right)
$$

Solution.

Definition (Lecture 2, Slide 19/20, excerpt)
For an RA query $q\left[a_{1}, \ldots, a_{n}\right]$, let $\varphi_{q}\left[x_{a_{1}}, \ldots, x_{a_{n}}\right]$ be the DI query defined as follows:

- If $q=R$ with signature $R\left[A_{1}, \ldots, A_{n}\right]$, then $\varphi_{q}=R\left(x_{A_{1}}, \ldots, x_{A_{n}}\right)\left[x_{A_{1}}, \ldots, x_{A_{n}}\right]$;
- if $q=\delta_{B_{1}, \ldots, B_{n} \rightarrow A_{1}, \ldots, A_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{B_{1}}, \ldots, y_{B_{n}} .\left(x_{A_{1}} \approx y_{B_{1}}\right) \wedge \ldots \wedge\left(x_{A_{n}} \approx y_{B_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{A_{1}}, \ldots, y_{A_{n}}\right]$;

Assumption: A_{1}, \ldots, A_{n} in $\delta_{B_{1}}, \ldots, B_{n} \rightarrow A_{1}, \ldots, A_{n}$ are witten in attribute order; B_{1}, \ldots, B_{n} may be in arbitrary order.

- if $q=\pi_{A_{1}, \ldots, A_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[B_{1}, \ldots, B_{m}\right]$
with $\left\{B_{1}, \ldots, B_{m}\right\}=\left\{A_{1}, \ldots, A_{n}\right\} \cup\left\{C_{1}, \ldots, C_{k}\right\}$, then $\varphi_{q}=\exists x_{C_{1}}, \ldots, x_{C_{k}} . \varphi_{q^{\prime}}$;
- if $q=q_{1} \bowtie q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \varphi_{q_{2}}$; and
- if $q=q_{1}-q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \neg \varphi_{q_{2}}$.

$$
\begin{aligned}
\varphi_{\pi_{A}(R)}\left[x_{A}\right] & =\exists y_{B} \cdot R\left(x_{A}, y_{B}\right)\left[x_{A}\right] \\
\varphi_{R}\left[x_{A}, x_{B}\right] & =R\left(x_{A}, x_{B}\right)\left[x_{A}, x_{B}\right] \\
\varphi_{\left(\delta_{B, A A A, B}(R)\right)}\left[x_{A}, x_{B}\right] & =\exists y_{B}, y_{A} \cdot\left(x_{A} \approx y_{B}\right) \wedge\left(x_{B} \approx y_{A}\right) \\
& \wedge R\left(y_{A}, y_{B}\right)\left[x_{A}, x_{B}\right]
\end{aligned}
$$

$$
\begin{aligned}
\varphi_{\pi_{B}(R)}\left[x_{B}\right] & =\exists y_{A} \cdot R\left(y_{A}, x_{B}\right)\left[x_{B}\right] \\
\varphi_{\pi_{A}(R) \bowtie \pi_{B}(R)}\left[x_{A}, x_{B}\right] & =\varphi_{\pi_{A}(R)} \wedge \varphi_{\pi_{B}(R)}\left[x_{A}, x_{B}\right] \\
\varphi_{R \bowtie\left(\delta_{B, A \rightarrow A, B}(R)\right)}\left[x_{A}, x_{B}\right] & =\varphi_{R} \wedge \varphi_{\left(\delta_{B, A \rightarrow A, B}(R)\right)}\left[x_{A}, x_{B}\right]
\end{aligned}
$$

Exercise 2

Exercise. Let $R[A, B]$ be a table. Express the following $\mathrm{RA}_{\text {named }}$ query as a $\mathrm{Dl}_{\text {unnamed }}$ query:

$$
q[A, B]=\left(\pi_{A}(R) \bowtie \pi_{B}(R)\right)-\left(R \bowtie\left(\delta_{B, A \rightarrow A, B}(R)\right)\right)
$$

Solution.

Definition (Lecture 2, Slide 19/20, excerpt)
For an RA query $q\left[a_{1}, \ldots, a_{n}\right]$, let $\varphi_{q}\left[x_{a_{1}}, \ldots, x_{a_{n}}\right]$ be the DI query defined as follows:

- If $q=R$ with signature $R\left[A_{1}, \ldots, A_{n}\right]$, then $\varphi_{q}=R\left(x_{A_{1}}, \ldots, x_{A_{n}}\right)\left[x_{A_{1}}, \ldots, x_{A_{n}}\right]$;
- if $q=\delta_{B_{1}, \ldots, B_{n} \rightarrow A_{1}, \ldots, A_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{B_{1}}, \ldots, y_{B_{n}} .\left(x_{A_{1}} \approx y_{B_{1}}\right) \wedge \ldots \wedge\left(x_{A_{n}} \approx y_{B_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{A_{1}}, \ldots, y_{A_{n}}\right]$;

Assumption: A_{1}, \ldots, A_{n} in $\delta_{B_{1}}, \ldots, B_{n} \rightarrow A_{1}, \ldots, A_{n}$ are witten in attribute order; B_{1}, \ldots, B_{n} may be in arbitrary order.

- if $q=\pi_{A_{1}, \ldots, A_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[B_{1}, \ldots, B_{m}\right]$
with $\left\{B_{1}, \ldots, B_{m}\right\}=\left\{A_{1}, \ldots, A_{n}\right\} \cup\left\{C_{1}, \ldots, C_{k}\right\}$, then $\varphi_{q}=\exists x_{C_{1}}, \ldots, x_{C_{k}} . \varphi_{q^{\prime}}$;
- if $q=q_{1} \bowtie q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \varphi_{q_{2}}$; and
- if $q=q_{1}-q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \neg \varphi_{q_{2}}$.

$$
\begin{aligned}
& \varphi_{\pi_{A}(R)}\left[x_{A}\right]=\exists y_{B} . R\left(x_{A}, y_{B}\right)\left[x_{A}\right] \\
& \varphi_{R}\left[x_{A}, x_{B}\right]=R\left(x_{A}, x_{B}\right)\left[x_{A}, x_{B}\right] \\
& \varphi_{\left(\delta_{B, A \rightarrow A, B}(R)\right)}\left[x_{A}, x_{B}\right]=\exists y_{B}, y_{A} \cdot\left(x_{A} \approx y_{B}\right) \wedge\left(x_{B} \approx y_{A}\right) \\
& \wedge R\left(y_{A}, y_{B}\right)\left[x_{A}, x_{B}\right] \\
& \varphi_{q[A, B]}\left[x_{A}, x_{B}\right]=\varphi_{\pi_{A}(R)} \wedge \varphi_{\pi_{B}(R)} \wedge \neg\left(\varphi_{R} \wedge \varphi_{\left(\delta_{B, A \rightarrow A, B}(R)\right)}\right)\left[x_{A}, x_{B}\right] \\
& \varphi_{\pi_{B}(R)}\left[x_{B}\right]=\exists y_{A} . R\left(y_{A}, x_{B}\right)\left[x_{B}\right] \\
& \varphi_{\pi_{A}(R) \bowtie \pi_{B}(R)}\left[x_{A}, x_{B}\right]=\varphi_{\pi_{A}(R)} \wedge \varphi_{\pi_{B}(R)}\left[x_{A}, x_{B}\right] \\
& \varphi_{R \bowtie\left(\delta_{B, A \rightarrow A, B}(R)\right)}\left[x_{A}, x_{B}\right]=\varphi_{R} \wedge \varphi_{\left(\delta_{B, A \rightarrow A, B}(R)\right)}\left[x_{A}, x_{B}\right]
\end{aligned}
$$

Exercise 3

Exercise. It was stated in the lecture (Lecture 2, slide 17) that query mappings under named perspective can be translated into query mappings under unnamed perspective. Specify this translation.

Exercise 3

Exercise. It was stated in the lecture (Lecture 2, slide 17) that query mappings under named perspective can be translated into query mappings under unnamed perspective. Specify this translation.
Solution.

Exercise 3

Exercise. It was stated in the lecture (Lecture 2, slide 17) that query mappings under named perspective can be translated into query mappings under unnamed perspective. Specify this translation.

Solution.

- Let \mathbb{D}_{n} and \mathbb{D}_{u} be the sets of all database instances over a named and an unnamed perspective, respectively, and let \mathbb{T}_{n} and \mathbb{T}_{u} be the sets of all database tables over a named and an unnamed perspective.

Exercise 3

Exercise. It was stated in the lecture (Lecture 2, slide 17) that query mappings under named perspective can be translated into query mappings under unnamed perspective. Specify this translation.

Solution.

- Let \mathbb{D}_{n} and \mathbb{D}_{u} be the sets of all database instances over a named and an unnamed perspective, respectively, and let \mathbb{T}_{n} and \mathbb{T}_{u} be the sets of all database tables over a named and an unnamed perspective.
- Consider a query mapping $M[q]: \mathbb{D}_{n} \rightarrow \mathbb{T}_{n}$.

Exercise 3

Exercise. It was stated in the lecture (Lecture 2, slide 17) that query mappings under named perspective can be translated into query mappings under unnamed perspective. Specify this translation.

Solution.

- Let \mathbb{D}_{n} and \mathbb{D}_{u} be the sets of all database instances over a named and an unnamed perspective, respectively, and let \mathbb{T}_{n} and \mathbb{T}_{u} be the sets of all database tables over a named and an unnamed perspective.
- Consider a query mapping $M[q]: \mathbb{D}_{n} \rightarrow \mathbb{T}_{n}$.
- Define $v: \mathbb{T}_{n} \rightarrow \mathbb{T}_{u}$ as the function taking named database tables $R\left[A_{1}, \ldots, A_{n}\right]$ to unnamed database tables $R^{\mathcal{J}}$, such that attribute A_{i} is mapped to column i :

$$
v\left(R^{I}\right)=\left\{\left\langle r\left(A_{1}\right), \ldots, r\left(A_{n}\right)\right\rangle \mid\left(r:\left\{A_{1}, \ldots, A_{n}\right\} \rightarrow \operatorname{dom}\right) \in R^{I}\right\}
$$

Exercise 3

Exercise. It was stated in the lecture (Lecture 2, slide 17) that query mappings under named perspective can be translated into query mappings under unnamed perspective. Specify this translation.

Solution.

- Let \mathbb{D}_{n} and \mathbb{D}_{u} be the sets of all database instances over a named and an unnamed perspective, respectively, and let \mathbb{T}_{n} and \mathbb{T}_{u} be the sets of all database tables over a named and an unnamed perspective.
- Consider a query mapping $M[q]: \mathbb{D}_{n} \rightarrow \mathbb{T}_{n}$.
- Define $v: \mathbb{T}_{n} \rightarrow \mathbb{T}_{u}$ as the function taking named database tables $R\left[A_{1}, \ldots, A_{n}\right]$ to unnamed database tables $R^{\mathcal{J}}$, such that attribute A_{i} is mapped to column i :

$$
v\left(R^{I}\right)=\left\{\left\langle r\left(A_{1}\right), \ldots, r\left(A_{n}\right)\right\rangle \mid\left(r:\left\{A_{1}, \ldots, A_{n}\right\} \rightarrow \operatorname{dom}\right) \in R^{I}\right\}
$$

- Conversely, let $\mu: \mathbb{D}_{u} \rightarrow \mathbb{D}_{n}$ be the function taking unnamed database instances \mathcal{J} to named database instances I, by mapping each table $R^{\mathcal{J}}$ to a named table taking attribute A_{i} from column i :

$$
\mu(\mathcal{J})=\left\{\left\{\left\{A_{1} \mapsto a_{1}, \ldots, A_{n} \mapsto a_{n}\right\} \mid\left\langle a_{1}, \ldots, a_{n}\right\rangle \in R^{\mathcal{J}}\right\} \mid R \in \mathcal{J}\right\}
$$

Exercise 3

Exercise. It was stated in the lecture (Lecture 2, slide 17) that query mappings under named perspective can be translated into query mappings under unnamed perspective. Specify this translation.

Solution.

- Let \mathbb{D}_{n} and \mathbb{D}_{u} be the sets of all database instances over a named and an unnamed perspective, respectively, and let \mathbb{T}_{n} and \mathbb{T}_{u} be the sets of all database tables over a named and an unnamed perspective.
- Consider a query mapping $M[q]: \mathbb{D}_{n} \rightarrow \mathbb{T}_{n}$.
- Define $v: \mathbb{T}_{n} \rightarrow \mathbb{T}_{u}$ as the function taking named database tables $R\left[A_{1}, \ldots, A_{n}\right]$ to unnamed database tables $R^{\mathcal{J}}$, such that attribute A_{i} is mapped to column i :

$$
v\left(R^{I}\right)=\left\{\left\langle r\left(A_{1}\right), \ldots, r\left(A_{n}\right)\right\rangle \mid\left(r:\left\{A_{1}, \ldots, A_{n}\right\} \rightarrow \operatorname{dom}\right) \in R^{I}\right\}
$$

- Conversely, let $\mu: \mathbb{D}_{u} \rightarrow \mathbb{D}_{n}$ be the function taking unnamed database instances \mathcal{J} to named database instances I, by mapping each table $R^{\mathcal{J}}$ to a named table taking attribute A_{i} from column i :

$$
\mu(\mathcal{J})=\left\{\left\{\left\{A_{1} \mapsto a_{1}, \ldots, A_{n} \mapsto a_{n}\right\} \mid\left\langle a_{1}, \ldots, a_{n}\right\rangle \in R^{\mathcal{J}}\right\} \mid R \in \mathcal{J}\right\}
$$

- Then $v \circ M[q] \circ \mu: \mathbb{D}_{u} \rightarrow \mathbb{T}_{u}$ is the required translation of $M[q]: \mathbb{D}_{n} \rightarrow \mathbb{T}_{n}$.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=\mathrm{R}$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=\mathrm{R}$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=\mathrm{R}$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=\mathrm{R}$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to adom $\left(\left\{R^{I}\right\}\right) \subseteq$ adom (I). Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to adom $\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$. Equivalent, since $\{\langle c\rangle\}$ is the only result.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to adom $\left(\left\{R^{I}\right\}\right) \subseteq$ adom (I). Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$. Equivalent, since $\{\langle c\rangle\}$ is the only result.
- If $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$. Equivalent, since $\{\langle c\rangle\}$ is the only result.
- If $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$, and $x_{a_{i}}$ occurs in $\varphi_{q^{\prime}}$, which is DI by the induction hypotheses.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$. Equivalent, since $\{\langle c\rangle\}$ is the only result.
- If $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$, and $x_{a_{i}}$ occurs in $\varphi_{q^{\prime}}$, which is DI by the induction hypotheses. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent and $x_{a_{i}}=c$ for all answers.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$. Equivalent, since $\{\langle c\rangle\}$ is the only result.
- If $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$, and $x_{a_{i}}$ occurs in $\varphi_{q^{\prime}}$, which is DI by the induction hypotheses. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent and $x_{a_{i}}=c$ for all answers.
- If $q=\sigma_{a_{i}=a_{j}}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{j}} \approx x_{a_{j}}\right)$.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$. Equivalent, since $\{\langle c\rangle\}$ is the only result.
- If $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$, and $x_{a_{i}}$ occurs in $\varphi_{q^{\prime}}$, which is DI by the induction hypotheses. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent and $x_{a_{i}}=c$ for all answers.
- If $q=\sigma_{a_{i}=a_{j}}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx x_{a_{j}}\right)$. Analogous.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$. Equivalent, since $\{\langle c\rangle\}$ is the only result.
- If $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$, and $x_{a_{i}}$ occurs in $\varphi_{q^{\prime}}$, which is DI by the induction hypotheses. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent and $x_{a_{i}}=c$ for all answers.
- If $q=\sigma_{a_{i}=a_{j}}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{j}} \approx x_{a_{j}}\right)$. Analogous.
- If $q=\delta_{b_{1}, \ldots, b_{n} \rightarrow a_{1}, \ldots, a_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{b_{1}}, \ldots, y_{b_{n}} .\left(x_{a_{1}} \approx y_{b_{1}}\right) \wedge \ldots \wedge\left(x_{a_{n}} \approx y_{b_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{B_{1}}, \ldots, y_{B_{n}}\right]$.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{j}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$. Equivalent, since $\{\langle c\rangle\}$ is the only result.
- If $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$, and $x_{a_{i}}$ occurs in $\varphi_{q^{\prime}}$, which is DI by the induction hypotheses. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent and $x_{a_{i}}=c$ for all answers.
- If $q=\sigma_{a_{i}=a_{j}}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{j}} \approx x_{a_{j}}\right)$. Analogous.
- If $q=\delta_{b_{1}, \ldots, b_{n} \rightarrow a_{1}, \ldots, a_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{b_{1}}, \ldots, y_{b_{n}} .\left(x_{a_{1}} \approx y_{b_{1}}\right) \wedge \ldots \wedge\left(x_{a_{n}} \approx y_{b_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{B_{1}}, \ldots, y_{B_{n}}\right]$. DI, since $\left\{y_{b_{1}}, \ldots, y_{b_{n}}\right\}=\left\{y_{B_{1}}, \ldots, y_{B_{n}}\right\}$, and $\varphi_{q^{\prime}}$ is DI by induction. Thus, the values of $y_{b_{1}}, \ldots, y_{b_{n}}$ are DI , which restrict the values of $x_{a_{1}}, \ldots, x_{a_{n}}$.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$. Equivalent, since $\{\langle c\rangle\}$ is the only result.
- If $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$, and $x_{a_{i}}$ occurs in $\varphi_{q^{\prime}}$, which is DI by the induction hypotheses. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent and $x_{a_{i}}=c$ for all answers.
- If $q=\sigma_{a_{i}=a_{j}}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx x_{a_{j}}\right)$. Analogous.
- If $q=\delta_{b_{1}, \ldots, b_{n} \rightarrow a_{1}, \ldots, a_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{b_{1}}, \ldots, y_{b_{n}} .\left(x_{a_{1}} \approx y_{b_{1}}\right) \wedge \ldots \wedge\left(x_{a_{n}} \approx y_{b_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{B_{1}}, \ldots, y_{B_{n}}\right]$. DI, since $\left\{y_{b_{1}}, \ldots, y_{b_{n}}\right\}=\left\{y_{B_{1}}, \ldots, y_{B_{n}}\right\}$, and $\varphi_{q^{\prime}}$ is DI by induction. Thus, the values of $y_{b_{1}}, \ldots, y_{b_{n}}$ are DI, which restrict the values of $x_{a_{1}}, \ldots, x_{a_{n}}$. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction, and $I \vDash \varphi_{q}\left(c_{a_{1}}, \ldots, c_{a_{n}}\right)$ iff $I \models \varphi_{q^{\prime}}\left(c_{B_{1}}, \ldots, c_{B_{n}}\right)$.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$. Equivalent, since $\{\langle c\rangle\}$ is the only result.
- If $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$, and $x_{a_{i}}$ occurs in $\varphi_{q^{\prime}}$, which is DI by the induction hypotheses. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent and $x_{a_{i}}=c$ for all answers.
- If $q=\sigma_{a_{i}=a_{j}}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx x_{a_{j}}\right)$. Analogous.
- If $q=\delta_{b_{1}, \ldots, b_{n} \rightarrow a_{1}, \ldots, a_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{b_{1}}, \ldots, y_{b_{n}} .\left(x_{a_{1}} \approx y_{b_{1}}\right) \wedge \ldots \wedge\left(x_{a_{n}} \approx y_{b_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{B_{1}}, \ldots, y_{B_{n}}\right]$. DI, since $\left\{y_{b_{1}}, \ldots, y_{b_{n}}\right\}=\left\{y_{B_{1}}, \ldots, y_{B_{n}}\right\}$, and $\varphi_{q^{\prime}}$ is DI by induction. Thus, the values of $y_{b_{1}}, \ldots, y_{b_{n}}$ are DI, which restrict the values of $x_{a_{1}}, \ldots, x_{a_{n}}$. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction, and $I \vDash \varphi_{q}\left(c_{a_{1}}, \ldots, c_{a_{n}}\right)$ iff $I \models \varphi_{q^{\prime}}\left(c_{B_{1}}, \ldots, c_{B_{n}}\right)$.
- If $q=\pi_{a_{1}, \ldots, a_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[b_{1}, \ldots, b_{m}\right]$ with $\left\{b_{1}, \ldots, b_{m}\right\}=\left\{a_{1}, \ldots, a_{n}\right\} \cup\left\{c_{1}, \ldots, c_{k}\right\}$, then $\varphi_{q}=\exists x_{c_{1}}, \ldots, x_{c_{k}} . \varphi_{q^{\prime}}$.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$. Equivalent, since $\{\langle c\rangle\}$ is the only result.
- If $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$, and $x_{a_{i}}$ occurs in $\varphi_{q^{\prime}}$, which is DI by the induction hypotheses. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent and $x_{a_{i}}=c$ for all answers.
- If $q=\sigma_{a_{i}=a_{j}}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx x_{a_{j}}\right)$. Analogous.
- If $q=\delta_{b_{1}, \ldots, b_{n} \rightarrow a_{1}, \ldots, a_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{b_{1}}, \ldots, y_{b_{n}} .\left(x_{a_{1}} \approx y_{b_{1}}\right) \wedge \ldots \wedge\left(x_{a_{n}} \approx y_{b_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{B_{1}}, \ldots, y_{B_{n}}\right]$. DI, since $\left\{y_{b_{1}}, \ldots, y_{b_{n}}\right\}=\left\{y_{B_{1}}, \ldots, y_{B_{n}}\right\}$, and $\varphi_{q^{\prime}}$ is DI by induction. Thus, the values of $y_{b_{1}}, \ldots, y_{b_{n}}$ are DI, which restrict the values of $x_{a_{1}}, \ldots, x_{a_{n}}$. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction, and $I \vDash \varphi_{q}\left(c_{a_{1}}, \ldots, c_{a_{n}}\right)$ iff $I \models \varphi_{q^{\prime}}\left(c_{B_{1}}, \ldots, c_{B_{n}}\right)$.
- If $q=\pi_{a_{1}, \ldots, a_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[b_{1}, \ldots, b_{m}\right]$ with $\left\{b_{1}, \ldots, b_{m}\right\}=\left\{a_{1}, \ldots, a_{n}\right\} \cup\left\{c_{1}, \ldots, c_{k}\right\}$, then $\varphi_{q}=\exists x_{c_{1}}, \ldots, x_{c_{k}} \cdot \varphi_{q^{\prime}}$. DI, since all $x_{c_{i}}$ occur in $\varphi_{q^{\prime}}$, which is DI .

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$. Equivalent, since $\{\langle c\rangle\}$ is the only result.
- If $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$, and $x_{a_{i}}$ occurs in $\varphi_{q^{\prime}}$, which is DI by the induction hypotheses. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent and $x_{a_{i}}=c$ for all answers.
- If $q=\sigma_{a_{i}=a_{j}}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx x_{a_{j}}\right)$. Analogous.
- If $q=\delta_{b_{1}, \ldots, b_{n} \rightarrow a_{1}, \ldots, a_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{b_{1}}, \ldots, y_{b_{n}} .\left(x_{a_{1}} \approx y_{b_{1}}\right) \wedge \ldots \wedge\left(x_{a_{n}} \approx y_{b_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{B_{1}}, \ldots, y_{B_{n}}\right]$. DI, since $\left\{y_{b_{1}}, \ldots, y_{b_{n}}\right\}=\left\{y_{B_{1}}, \ldots, y_{B_{n}}\right\}$, and $\varphi_{q^{\prime}}$ is DI by induction. Thus, the values of $y_{b_{1}}, \ldots, y_{b_{n}}$ are DI, which restrict the values of $x_{a_{1}}, \ldots, x_{a_{n}}$. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction, and $I \vDash \varphi_{q}\left(c_{a_{1}}, \ldots, c_{a_{n}}\right)$ iff $I \models \varphi_{q^{\prime}}\left(c_{B_{1}}, \ldots, c_{B_{n}}\right)$.
- If $q=\pi_{a_{1}, \ldots, a_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[b_{1}, \ldots, b_{m}\right]$ with $\left\{b_{1}, \ldots, b_{m}\right\}=\left\{a_{1}, \ldots, a_{n}\right\} \cup\left\{c_{1}, \ldots, c_{k}\right\}$, then $\varphi_{q}=\exists x_{c_{1}}, \ldots, x_{c_{k}} . \varphi_{q^{\prime}}$. DI, since all $x_{c_{i}}$ occur in $\varphi_{q^{\prime}}$, which is DI. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction and $\left\{a_{1}, \ldots, a_{n}\right\}=\left\{b_{1}, \ldots, b_{m}\right\} \backslash\left\{c_{1}, \ldots, c_{k}\right\}$.

Exercise 4

Exercise. Complete the proof that $\mathrm{RA}_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$. Equivalent, since $\{\langle c\rangle\}$ is the only result.
- If $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$, and $x_{a_{i}}$ occurs in $\varphi_{q^{\prime}}$, which is DI by the induction hypotheses. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent and $x_{a_{i}}=c$ for all answers.
- If $q=\sigma_{a_{i}=a_{j}}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx x_{a_{j}}\right)$. Analogous.
- If $q=\delta_{b_{1}, \ldots, b_{n} \rightarrow a_{1}, \ldots, a_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{b_{1}}, \ldots, y_{b_{n}} .\left(x_{a_{1}} \approx y_{b_{1}}\right) \wedge \ldots \wedge\left(x_{a_{n}} \approx y_{b_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{B_{1}}, \ldots, y_{B_{n}}\right]$. DI, since $\left\{y_{b_{1}}, \ldots, y_{b_{n}}\right\}=\left\{y_{B_{1}}, \ldots, y_{B_{n}}\right\}$, and $\varphi_{q^{\prime}}$ is DI by induction. Thus, the values of $y_{b_{1}}, \ldots, y_{b_{n}}$ are DI , which restrict the values of $x_{a_{1}}, \ldots, x_{a_{n}}$. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction, and $I \vDash \varphi_{q}\left(c_{a_{1}}, \ldots, c_{a_{n}}\right)$ iff $I \models \varphi_{q^{\prime}}\left(c_{B_{1}}, \ldots, c_{B_{n}}\right)$.
- If $q=\pi_{a_{1}, \ldots, a_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[b_{1}, \ldots, b_{m}\right]$ with $\left\{b_{1}, \ldots, b_{m}\right\}=\left\{a_{1}, \ldots, a_{n}\right\} \cup\left\{c_{1}, \ldots, c_{k}\right\}$, then $\varphi_{q}=\exists x_{c_{1}}, \ldots, x_{c_{k}} . \varphi_{q^{\prime}}$. DI, since all $x_{c_{i}}$ occur in $\varphi_{q^{\prime}}$, which is DI. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction and $\left\{a_{1}, \ldots, a_{n}\right\}=\left\{b_{1}, \ldots, b_{m}\right\} \backslash\left\{c_{1}, \ldots, c_{k}\right\}$.
- If $q=q_{1} \bowtie q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \varphi_{q_{2}}$.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$. Equivalent, since $\{\langle c\rangle\}$ is the only result.
- If $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$, and $x_{a_{i}}$ occurs in $\varphi_{q^{\prime}}$, which is DI by the induction hypotheses. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent and $x_{a_{i}}=c$ for all answers.
- If $q=\sigma_{a_{i}=a_{j}}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{j}} \approx x_{a_{j}}\right)$. Analogous.
- If $q=\delta_{b_{1}, \ldots, b_{n} \rightarrow a_{1}, \ldots, a_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{b_{1}}, \ldots, y_{b_{n}} .\left(x_{a_{1}} \approx y_{b_{1}}\right) \wedge \ldots \wedge\left(x_{a_{n}} \approx y_{b_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{B_{1}}, \ldots, y_{B_{n}}\right]$. DI, since $\left\{y_{b_{1}}, \ldots, y_{b_{n}}\right\}=\left\{y_{B_{1}}, \ldots, y_{B_{n}}\right\}$, and $\varphi_{q^{\prime}}$ is DI by induction. Thus, the values of $y_{b_{1}}, \ldots, y_{b_{n}}$ are DI , which restrict the values of $x_{a_{1}}, \ldots, x_{a_{n}}$. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction, and $I \vDash \varphi_{q}\left(c_{a_{1}}, \ldots, c_{a_{n}}\right)$ iff $I \models \varphi_{q^{\prime}}\left(c_{B_{1}}, \ldots, c_{B_{n}}\right)$.
- If $q=\pi_{a_{1}, \ldots, a_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[b_{1}, \ldots, b_{m}\right]$ with $\left\{b_{1}, \ldots, b_{m}\right\}=\left\{a_{1}, \ldots, a_{n}\right\} \cup\left\{c_{1}, \ldots, c_{k}\right\}$, then $\varphi_{q}=\exists x_{c_{1}}, \ldots, x_{c_{k}} . \varphi_{q^{\prime}}$. DI, since all $x_{c_{i}}$ occur in $\varphi_{q^{\prime}}$, which is DI. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction and $\left\{a_{1}, \ldots, a_{n}\right\}=\left\{b_{1}, \ldots, b_{m}\right\} \backslash\left\{c_{1}, \ldots, c_{k}\right\}$.
- If $q=q_{1} \bowtie q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \varphi_{q_{2}}$. DI, since all variables occur in $\varphi_{q_{1}}$ or $\varphi_{q_{2}}$, which are DI by induction.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$. Equivalent, since $\{\langle c\rangle\}$ is the only result.
- If $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$, and $x_{a_{i}}$ occurs in $\varphi_{q^{\prime}}$, which is DI by the induction hypotheses. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent and $x_{a_{i}}=c$ for all answers.
- If $q=\sigma_{a_{i}=a_{j}}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx x_{a_{j}}\right)$. Analogous.
- If $q=\delta_{b_{1}, \ldots, b_{n} \rightarrow a_{1}, \ldots, a_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{b_{1}}, \ldots, y_{b_{n}} .\left(x_{a_{1}} \approx y_{b_{1}}\right) \wedge \ldots \wedge\left(x_{a_{n}} \approx y_{b_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{B_{1}}, \ldots, y_{B_{n}}\right]$. DI, since $\left\{y_{b_{1}}, \ldots, y_{b_{n}}\right\}=\left\{y_{B_{1}}, \ldots, y_{B_{n}}\right\}$, and $\varphi_{q^{\prime}}$ is DI by induction. Thus, the values of $y_{b_{1}}, \ldots, y_{b_{n}}$ are DI , which restrict the values of $x_{a_{1}}, \ldots, x_{a_{n}}$. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction, and $I \vDash \varphi_{q}\left(c_{a_{1}}, \ldots, c_{a_{n}}\right)$ iff $I \models \varphi_{q^{\prime}}\left(c_{B_{1}}, \ldots, c_{B_{n}}\right)$.
- If $q=\pi_{a_{1}, \ldots, a_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[b_{1}, \ldots, b_{m}\right]$ with $\left\{b_{1}, \ldots, b_{m}\right\}=\left\{a_{1}, \ldots, a_{n}\right\} \cup\left\{c_{1}, \ldots, c_{k}\right\}$, then $\varphi_{q}=\exists x_{c_{1}}, \ldots, x_{c_{k}} . \varphi_{q^{\prime}}$. DI, since all $x_{c_{i}}$ occur in $\varphi_{q^{\prime}}$, which is DI. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction and $\left\{a_{1}, \ldots, a_{n}\right\}=\left\{b_{1}, \ldots, b_{m}\right\} \backslash\left\{c_{1}, \ldots, c_{k}\right\}$.
- If $q=q_{1} \bowtie q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \varphi_{q_{2}}$. DI, since all variables occur in $\varphi_{q_{1}}$ or $\varphi_{q_{2}}$, which are DI by induction. Equivalent, since any answer to q contains answers to q_{1} and q_{2}.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$. Equivalent, since $\{\langle c\rangle\}$ is the only result.
- If $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$, and $x_{a_{i}}$ occurs in $\varphi_{q^{\prime}}$, which is DI by the induction hypotheses. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent and $x_{a_{i}}=c$ for all answers.
- If $q=\sigma_{a_{i}=a_{j}}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx x_{a_{j}}\right)$. Analogous.
- If $q=\delta_{b_{1}, \ldots, b_{n} \rightarrow a_{1}, \ldots, a_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{b_{1}}, \ldots, y_{b_{n}} .\left(x_{a_{1}} \approx y_{b_{1}}\right) \wedge \ldots \wedge\left(x_{a_{n}} \approx y_{b_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{B_{1}}, \ldots, y_{B_{n}}\right]$. DI, since $\left\{y_{b_{1}}, \ldots, y_{b_{n}}\right\}=\left\{y_{B_{1}}, \ldots, y_{B_{n}}\right\}$, and $\varphi_{q^{\prime}}$ is DI by induction. Thus, the values of $y_{b_{1}}, \ldots, y_{b_{n}}$ are DI , which restrict the values of $x_{a_{1}}, \ldots, x_{a_{n}}$. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction, and $I \vDash \varphi_{q}\left(c_{a_{1}}, \ldots, c_{a_{n}}\right)$ iff $I \models \varphi_{q^{\prime}}\left(c_{B_{1}}, \ldots, c_{B_{n}}\right)$.
- If $q=\pi_{a_{1}, \ldots, a_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[b_{1}, \ldots, b_{m}\right]$ with $\left\{b_{1}, \ldots, b_{m}\right\}=\left\{a_{1}, \ldots, a_{n}\right\} \cup\left\{c_{1}, \ldots, c_{k}\right\}$, then $\varphi_{q}=\exists x_{c_{1}}, \ldots, x_{c_{k}} . \varphi_{q^{\prime}}$. DI, since all $x_{c_{i}}$ occur in $\varphi_{q^{\prime}}$, which is DI. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction and $\left\{a_{1}, \ldots, a_{n}\right\}=\left\{b_{1}, \ldots, b_{m}\right\} \backslash\left\{c_{1}, \ldots, c_{k}\right\}$.
- If $q=q_{1} \bowtie q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \varphi_{q_{2}}$. DI, since all variables occur in $\varphi_{q_{1}}$ or $\varphi_{q_{2}}$, which are DI by induction. Equivalent, since any answer to q contains answers to q_{1} and q_{2}.
- If $q=q_{1} \cup q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \vee \varphi_{q_{2}}$.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$. Equivalent, since $\{\langle c\rangle\}$ is the only result.
- If $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$, and $x_{a_{i}}$ occurs in $\varphi_{q^{\prime}}$, which is DI by the induction hypotheses. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent and $x_{a_{i}}=c$ for all answers.
- If $q=\sigma_{a_{i}=a_{j}}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx x_{a_{j}}\right)$. Analogous.
- If $q=\delta_{b_{1}, \ldots, b_{n} \rightarrow a_{1}, \ldots, a_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{b_{1}}, \ldots, y_{b_{n}} .\left(x_{a_{1}} \approx y_{b_{1}}\right) \wedge \ldots \wedge\left(x_{a_{n}} \approx y_{b_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{B_{1}}, \ldots, y_{B_{n}}\right]$. DI, since $\left\{y_{b_{1}}, \ldots, y_{b_{n}}\right\}=\left\{y_{B_{1}}, \ldots, y_{B_{n}}\right\}$, and $\varphi_{q^{\prime}}$ is DI by induction. Thus, the values of $y_{b_{1}}, \ldots, y_{b_{n}}$ are DI , which restrict the values of $x_{a_{1}}, \ldots, x_{a_{n}}$. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction, and $I \vDash \varphi_{q}\left(c_{a_{1}}, \ldots, c_{a_{n}}\right)$ iff $I \models \varphi_{q^{\prime}}\left(c_{B_{1}}, \ldots, c_{B_{n}}\right)$.
- If $q=\pi_{a_{1}, \ldots, a_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[b_{1}, \ldots, b_{m}\right]$ with $\left\{b_{1}, \ldots, b_{m}\right\}=\left\{a_{1}, \ldots, a_{n}\right\} \cup\left\{c_{1}, \ldots, c_{k}\right\}$, then $\varphi_{q}=\exists x_{c_{1}}, \ldots, x_{c_{k}} . \varphi_{q^{\prime}}$. DI, since all $x_{c_{i}}$ occur in $\varphi_{q^{\prime}}$, which is DI. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction and $\left\{a_{1}, \ldots, a_{n}\right\}=\left\{b_{1}, \ldots, b_{m}\right\} \backslash\left\{c_{1}, \ldots, c_{k}\right\}$.
- If $q=q_{1} \bowtie q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \varphi_{q_{2}}$. DI, since all variables occur in $\varphi_{q_{1}}$ or $\varphi_{q_{2}}$, which are DI by induction. Equivalent, since any answer to q contains answers to q_{1} and q_{2}.
- If $q=q_{1} \cup q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \vee \varphi_{q_{2}}$. DI, since all variables occur in $\varphi_{q_{1}}$.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$. Equivalent, since $\{\langle c\rangle\}$ is the only result.
- If $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$, and $x_{a_{i}}$ occurs in $\varphi_{q^{\prime}}$, which is DI by the induction hypotheses. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent and $x_{a_{i}}=c$ for all answers.
- If $q=\sigma_{a_{i}=a_{j}}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx x_{a_{j}}\right)$. Analogous.
- If $q=\delta_{b_{1}, \ldots, b_{n} \rightarrow a_{1}, \ldots, a_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{b_{1}}, \ldots, y_{b_{n}} .\left(x_{a_{1}} \approx y_{b_{1}}\right) \wedge \ldots \wedge\left(x_{a_{n}} \approx y_{b_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{B_{1}}, \ldots, y_{B_{n}}\right]$. DI, since $\left\{y_{b_{1}}, \ldots, y_{b_{n}}\right\}=\left\{y_{B_{1}}, \ldots, y_{B_{n}}\right\}$, and $\varphi_{q^{\prime}}$ is DI by induction. Thus, the values of $y_{b_{1}}, \ldots, y_{b_{n}}$ are DI , which restrict the values of $x_{a_{1}}, \ldots, x_{a_{n}}$. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction, and $I \vDash \varphi_{q}\left(c_{a_{1}}, \ldots, c_{a_{n}}\right)$ iff $I \models \varphi_{q^{\prime}}\left(c_{B_{1}}, \ldots, c_{B_{n}}\right)$.
- If $q=\pi_{a_{1}, \ldots, a_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[b_{1}, \ldots, b_{m}\right]$ with $\left\{b_{1}, \ldots, b_{m}\right\}=\left\{a_{1}, \ldots, a_{n}\right\} \cup\left\{c_{1}, \ldots, c_{k}\right\}$, then $\varphi_{q}=\exists x_{c_{1}}, \ldots, x_{c_{k}} . \varphi_{q^{\prime}}$. DI, since all $x_{c_{i}}$ occur in $\varphi_{q^{\prime}}$, which is DI. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction and $\left\{a_{1}, \ldots, a_{n}\right\}=\left\{b_{1}, \ldots, b_{m}\right\} \backslash\left\{c_{1}, \ldots, c_{k}\right\}$.
- If $q=q_{1} \bowtie q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \varphi_{q_{2}}$. DI, since all variables occur in $\varphi_{q_{1}}$ or $\varphi_{q_{2}}$, which are DI by induction. Equivalent, since any answer to q contains answers to q_{1} and q_{2}.
- If $q=q_{1} \cup q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \vee \varphi_{q_{2}}$. DI, since all variables occur in $\varphi_{q_{1}}$. Clearly equivalent.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$. Equivalent, since $\{\langle c\rangle\}$ is the only result.
- If $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$, and $x_{a_{i}}$ occurs in $\varphi_{q^{\prime}}$, which is DI by the induction hypotheses. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent and $x_{a_{i}}=c$ for all answers.
- If $q=\sigma_{a_{i}=a_{j}}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx x_{a_{j}}\right)$. Analogous.
- If $q=\delta_{b_{1}, \ldots, b_{n} \rightarrow a_{1}, \ldots, a_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{b_{1}}, \ldots, y_{b_{n}} .\left(x_{a_{1}} \approx y_{b_{1}}\right) \wedge \ldots \wedge\left(x_{a_{n}} \approx y_{b_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{B_{1}}, \ldots, y_{B_{n}}\right]$. DI, since $\left\{y_{b_{1}}, \ldots, y_{b_{n}}\right\}=\left\{y_{B_{1}}, \ldots, y_{B_{n}}\right\}$, and $\varphi_{q^{\prime}}$ is DI by induction. Thus, the values of $y_{b_{1}}, \ldots, y_{b_{n}}$ are DI , which restrict the values of $x_{a_{1}}, \ldots, x_{a_{n}}$. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction, and $I \vDash \varphi_{q}\left(c_{a_{1}}, \ldots, c_{a_{n}}\right)$ iff $I \models \varphi_{q^{\prime}}\left(c_{B_{1}}, \ldots, c_{B_{n}}\right)$.
- If $q=\pi_{a_{1}, \ldots, a_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[b_{1}, \ldots, b_{m}\right]$ with $\left\{b_{1}, \ldots, b_{m}\right\}=\left\{a_{1}, \ldots, a_{n}\right\} \cup\left\{c_{1}, \ldots, c_{k}\right\}$, then $\varphi_{q}=\exists x_{c_{1}}, \ldots, x_{c_{k}} . \varphi_{q^{\prime}}$. DI, since all $x_{c_{i}}$ occur in $\varphi_{q^{\prime}}$, which is DI. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction and $\left\{a_{1}, \ldots, a_{n}\right\}=\left\{b_{1}, \ldots, b_{m}\right\} \backslash\left\{c_{1}, \ldots, c_{k}\right\}$.
- If $q=q_{1} \bowtie q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \varphi_{q_{2}}$. DI, since all variables occur in $\varphi_{q_{1}}$ or $\varphi_{q_{2}}$, which are DI by induction. Equivalent, since any answer to q contains answers to q_{1} and q_{2}.
- If $q=q_{1} \cup q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \vee \varphi_{q_{2}}$. DI, since all variables occur in $\varphi_{q_{1}}$. Clearly equivalent.
- If $q=q_{1}-q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \neg \varphi_{q_{2}}$.

Exercise 4

Exercise. Complete the proof that $R A_{\text {named }} \sqsubseteq \mathrm{Dl}_{\text {unnamed }}$ by showing that the results of the transformation are (a) domain independent and (b) equivalent to the input query. In each case, show that the claimed property holds true for each case of the recursive construction under the assumption (induction hypothesis) that it has been established for all subqueries. Use the mappings from the previous exercise to compare named and unnamed results.
Solution. We show domain independence and equivalence by induction on the structure of the RA query q.

- If $q=R$ with signature $R\left[a_{1}, \ldots, a_{n}\right]$, then $\varphi_{q}=R\left(x_{a_{1}}, \ldots, x_{a_{n}}\right)$. DI, since the values of $x_{a_{i}}$ belong to $\operatorname{adom}\left(\left\{R^{I}\right\}\right) \subseteq \operatorname{adom}(I)$. Equivalent, since $I \models R\left(c_{1}, \ldots, c_{n}\right)$ iff $\left\{a_{1} \mapsto c_{1}, \ldots, a_{n} \mapsto c_{n}\right\} \in M[q](I)$.
- If $q=\left\{\left\{a_{1} \mapsto c\right\}\right\}$, then $\varphi_{q}=\left(x_{a_{1}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$. Equivalent, since $\{\langle c\rangle\}$ is the only result.
- If $q=\sigma_{a_{i}=c}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx c\right)$. DI, since $c \in \operatorname{adom}(q)$, and $x_{a_{i}}$ occurs in $\varphi_{q^{\prime}}$, which is DI by the induction hypotheses. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent and $x_{a_{i}}=c$ for all answers.
- If $q=\sigma_{a_{i}=a_{j}}\left(q^{\prime}\right)$, then $\varphi_{q}=\varphi_{q^{\prime}} \wedge\left(x_{a_{i}} \approx x_{a_{j}}\right)$. Analogous.
- If $q=\delta_{b_{1}, \ldots, b_{n} \rightarrow a_{1}, \ldots, a_{n}} q^{\prime}$, then $\varphi_{q}=\exists y_{b_{1}}, \ldots, y_{b_{n}} .\left(x_{a_{1}} \approx y_{b_{1}}\right) \wedge \ldots \wedge\left(x_{a_{n}} \approx y_{b_{n}}\right) \wedge \varphi_{q^{\prime}}\left[y_{B_{1}}, \ldots, y_{B_{n}}\right]$. DI, since $\left\{y_{b_{1}}, \ldots, y_{b_{n}}\right\}=\left\{y_{B_{1}}, \ldots, y_{B_{n}}\right\}$, and $\varphi_{q^{\prime}}$ is DI by induction. Thus, the values of $y_{b_{1}}, \ldots, y_{b_{n}}$ are DI , which restrict the values of $x_{a_{1}}, \ldots, x_{a_{n}}$. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction, and $I \vDash \varphi_{q}\left(c_{a_{1}}, \ldots, c_{a_{n}}\right)$ iff $I \models \varphi_{q^{\prime}}\left(c_{B_{1}}, \ldots, c_{B_{n}}\right)$.
- If $q=\pi_{a_{1}, \ldots, a_{n}}\left(q^{\prime}\right)$ for a subquery $q^{\prime}\left[b_{1}, \ldots, b_{m}\right]$ with $\left\{b_{1}, \ldots, b_{m}\right\}=\left\{a_{1}, \ldots, a_{n}\right\} \cup\left\{c_{1}, \ldots, c_{k}\right\}$, then $\varphi_{q}=\exists x_{c_{1}}, \ldots, x_{c_{k}} . \varphi_{q^{\prime}}$. DI, since all $x_{c_{i}}$ occur in $\varphi_{q^{\prime}}$, which is DI. Equivalent, since q^{\prime} and $\varphi_{q^{\prime}}$ are equivalent by induction and $\left\{a_{1}, \ldots, a_{n}\right\}=\left\{b_{1}, \ldots, b_{m}\right\} \backslash\left\{c_{1}, \ldots, c_{k}\right\}$.
- If $q=q_{1} \bowtie q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \varphi_{q_{2}}$. DI, since all variables occur in $\varphi_{q_{1}}$ or $\varphi_{q_{2}}$, which are DI by induction. Equivalent, since any answer to q contains answers to q_{1} and q_{2}.
- If $q=q_{1} \cup q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \vee \varphi_{q_{2}}$. DI, since all variables occur in $\varphi_{q_{1}}$. Clearly equivalent.
- If $q=q_{1}-q_{2}$, then $\varphi_{q}=\varphi_{q_{1}} \wedge \neg \varphi_{q_{2}}$. Analogous.

Exercise 5

Exercise. Consider a binary predicate R and the $\mathrm{AD}_{\text {unnamed }}$ query

$$
\varphi[x, y]=\neg(R(x, y) \wedge R(y, x)) .
$$

Use the construction from the lecture to express it as an $\mathrm{RA}_{\text {named }}$ query.

Exercise 5

Exercise. Consider a binary predicate R and the $\mathrm{AD}_{\text {unnamed }}$ query

$$
\varphi[x, y]=\neg(R(x, y) \wedge R(y, x)) .
$$

Use the construction from the lecture to express it as an $\mathrm{RA}_{\text {named }}$ query. Solution.

Exercise 5

Exercise. Consider a binary predicate R and the $\mathrm{AD}_{\text {unnamed }}$ query

$$
\varphi[x, y]=\neg(R(x, y) \wedge R(y, x)) .
$$

Use the construction from the lecture to express it as an $\mathrm{RA}_{\text {named }}$ query.

Solution.

Definition (Lecture 2, Slide 22/23, excerpt)

Consider an AD query $q=\varphi\left[x_{1}, \ldots, x_{n}\right]$. For every attribute name a, there is an RA expression $E_{a, \text { adom }}$ with $E_{a, \text { adom }}(\mathcal{I})=\{\{a \mapsto c\} \mid c \in \operatorname{adom}(I, q)\}$. For every variable x, we use a fresh, distinct attribute name a_{x}.

- If $\varphi=R\left(t_{1}, \ldots, t_{m}\right)$ with signature $R\left[a_{1}, \ldots, a_{m}\right]$, variables $x_{1}=t_{v_{1}}, \ldots, x_{n}=t_{v_{n}}$ and constants $c_{1}=t_{w_{1}}, \ldots, c_{k}=t_{w_{k}}$, then $E_{\varphi}=\delta_{a_{v_{1}} \ldots a_{v_{n}} \rightarrow a_{x_{1}} \ldots a_{x_{n}}}\left(\sigma_{a_{w_{1}}=c_{1}}\left(\ldots \sigma_{a_{w_{k}}=c_{k}}(R) \ldots\right)\right) ;$
- if $\varphi=\neg \psi$, then $E_{\varphi}=\left(E_{a_{x_{1}}}\right.$, adom $\bowtie \ldots \bowtie E_{a_{x_{n}}}$, adom $)-E_{\psi}$; and
- if $\varphi=\varphi_{1} \wedge \varphi_{2}$, then $E_{\varphi}=E_{\varphi_{1}} \bowtie E_{\varphi_{2}}$.

Exercise 5

Exercise. Consider a binary predicate R and the $\mathrm{AD}_{\text {unnamed }}$ query

$$
\varphi[x, y]=\neg(R(x, y) \wedge R(y, x)) .
$$

Use the construction from the lecture to express it as an $\mathrm{RA}_{\text {named }}$ query.

Solution.

Definition (Lecture 2, Slide 22/23, excerpt)

Consider an AD query $q=\varphi\left[x_{1}, \ldots, x_{n}\right]$. For every attribute name a, there is an RA expression $E_{a, \text { adom }}$ with $E_{a, \text { adom }}(\mathcal{I})=\{\{a \mapsto c\} \mid c \in \operatorname{adom}(I, q)\}$. For every variable x, we use a fresh, distinct attribute name a_{x}.

- If $\varphi=R\left(t_{1}, \ldots, t_{m}\right)$ with signature $R\left[a_{1}, \ldots, a_{m}\right]$, variables $x_{1}=t_{v_{1}}, \ldots, x_{n}=t_{v_{n}}$ and constants $c_{1}=t_{w_{1}}, \ldots, c_{k}=t_{w_{k}}$, then $E_{\varphi}=\delta_{a_{v_{1}} \ldots a_{v_{n}} \rightarrow a_{x_{1}} \ldots a_{x_{n}}}\left(\sigma_{a_{w_{1}}=c_{1}}\left(\ldots \sigma_{a_{w_{k}}=c_{k}}(R) \ldots\right)\right) ;$
- if $\varphi=\neg \psi$, then $E_{\varphi}=\left(E_{a_{x_{1}}}\right.$, adom $\bowtie \ldots \bowtie E_{a_{x_{n}}}$, adom $)-E_{\psi}$; and
- if $\varphi=\varphi_{1} \wedge \varphi_{2}$, then $E_{\varphi}=E_{\varphi_{1}} \bowtie E_{\varphi_{2}}$.

$$
\varphi[x, y]=\neg(R(x, y) \wedge R(y, x))
$$

Exercise 5

Exercise. Consider a binary predicate R and the $\mathrm{AD}_{\text {unnamed }}$ query

$$
\varphi[x, y]=\neg(R(x, y) \wedge R(y, x)) .
$$

Use the construction from the lecture to express it as an $\mathrm{RA}_{\text {named }}$ query.

Solution.

Definition (Lecture 2, Slide 22/23, excerpt)

Consider an AD query $q=\varphi\left[x_{1}, \ldots, x_{n}\right]$. For every attribute name a, there is an RA expression $E_{a, \text { adom }}$ with $E_{a, \text { adom }}(\mathcal{I})=\{\{a \mapsto c\} \mid c \in \operatorname{adom}(I, q)\}$. For every variable x, we use a fresh, distinct attribute name a_{x}.

- If $\varphi=R\left(t_{1}, \ldots, t_{m}\right)$ with signature $R\left[a_{1}, \ldots, a_{m}\right]$, variables $x_{1}=t_{v_{1}}, \ldots, x_{n}=t_{v_{n}}$ and constants $c_{1}=t_{w_{1}}, \ldots, c_{k}=t_{w_{k}}$, then $E_{\varphi}=\delta_{a_{v_{1}} \ldots a_{v_{n}} \rightarrow a_{x_{1}} \ldots a_{x_{n}}}\left(\sigma_{a_{w_{1}}=c_{1}}\left(\ldots \sigma_{a_{w_{k}}=c_{k}}(R) \ldots\right)\right) ;$
- if $\varphi=\neg \psi$, then $E_{\varphi}=\left(E_{a_{x_{1}}}\right.$, adom $\bowtie \ldots \bowtie E_{a_{x_{n}}}$, adom $)-E_{\psi}$; and
- if $\varphi=\varphi_{1} \wedge \varphi_{2}$, then $E_{\varphi}=E_{\varphi_{1}} \bowtie E_{\varphi_{2}}$.

$$
\begin{aligned}
\varphi[x, y] & =\neg(R(x, y) \wedge R(y, x)) \\
& =\left(E_{a_{x}, \text { adom }} \bowtie E_{a_{y}, \text { adom }}\right)-E_{R(x, y) \wedge R(y, x)}
\end{aligned}
$$

Exercise 5

Exercise. Consider a binary predicate R and the $\mathrm{AD}_{\text {unnamed }}$ query

$$
\varphi[x, y]=\neg(R(x, y) \wedge R(y, x)) .
$$

Use the construction from the lecture to express it as an $\mathrm{RA}_{\text {named }}$ query.

Solution.

Definition (Lecture 2, Slide 22/23, excerpt)

Consider an AD query $q=\varphi\left[x_{1}, \ldots, x_{n}\right]$. For every attribute name a, there is an RA expression $E_{a, \text { adom }}$ with $E_{a, \text { adom }}(\mathcal{I})=\{\{a \mapsto c\} \mid c \in \operatorname{adom}(I, q)\}$. For every variable x, we use a fresh, distinct attribute name a_{x}.

- If $\varphi=R\left(t_{1}, \ldots, t_{m}\right)$ with signature $R\left[a_{1}, \ldots, a_{m}\right]$, variables $x_{1}=t_{v_{1}}, \ldots, x_{n}=t_{v_{n}}$ and constants $c_{1}=t_{w_{1}}, \ldots, c_{k}=t_{w_{k}}$, then $E_{\varphi}=\delta_{a_{v_{1}} \ldots a_{v_{n}} \rightarrow a_{x_{1}} \ldots a_{x_{n}}}\left(\sigma_{a_{w_{1}}=c_{1}}\left(\ldots \sigma_{a_{w_{k}}=c_{k}}(R) \ldots\right)\right) ;$
- if $\varphi=\neg \psi$, then $E_{\varphi}=\left(E_{a_{x_{1}}}\right.$, adom $\bowtie \ldots \bowtie E_{a_{x_{n}}}$, adom $)-E_{\psi}$; and
- if $\varphi=\varphi_{1} \wedge \varphi_{2}$, then $E_{\varphi}=E_{\varphi_{1}} \bowtie E_{\varphi_{2}}$.

$$
\begin{aligned}
\varphi[x, y] & =\neg(R(x, y) \wedge R(y, x)) \\
& =\left(E_{a x}, \text { adom } \bowtie E_{a y}, \text { adom }\right)-E_{R(x, y) \wedge R(y, x)} \\
& =\left(E_{a x}, \text { adom } \bowtie E_{a y}, \text { adom }\right)-\left(E_{R(x, y)} \bowtie E_{R(y, x)}\right)
\end{aligned}
$$

Exercise 5

Exercise. Consider a binary predicate R and the $\mathrm{AD}_{\text {unnamed }}$ query

$$
\varphi[x, y]=\neg(R(x, y) \wedge R(y, x)) .
$$

Use the construction from the lecture to express it as an $\mathrm{RA}_{\text {named }}$ query.

Solution.

Definition (Lecture 2, Slide 22/23, excerpt)

Consider an AD query $q=\varphi\left[x_{1}, \ldots, x_{n}\right]$. For every attribute name a, there is an RA expression $E_{a, \text { adom }}$ with $E_{a, \text { adom }}(\mathcal{I})=\{\{a \mapsto c\} \mid c \in \operatorname{adom}(I, q)\}$. For every variable x, we use a fresh, distinct attribute name a_{x}.

- If $\varphi=R\left(t_{1}, \ldots, t_{m}\right)$ with signature $R\left[a_{1}, \ldots, a_{m}\right]$, variables $x_{1}=t_{v_{1}}, \ldots, x_{n}=t_{v_{n}}$ and constants $c_{1}=t_{w_{1}}, \ldots, c_{k}=t_{w_{k}}$, then $E_{\varphi}=\delta_{a_{v_{1}} \ldots a_{v_{n}} \rightarrow a_{x_{1}} \ldots a_{x_{n}}}\left(\sigma_{a_{w_{1}}=c_{1}}\left(\ldots \sigma_{a_{w_{k}}=c_{k}}(R) \ldots\right)\right)$;
- if $\varphi=\neg \psi$, then $E_{\varphi}=\left(E_{a_{x_{1}}}\right.$, adom $\bowtie \ldots \bowtie E_{a_{x_{n}}}$, adom $)-E_{\psi}$; and
- if $\varphi=\varphi_{1} \wedge \varphi_{2}$, then $E_{\varphi}=E_{\varphi_{1}} \bowtie E_{\varphi_{2}}$.

$$
\begin{align*}
\varphi[x, y] & =\neg(R(x, y) \wedge R(y, x)) \\
& =\left(E_{a_{x}, \text { adom }} \bowtie E_{a_{y}, \text { adom }}\right)-E_{R(x, y) \wedge R(y, x)} \\
& =\left(E_{a_{x}, \text { adom }} \bowtie E_{a_{y}, \text { adom }}\right)-\left(E_{R(x, y)} \bowtie E_{R(y, x)}\right) \\
& =\left(E_{a_{x}, \text { adom }} \bowtie E_{a_{y}, \text { adom }}\right)-\left(\delta_{a_{1}, a_{2} \rightarrow a_{x}, a_{y}}(R) \bowtie \delta_{a_{1}, a_{2} \rightarrow a_{y}, a_{x}}\right. \tag{R}
\end{align*}
$$

Exercise 6

Exercise. Complete the constructions for the proof of $A D \sqsubseteq$ RA given in the lecture.

1. Define the relational algebra expression $E_{a, \text { adom }}$, such that $E_{a, \text { adom }}(I)=\{\{a \mapsto c\} \mid c \in \operatorname{adom}(I, q)\}$ (assume that the query and the database schema are known).
2. Define the expressions E_{φ} for $\varphi=\varphi_{1} \vee \varphi_{2}$ and $\varphi=\forall y . \psi$ in terms of expressions that have already been defined in the lecture.
3. Give a direct definition for the expression E_{φ} for $\varphi=\varphi_{1} \vee \varphi_{2} \equiv \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)$.

Exercise 6

Exercise. Complete the constructions for the proof of $A D \sqsubseteq$ RA given in the lecture.

1. Define the relational algebra expression $E_{a, \text { adom }}$, such that $E_{a, \text { adom }}(I)=\{\{a \mapsto c\} \mid c \in \operatorname{adom}(I, q)\}$ (assume that the query and the database schema are known).
2. Define the expressions E_{φ} for $\varphi=\varphi_{1} \vee \varphi_{2}$ and $\varphi=\forall y . \psi$ in terms of expressions that have already been defined in the lecture.
3. Give a direct definition for the expression E_{φ} for $\varphi=\varphi_{1} \vee \varphi_{2} \equiv \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)$.

Solution.

Exercise 6

Exercise. Complete the constructions for the proof of $\mathrm{AD} \sqsubseteq \mathrm{RA}$ given in the lecture.

1. Define the relational algebra expression $E_{a, \text { adom }}$, such that $E_{a, \text { adom }}(I)=\{\{a \mapsto c\} \mid c \in \operatorname{adom}(I, q)\}$ (assume that the query and the database schema are known).
2. Define the expressions E_{φ} for $\varphi=\varphi_{1} \vee \varphi_{2}$ and $\varphi=\forall y \cdot \psi$ in terms of expressions that have already been defined in the lecture.
3. Give a direct definition for the expression E_{φ} for $\varphi=\varphi_{1} \vee \varphi_{2} \equiv \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)$.

Solution.

1. Assume that the database schema consists of tables R_{1}, \ldots, R_{ℓ} with table schemata $R_{i}\left[a_{1}^{i}, \ldots a_{\left|R_{i}\right|}^{i}\right]$. Let q be the query and define

$$
E_{\mathrm{a}, \text { adom }}=\left(\bigcup_{i=1}^{\ell} \bigcup_{j=1}^{\left|R_{i}\right|} \delta_{a_{j}^{i} \rightarrow a}\left(\pi_{a_{j}^{i}}\left(R_{i}\right)\right)\right) \cup\{\{a \mapsto c\} \mid c \in \operatorname{adom}(q)\} .
$$

Exercise 6

Exercise. Complete the constructions for the proof of $\mathrm{AD} \sqsubseteq \mathrm{RA}$ given in the lecture.

1. Define the relational algebra expression $E_{a, \text { adom }}$, such that $E_{a, \text { adom }}(I)=\{\{a \mapsto c\} \mid c \in \operatorname{adom}(I, q)\}$ (assume that the query and the database schema are known).
2. Define the expressions E_{φ} for $\varphi=\varphi_{1} \vee \varphi_{2}$ and $\varphi=\forall y . \psi$ in terms of expressions that have already been defined in the lecture.
3. Give a direct definition for the expression E_{φ} for $\varphi=\varphi_{1} \vee \varphi_{2} \equiv \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)$.

Solution.

1. Assume that the database schema consists of tables R_{1}, \ldots, R_{ℓ} with table schemata $R_{i}\left[a_{1}^{i}, \ldots a_{\left|R_{i}\right|}^{i}\right]$. Let q be the query and define

$$
E_{a, \text { adom }}=\left(\bigcup_{i=1}^{\ell} \bigcup_{j=1}^{\left|R_{i}\right|} \delta_{a_{j}^{i} \rightarrow a}\left(\pi_{a_{j}^{i}}\left(R_{i}\right)\right)\right) \cup\{\{a \mapsto c\} \mid c \in \operatorname{adom}(q)\} .
$$

2.

$$
E_{\varphi_{1} \vee \varphi_{2}}=E_{\neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)}
$$

Exercise 6

Exercise. Complete the constructions for the proof of $\mathrm{AD} \sqsubseteq \mathrm{RA}$ given in the lecture.

1. Define the relational algebra expression $E_{a, \text { adom }}$, such that $E_{a, \text { adom }}(I)=\{\{a \mapsto c\} \mid c \in \operatorname{adom}(I, q)\}$ (assume that the query and the database schema are known).
2. Define the expressions E_{φ} for $\varphi=\varphi_{1} \vee \varphi_{2}$ and $\varphi=\forall y . \psi$ in terms of expressions that have already been defined in the lecture.
3. Give a direct definition for the expression E_{φ} for $\varphi=\varphi_{1} \vee \varphi_{2} \equiv \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)$.

Solution.

1. Assume that the database schema consists of tables R_{1}, \ldots, R_{ℓ} with table schemata $R_{i}\left[a_{1}^{i}, \ldots a_{\left|R_{i}\right|}^{i}\right]$. Let q be the query and define

$$
E_{a, \text { adom }}=\left(\bigcup_{i=1}^{\ell} \bigcup_{j=1}^{\left|R_{i}\right|} \delta_{a_{j}^{i} \rightarrow a}\left(\pi_{a_{j}^{i}}\left(R_{i}\right)\right)\right) \cup\{\{a \mapsto c\} \mid c \in \operatorname{adom}(q)\} .
$$

2.

$$
E_{\varphi_{1} \vee \varphi_{2}}=E_{\neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)} \quad E_{\curlyvee y, \psi}=E_{\neg \exists y . \neg \psi}
$$

Exercise 6

Exercise. Complete the constructions for the proof of $\mathrm{AD} \sqsubseteq \mathrm{RA}$ given in the lecture.

1. Define the relational algebra expression $E_{a, \text { adom }}$, such that $E_{a, \text { adom }}(I)=\{\{a \mapsto c\} \mid c \in \operatorname{adom}(I, q)\}$ (assume that the query and the database schema are known).
2. Define the expressions E_{φ} for $\varphi=\varphi_{1} \vee \varphi_{2}$ and $\varphi=\forall y \cdot \psi$ in terms of expressions that have already been defined in the lecture.
3. Give a direct definition for the expression E_{φ} for $\varphi=\varphi_{1} \vee \varphi_{2} \equiv \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)$.

Solution.

1. Assume that the database schema consists of tables R_{1}, \ldots, R_{ℓ} with table schemata $R_{i}\left[a_{1}^{i}, \ldots a_{\left|R_{i}\right|}^{i}\right]$. Let q be the query and define

$$
E_{a, \text { adom }}=\left(\bigcup_{i=1}^{\ell} \bigcup_{j=1}^{\left|R_{i}\right|} \delta_{a_{j}^{i} \rightarrow a}\left(\pi_{a_{j}^{i}}\left(R_{i}\right)\right)\right) \cup\{\{a \mapsto c\} \mid c \in \operatorname{adom}(q)\} .
$$

2.

$$
E_{\varphi_{1} \vee \varphi_{2}}=E_{\neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)} \quad E_{\forall y . \psi}=E_{\neg \exists y . \neg \psi}
$$

3. Assume φ has free variables x_{1}, \ldots, x_{n} with $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{\ell}\right\} \cup\left\{z_{1}, \ldots, z_{k}\right\}$, where y_{1}, \ldots, y_{ℓ} are the free variables of φ_{1} and z_{1}, \ldots, z_{k} are the free variables of φ_{2}.

$$
E_{\varphi_{1} v \varphi_{2}}=
$$

Exercise 6

Exercise. Complete the constructions for the proof of $\mathrm{AD} \sqsubseteq \mathrm{RA}$ given in the lecture.

1. Define the relational algebra expression $E_{a, \text { adom }}$, such that $E_{a, \text { adom }}(I)=\{\{a \mapsto c\} \mid c \in \operatorname{adom}(I, q)\}$ (assume that the query and the database schema are known).
2. Define the expressions E_{φ} for $\varphi=\varphi_{1} \vee \varphi_{2}$ and $\varphi=\forall y \cdot \psi$ in terms of expressions that have already been defined in the lecture.
3. Give a direct definition for the expression E_{φ} for $\varphi=\varphi_{1} \vee \varphi_{2} \equiv \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)$.

Solution.

1. Assume that the database schema consists of tables R_{1}, \ldots, R_{ℓ} with table schemata $R_{i}\left[a_{1}^{i}, \ldots a_{\left|R_{i}\right|}^{i}\right]$. Let q be the query and define

$$
E_{a, \text { adom }}=\left(\bigcup_{i=1}^{\ell} \bigcup_{j=1}^{\left|R_{i}\right|} \delta_{a_{j}^{i} \rightarrow a}\left(\pi_{a_{j}^{i}}\left(R_{i}\right)\right)\right) \cup\{\{a \mapsto c\} \mid c \in \operatorname{adom}(q)\} .
$$

2.

$$
E_{\varphi_{1} \vee \varphi_{2}}=E_{\neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)} \quad E_{\forall y, \psi}=E_{\neg \exists y . \neg \psi}
$$

3. Assume φ has free variables x_{1}, \ldots, x_{n} with $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{\ell}\right\} \cup\left\{z_{1}, \ldots, z_{k}\right\}$, where y_{1}, \ldots, y_{ℓ} are the free variables of φ_{1} and z_{1}, \ldots, z_{k} are the free variables of φ_{2}.
$E_{\varphi_{1} \vee \varphi_{2}}=E_{a_{x_{1}}, \text { adom }} \bowtie \cdots \bowtie E_{a_{x_{n}}}$, adom $-E_{\neg \varphi_{1} \wedge \neg \varphi_{2}}$

Exercise 6

Exercise. Complete the constructions for the proof of $\mathrm{AD} \sqsubseteq \mathrm{RA}$ given in the lecture.

1. Define the relational algebra expression $E_{a, \text { adom }}$, such that $E_{a, \text { adom }}(I)=\{\{a \mapsto c\} \mid c \in \operatorname{adom}(I, q)\}$ (assume that the query and the database schema are known).
2. Define the expressions E_{φ} for $\varphi=\varphi_{1} \vee \varphi_{2}$ and $\varphi=\forall y . \psi$ in terms of expressions that have already been defined in the lecture.
3. Give a direct definition for the expression E_{φ} for $\varphi=\varphi_{1} \vee \varphi_{2} \equiv \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)$.

Solution.

1. Assume that the database schema consists of tables R_{1}, \ldots, R_{ℓ} with table schemata $R_{i}\left[a_{1}^{i}, \ldots a_{\left|R_{i}\right|}^{i}\right]$. Let q be the query and define

$$
E_{a, \text { adom }}=\left(\bigcup_{i=1}^{\ell} \bigcup_{j=1}^{\left|R_{i}\right|} \delta_{a_{j}^{i} \rightarrow a}\left(\pi_{a_{j}^{i}}\left(R_{i}\right)\right)\right) \cup\{\{a \mapsto c\} \mid c \in \operatorname{adom}(q)\} .
$$

2.

$$
E_{\varphi_{1} \vee \varphi_{2}}=E_{\neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)} \quad E_{\forall y . \psi}=E_{\neg \exists y . \neg \psi}
$$

3. Assume φ has free variables x_{1}, \ldots, x_{n} with $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{\ell}\right\} \cup\left\{z_{1}, \ldots, z_{k}\right\}$, where y_{1}, \ldots, y_{ℓ} are the free variables of φ_{1} and z_{1}, \ldots, z_{k} are the free variables of φ_{2}.

$$
\begin{aligned}
E_{\varphi_{1} \vee \varphi_{2}} & =E_{a_{x_{1}}, \text { adom }} \bowtie \cdots \bowtie E_{a_{x_{n}}}, \text { adom }-E_{\neg \varphi_{1} \wedge \neg \varphi_{2}} \\
& =E_{a_{x_{1}}, \text { adom }} \bowtie \cdots \bowtie E_{a_{x_{n}}}, \text { adom }-\left(E_{\neg \varphi_{1}} \bowtie E_{\neg \varphi_{2}}\right)
\end{aligned}
$$

Exercise 6

Exercise. Complete the constructions for the proof of $\mathrm{AD} \sqsubseteq \mathrm{RA}$ given in the lecture.

1. Define the relational algebra expression $E_{a, \text { adom }}$, such that $E_{a, \text { adom }}(I)=\{\{a \mapsto c\} \mid c \in \operatorname{adom}(I, q)\}$ (assume that the query and the database schema are known).
2. Define the expressions E_{φ} for $\varphi=\varphi_{1} \vee \varphi_{2}$ and $\varphi=\forall y \cdot \psi$ in terms of expressions that have already been defined in the lecture.
3. Give a direct definition for the expression E_{φ} for $\varphi=\varphi_{1} \vee \varphi_{2} \equiv \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)$.

Solution.

1. Assume that the database schema consists of tables R_{1}, \ldots, R_{ℓ} with table schemata $R_{i}\left[a_{1}^{i}, \ldots a_{\left|R_{i}\right|}^{i}\right]$. Let q be the query and define

$$
E_{a, \text { adom }}=\left(\bigcup_{i=1}^{\ell} \bigcup_{j=1}^{\left|R_{i}\right|} \delta_{a_{j}^{i} \rightarrow a}\left(\pi_{a_{j}^{i}}\left(R_{i}\right)\right)\right) \cup\{\{a \mapsto c\} \mid c \in \operatorname{adom}(q)\} .
$$

2.

$$
E_{\varphi_{1} \vee \varphi_{2}}=E_{\neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)} \quad E_{\forall y, \psi}=E_{\neg \exists y . \neg \psi}
$$

3. Assume φ has free variables x_{1}, \ldots, x_{n} with $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{\ell}\right\} \cup\left\{z_{1}, \ldots, z_{k}\right\}$, where y_{1}, \ldots, y_{ℓ} are the free variables of φ_{1} and z_{1}, \ldots, z_{k} are the free variables of φ_{2}.

$$
\begin{aligned}
& E_{\varphi_{1} \vee \varphi_{2}}=E_{a_{x_{1}}, \text { adom }} \bowtie \cdots \bowtie E_{a_{x_{n}}}, \text { adom }-E_{\neg \varphi_{1} \wedge \neg \varphi_{2}} \\
&=E_{a_{x_{1}}, \text { adom }} \bowtie \cdots \bowtie E_{a_{x_{n}}}, \text { adom }-\left(E_{\neg \varphi_{1}} \bowtie E_{\neg \varphi_{2}}\right) \\
&=E_{a_{x_{1}}, \text { adom }} \bowtie \cdots \bowtie E_{a_{x_{n}}, \text { adom }}-\left((E _ { a _ { y _ { 1 } } , \text { adom } } \bowtie \cdots \bowtie E _ { a _ { y _ { \ell } } } , \text { adom } - E _ { \varphi _ { 1 } }) \bowtie \left(E_{a_{z_{1}}, \text { adom }} \bowtie \cdots \bowtie E_{a_{z_{k}}},\right.\right. \text { adom } \\
&\left.\left.-E_{\varphi_{2}}\right)\right)
\end{aligned}
$$

Exercise 7

Exercise. Use the function rr from the lecture to compute the set of range-restricted variables for the following queries:

1. $\varphi_{1}=\exists y_{\text {SID }}, y_{\text {Stop }}, y_{\text {To }}$. $\left(\operatorname{Stops}\left(y_{\text {SID }}, y_{\text {Stop }}, "\right.\right.$ true $\left.\left."\right) \wedge \operatorname{Connect}\left(y_{\text {SID }}, y_{\text {To }}, x_{\text {Line }}\right)\right)\left[x_{\text {Line }}\right]$
2. $\varphi_{2}=\neg \operatorname{Lines}(x$, "bus") $[x]$
3. $\varphi_{3}=\left(\operatorname{Connect}\left(x_{1}\right.\right.$, "42", "85") \vee Connect("57", x_{2}, " $\left.\left.85 "\right)\right)\left[x_{1}, x_{2}\right]$
4. $\varphi_{4}=\forall y \cdot p(x, y)[x]$
5. $\varphi_{5}=\exists x$. $(((p(x) \rightarrow q(c)) \rightarrow p(x)) \rightarrow p(x))$

Which of these queries is a safe-range query? Which of the queries is domain independent?

Exercise 7

Exercise. Use the function rr from the lecture to compute the set of range-restricted variables for the following queries:

1. $\varphi_{1}=\exists y_{\text {SID }}, y_{\text {Stop }}, y_{\text {To }}$. $\left(\operatorname{Stops}\left(y_{\text {SID }}, y_{\text {Stop }}, "\right.\right.$ true $\left.\left."\right) \wedge \operatorname{Connect}\left(y_{\text {SID }}, y_{\text {To }}, x_{\text {Line }}\right)\right)\left[x_{\text {Line }}\right]$
2. $\varphi_{2}=\neg \operatorname{Lines}(x$, "bus") $[x]$
3. $\varphi_{3}=\left(\operatorname{Connect}\left(x_{1}\right.\right.$, "42", "85") \vee Connect("57", x_{2}, " $\left.\left.85 "\right)\right)\left[x_{1}, x_{2}\right]$
4. $\varphi_{4}=\forall y \cdot p(x, y)[x]$
5. $\varphi_{5}=\exists x .(((p(x) \rightarrow q(c)) \rightarrow p(x)) \rightarrow p(x))$

Which of these queries is a safe-range query? Which of the queries is domain independent?
Solution.

Exercise 7

Exercise. Use the function rr from the lecture to compute the set of range-restricted variables for the following queries:

1. $\varphi_{1}=\exists y_{\text {SID }}, y_{\text {Stop }}, y_{\text {To }}$. $\left(\operatorname{Stops}\left(y_{\text {SID }}, y_{\text {Stop }}, "\right.\right.$ true" $\left.) \wedge \operatorname{Connect}\left(y_{\text {SID }}, y_{\text {To }}, x_{\text {Line }}\right)\right)\left[x_{\text {Line }}\right]$
2. $\varphi_{2}=\neg \operatorname{Lines}(x$, "bus") $[x]$
3. $\varphi_{3}=\left(\operatorname{Connect}\left(x_{1}\right.\right.$, "42", "85") \vee Connect("57", x_{2}, " $\left.\left.85 "\right)\right)\left[x_{1}, x_{2}\right]$
4. $\varphi_{4}=\forall y \cdot p(x, y)[x]$
5. $\varphi_{5}=\exists x$. $(((p(x) \rightarrow q(c)) \rightarrow p(x)) \rightarrow p(x))$

Which of these queries is a safe-range query? Which of the queries is domain independent?
Solution.

Definition (Lecture 2, Slide 26)

The set $\operatorname{rr}(\varphi)$ of range-restricted variables of φ in Safe-Range Normal Form is defined recursively:

$$
\left.\begin{array}{rlr}
\operatorname{rr}\left(R\left(t_{1}, \ldots, t_{n}\right)\right) & =\left\{x \mid x \text { is a variable among the } t_{1}, \ldots, t_{n}\right\} & \operatorname{rr}(x \approx a)=\{x\} \\
\operatorname{rr}\left(\varphi_{1} \wedge \varphi_{2}\right) & = \begin{cases}\operatorname{rr}\left(\varphi_{1}\right) \cup\{x, y\} & \text { if } \varphi_{2}=(x \approx y) \\
\operatorname{rr}\left(\varphi_{1}\right) \cup \operatorname{rr}\left(\varphi_{2}\right) & \text { otherwise }\{x, y\} \cap \operatorname{rr}\left(\varphi_{1}\right) \neq \emptyset\end{cases} & \operatorname{rr}(x \approx y)=\emptyset
\end{array}\right] \begin{array}{lll}
\operatorname{rr}(\psi) \backslash\{y\} & \text { if } y \in \operatorname{rr}(\psi) & \operatorname{rr}\left(\varphi_{1} \vee \varphi_{2}\right)=\operatorname{rr}\left(\varphi_{1}\right) \cap \operatorname{rr}\left(\varphi_{2}\right) \\
\text { throw new NotSafeException }() & \text { if } y \notin \operatorname{rr}(\psi) & \operatorname{rr}(\neg \psi)=\emptyset \\
\operatorname{rr}(\exists) \operatorname{rr}(\psi) \text { is defined }
\end{array}
$$

Exercise 7

Exercise. Use the function rr from the lecture to compute the set of range-restricted variables for the following queries:

1. $\varphi_{1}=\exists y_{\text {SID }}, y_{\text {Stop }}, y_{\text {To }}$. $\left(\operatorname{Stops}\left(y_{\text {SID }}, y_{\text {Stop }}, "\right.\right.$ true" $\left.) \wedge \operatorname{Connect}\left(y_{\text {SID }}, y_{\text {To }}, x_{\text {Line }}\right)\right)\left[x_{\text {Line }}\right]$
2. $\varphi_{2}=\neg \operatorname{Lines}(x$, "bus") $[x]$
3. $\varphi_{3}=\left(\operatorname{Connect}\left(x_{1}\right.\right.$, "42", "85") \vee Connect("57", x_{2}, " $\left.\left.85 "\right)\right)\left[x_{1}, x_{2}\right]$
4. $\varphi_{4}=\forall y \cdot p(x, y)[x]$
5. $\varphi_{5}=\exists x \cdot(((p(x) \rightarrow q(c)) \rightarrow p(x)) \rightarrow p(x))$

Which of these queries is a safe-range query? Which of the queries is domain independent?

Solution.

$$
\operatorname{rr}\left(\varphi_{1}\right)=\left\{x_{\text {Line }}\right\}
$$

Definition (Lecture 2, Slide 26)

The set $\operatorname{rr}(\varphi)$ of range-restricted variables of φ in Safe-Range Normal Form is defined recursively:

$$
\left.\begin{array}{rlr}
\operatorname{rr}\left(R\left(t_{1}, \ldots, t_{n}\right)\right) & =\left\{x \mid x \text { is a variable among the } t_{1}, \ldots, t_{n}\right\} & \operatorname{rr}(x \approx a)=\{x\} \\
\operatorname{rr}\left(\varphi_{1} \wedge \varphi_{2}\right) & = \begin{cases}\operatorname{rr}\left(\varphi_{1}\right) \cup\{x, y\} & \text { if } \varphi_{2}=(x \approx y) \text { and }\{x, y\} \cap \operatorname{rr}\left(\varphi_{1}\right) \neq \emptyset\end{cases} & \operatorname{rr}(x \approx y)=\emptyset \\
\operatorname{rr}\left(\varphi_{1}\right) \cup \operatorname{rr}\left(\varphi_{2}\right) & \text { otherwise }
\end{array}\right] \begin{array}{lll}
\operatorname{rr}(\psi) \backslash\{y\} & \text { if } y \in \operatorname{rr}(\psi) & \operatorname{rr}\left(\varphi_{1} \vee \varphi_{2}\right)=\operatorname{rr}\left(\varphi_{1}\right) \cap \operatorname{rr}\left(\varphi_{2}\right) \\
\text { throw new NotSafeException }() & \text { if } y \notin \operatorname{rr}(\psi) & \operatorname{rr}(\neg \psi)=\emptyset \\
\operatorname{rr}(\exists y \cdot \psi) \operatorname{rr}(\psi) \text { is defined }
\end{array}
$$

Exercise 7

Exercise. Use the function rr from the lecture to compute the set of range-restricted variables for the following queries:

1. $\varphi_{1}=\exists y_{\text {SID }}, y_{\text {Stop }}, y_{\text {To }}$. $\left(\operatorname{Stops}\left(y_{\text {SID }}, y_{\text {Stop }}, "\right.\right.$ true" $\left.) \wedge \operatorname{Connect}\left(y_{\text {SID }}, y_{\text {To }}, x_{\text {Line }}\right)\right)\left[x_{\text {Line }}\right]$
2. $\varphi_{2}=\neg \operatorname{Lines}(x$, "bus") $[x]$
3. $\varphi_{3}=\left(\operatorname{Connect}\left(x_{1}\right.\right.$, "42", "85") \vee Connect("57", x_{2}, " $\left.\left.85 "\right)\right)\left[x_{1}, x_{2}\right]$
4. $\varphi_{4}=\forall y \cdot p(x, y)[x]$
5. $\varphi_{5}=\exists x$. $(((p(x) \rightarrow q(c)) \rightarrow p(x)) \rightarrow p(x))$

Which of these queries is a safe-range query? Which of the queries is domain independent?

Solution.

$$
\operatorname{rr}\left(\varphi_{1}\right)=\left\{x_{\text {Line }}\right\} \quad \operatorname{rr}\left(\varphi_{2}\right)=\emptyset
$$

Definition (Lecture 2, Slide 26)

The set $\operatorname{rr}(\varphi)$ of range-restricted variables of φ in Safe-Range Normal Form is defined recursively:

$$
\left.\begin{array}{rlr}
\operatorname{rr}\left(R\left(t_{1}, \ldots, t_{n}\right)\right) & =\left\{x \mid x \text { is a variable among the } t_{1}, \ldots, t_{n}\right\} & \operatorname{rr}(x \approx a)=\{x\} \\
\operatorname{rr}\left(\varphi_{1} \wedge \varphi_{2}\right) & = \begin{cases}\operatorname{rr}\left(\varphi_{1}\right) \cup\{x, y\} & \text { if } \varphi_{2}=(x \approx y) \text { and }\{x, y\} \cap \operatorname{rr}\left(\varphi_{1}\right) \neq \emptyset\end{cases} & \operatorname{rr}(x \approx y)=\emptyset \\
\operatorname{rr}\left(\varphi_{1}\right) \cup \operatorname{rr}\left(\varphi_{2}\right) & \text { otherwise }
\end{array}\right] \begin{array}{lll}
\operatorname{rr}(\psi) \backslash\{y\} & \text { if } y \in \operatorname{rr}(\psi) & \operatorname{rr}\left(\varphi_{1} \vee \varphi_{2}\right)=\operatorname{rr}\left(\varphi_{1}\right) \cap \operatorname{rr}\left(\varphi_{2}\right) \\
\text { throw new NotSafeException }() & \text { if } y \notin \operatorname{rr}(\psi) & \operatorname{rr}(\neg \psi)=\emptyset \\
\operatorname{rr}(\exists y \cdot \psi) & \operatorname{rr}(\psi) \text { is defined }
\end{array}
$$

Exercise 7

Exercise. Use the function rr from the lecture to compute the set of range-restricted variables for the following queries:

1. $\varphi_{1}=\exists y_{\text {SID }}, y_{\text {Stop }}, y_{\text {To }}$. $\left(\operatorname{Stops}\left(y_{\text {SID }}, y_{\text {Stop }}, "\right.\right.$ true" $\left.) \wedge \operatorname{Connect}\left(y_{\text {SID }}, y_{\text {To }}, x_{\text {Line }}\right)\right)\left[x_{\text {Line }}\right]$
2. $\varphi_{2}=\neg \operatorname{Lines}(x$, "bus") $[x]$
3. $\varphi_{3}=\left(\operatorname{Connect}\left(x_{1}\right.\right.$, "42", "85") \vee Connect("57", x_{2}, " $\left.\left.85 "\right)\right)\left[x_{1}, x_{2}\right]$
4. $\varphi_{4}=\forall y \cdot p(x, y)[x]$
5. $\varphi_{5}=\exists x$. $(((p(x) \rightarrow q(c)) \rightarrow p(x)) \rightarrow p(x))$

Which of these queries is a safe-range query? Which of the queries is domain independent?

Solution.

$$
\operatorname{rr}\left(\varphi_{1}\right)=\left\{x_{\text {Line }}\right\} \quad \operatorname{rr}\left(\varphi_{2}\right)=\emptyset \quad \operatorname{rr}\left(\varphi_{3}\right)=\emptyset
$$

Definition (Lecture 2, Slide 26)

The set $\operatorname{rr}(\varphi)$ of range-restricted variables of φ in Safe-Range Normal Form is defined recursively:

$$
\left.\begin{array}{rlr}
\operatorname{rr}\left(R\left(t_{1}, \ldots, t_{n}\right)\right) & =\left\{x \mid x \text { is a variable among the } t_{1}, \ldots, t_{n}\right\} & \operatorname{rr}(x \approx a)=\{x\} \\
\operatorname{rr}\left(\varphi_{1} \wedge \varphi_{2}\right) & = \begin{cases}\operatorname{rr}\left(\varphi_{1}\right) \cup\{x, y\} & \text { if } \varphi_{2}=(x \approx y) \text { and }\{x, y\} \cap \operatorname{rr}\left(\varphi_{1}\right) \neq \emptyset\end{cases} & \operatorname{rr}(x \approx y)=\emptyset \\
\operatorname{rr}\left(\varphi_{1}\right) \cup \operatorname{rr}\left(\varphi_{2}\right) & \text { otherwise }
\end{array}\right] \begin{array}{lll}
\operatorname{rr}(\psi) \backslash\{y\} & \text { if } y \in \operatorname{rr}(\psi) & \operatorname{rr}\left(\varphi_{1} \vee \varphi_{2}\right)=\operatorname{rr}\left(\varphi_{1}\right) \cap \operatorname{rr}\left(\varphi_{2}\right) \\
\text { throw new NotSafeException }() & \text { if } y \notin \operatorname{rr}(\psi) & \operatorname{rr}(\neg \psi)=\emptyset \\
\operatorname{rr}(\exists y \cdot \psi) & \operatorname{rr}(\psi) \text { is defined }
\end{array}
$$

Exercise 7

Exercise. Use the function rr from the lecture to compute the set of range-restricted variables for the following queries:

1. $\varphi_{1}=\exists y_{\text {SID }}, y_{\text {Stop }}, y_{\text {To }}$. $\left(\operatorname{Stops}\left(y_{\text {SID }}, y_{\text {Stop }}, "\right.\right.$ true" $\left.) \wedge \operatorname{Connect}\left(y_{\text {SID }}, y_{\text {To }}, x_{\text {Line }}\right)\right)\left[x_{\text {Line }}\right]$
2. $\varphi_{2}=\neg \operatorname{Lines}(x$, "bus") $[x]$
3. $\varphi_{3}=\left(\operatorname{Connect}\left(x_{1}\right.\right.$, "42", "85") \vee Connect("57", x_{2}, " $\left.\left.85 "\right)\right)\left[x_{1}, x_{2}\right]$
4. $\varphi_{4}=\forall y \cdot p(x, y)[x]=\neg \exists y$. $\neg p(x, y)[x]$
5. $\varphi_{5}=\exists x$. $(((p(x) \rightarrow q(c)) \rightarrow p(x)) \rightarrow p(x))$

Which of these queries is a safe-range query? Which of the queries is domain independent?

Solution.

$$
\operatorname{rr}\left(\varphi_{1}\right)=\left\{x_{\text {Line }}\right\} \quad \operatorname{rr}\left(\varphi_{2}\right)=\emptyset \quad \operatorname{rr}\left(\varphi_{3}\right)=\emptyset
$$

Definition (Lecture 2, Slide 26)

The set $\operatorname{rr}(\varphi)$ of range-restricted variables of φ in Safe-Range Normal Form is defined recursively:

$$
\left.\begin{array}{rlrl}
\operatorname{rr}\left(R\left(t_{1}, \ldots, t_{n}\right)\right) & =\left\{x \mid x \text { is a variable among the } t_{1}, \ldots, t_{n}\right\} & \operatorname{rr}(x \approx a)=\{x\} \\
\operatorname{rr}\left(\varphi_{1} \wedge \varphi_{2}\right) & =\left\{\begin{array}{lll}
\operatorname{rr}\left(\varphi_{1}\right) \cup\{x, y\} & \text { if } \varphi_{2}=(x \approx y) & \text { and }\{x, y\} \cap \operatorname{rr}\left(\varphi_{1}\right) \neq \emptyset
\end{array}\right. & \operatorname{rr}(x \approx y)=\emptyset \\
\operatorname{rr}\left(\varphi_{1}\right) \cup \operatorname{rr}\left(\varphi_{2}\right) & \text { otherwise }
\end{array}\right] \begin{array}{lll}
\operatorname{rr}(\psi) \backslash\{y\} & \text { if } y \in \operatorname{rr}(\psi) & \operatorname{rr}\left(\varphi_{1} \vee \varphi_{2}\right)=\operatorname{rr}\left(\varphi_{1}\right) \cap \operatorname{rr}\left(\varphi_{2}\right) \\
\operatorname{rr}(\exists y \cdot \psi) & = \begin{cases}\operatorname{rr}(\neg \psi)=\emptyset & \text { if } \operatorname{rr}(\psi) \text { is defined }\end{cases}
\end{array}
$$

Exercise 7

Exercise. Use the function rr from the lecture to compute the set of range-restricted variables for the following queries:

1. $\varphi_{1}=\exists y_{\text {SID }}, y_{\text {Stop }}, y_{\text {To }}$. $\left(\operatorname{Stops}\left(y_{\text {SID }}, y_{\text {Stop }}, "\right.\right.$ true" $\left.) \wedge \operatorname{Connect}\left(y_{\text {SID }}, y_{\text {To }}, x_{\text {Line }}\right)\right)\left[x_{\text {Line }}\right]$
2. $\varphi_{2}=\neg \operatorname{Lines}(x$, "bus") $[x]$
3. $\varphi_{3}=\left(\operatorname{Connect}\left(x_{1}\right.\right.$, "42", "85") \vee Connect("57", x_{2}, " $\left.\left.85 "\right)\right)\left[x_{1}, x_{2}\right]$
4. $\varphi_{4}=\forall y \cdot p(x, y)[x]=\neg \exists y$. $\neg p(x, y)[x]$
5. $\varphi_{5}=\exists x$. $(((p(x) \rightarrow q(c)) \rightarrow p(x)) \rightarrow p(x))$

Which of these queries is a safe-range query? Which of the queries is domain independent?

Solution.

$$
\operatorname{rr}\left(\varphi_{1}\right)=\left\{x_{\text {Line }}\right\} \quad \operatorname{rr}\left(\varphi_{2}\right)=\emptyset \quad \operatorname{rr}\left(\varphi_{3}\right)=\emptyset \quad \operatorname{rr}\left(\operatorname{SNRF}\left(\varphi_{4}\right)\right)=\text { Exception }
$$

Definition (Lecture 2, Slide 26)

The set $\operatorname{rr}(\varphi)$ of range-restricted variables of φ in Safe-Range Normal Form is defined recursively:

$$
\left.\begin{array}{rlr}
\operatorname{rr}\left(R\left(t_{1}, \ldots, t_{n}\right)\right) & =\left\{x \mid x \text { is a variable among the } t_{1}, \ldots, t_{n}\right\} & \operatorname{rr}(x \approx a)=\{x\} \\
\operatorname{rr}\left(\varphi_{1} \wedge \varphi_{2}\right) & = \begin{cases}\operatorname{rr}\left(\varphi_{1}\right) \cup\{x, y\} & \text { if } \varphi_{2}=(x \approx y) \text { and }\{x, y\} \cap \operatorname{rr}\left(\varphi_{1}\right) \neq \emptyset\end{cases} & \operatorname{rr}(x \approx y)=\emptyset \\
\operatorname{rr}\left(\varphi_{1}\right) \cup \operatorname{rr}\left(\varphi_{2}\right) & \text { otherwise }
\end{array}\right] \begin{array}{lll}
\operatorname{rr}(\psi) \backslash\{y\} & \text { if } y \in \operatorname{rr}(\psi) & \operatorname{rr}\left(\varphi_{1} \vee \varphi_{2}\right)=\operatorname{rr}\left(\varphi_{1}\right) \cap \operatorname{rr}\left(\varphi_{2}\right) \\
\text { throw new NotSafeException }() & \text { if } y \notin \operatorname{rr}(\psi) & \operatorname{rr}(\neg \psi)=\emptyset \\
\operatorname{rr}(\exists y \cdot \psi) \operatorname{rr}(\psi) \text { is defined }
\end{array}
$$

Exercise 7

Exercise. Use the function rr from the lecture to compute the set of range-restricted variables for the following queries:

1. $\varphi_{1}=\exists y_{\text {SID }}, y_{\text {Stop }}, y_{\text {To }}$. $\left(\operatorname{Stops}\left(y_{\text {SID }}, y_{\text {Stop }}, "\right.\right.$ true" $\left.) \wedge \operatorname{Connect}\left(y_{\text {SID }}, y_{\text {To }}, x_{\text {Line }}\right)\right)\left[x_{\text {Line }}\right]$
2. $\varphi_{2}=\neg \operatorname{Lines}(x$, "bus") $[x]$
3. $\varphi_{3}=\left(\right.$ Connect $\left(x_{1}\right.$, "42", "85") \vee Connect(" 57 ", $\left.\left.x_{2}, ~ " 85 "\right)\right)\left[x_{1}, x_{2}\right]$
4. $\varphi_{4}=\forall y . p(x, y)[x]=\neg \exists y$. $\neg p(x, y)[x]$
5. $\varphi_{5}=\exists x .(((p(x) \rightarrow q(c)) \rightarrow p(x)) \rightarrow p(x))=\exists x .(((\neg p(x) \vee q(c)) \wedge \neg p(x)) \vee p(x))$

Which of these queries is a safe-range query? Which of the queries is domain independent?

Solution.

$$
\operatorname{rr}\left(\varphi_{1}\right)=\left\{x_{\text {Line }}\right\} \quad \operatorname{rr}\left(\varphi_{2}\right)=\emptyset \quad \operatorname{rr}\left(\varphi_{3}\right)=\emptyset \quad \operatorname{rr}\left(\operatorname{SNRF}\left(\varphi_{4}\right)\right)=\text { Exception }
$$

Definition (Lecture 2, Slide 26)

The set $\operatorname{rr}(\varphi)$ of range-restricted variables of φ in Safe-Range Normal Form is defined recursively:

$$
\left.\left.\begin{array}{rlr}
\operatorname{rr}\left(R\left(t_{1}, \ldots, t_{n}\right)\right) & =\left\{x \mid x \text { is a variable among the } t_{1}, \ldots, t_{n}\right\} & \operatorname{rr}(x \approx a)=\{x\} \\
\operatorname{rr}\left(\varphi_{1} \wedge \varphi_{2}\right) & = \begin{cases}\operatorname{rr}\left(\varphi_{1}\right) \cup\{x, y\} & \text { if } \varphi_{2}=(x \approx y) \text { and }\{x, y\} \cap \operatorname{rr}\left(\varphi_{1}\right) \neq \emptyset\end{cases} & \operatorname{rr}(x \approx y)=\emptyset \\
\operatorname{rr}\left(\varphi_{1}\right) \cup \operatorname{rr}\left(\varphi_{2}\right) & \text { otherwise }
\end{array}\right] \begin{array}{lll}
\operatorname{rr}(\psi) \backslash\{y\} & \text { if } y \in \operatorname{rr}(\psi) & \operatorname{rr}\left(\varphi_{1} \vee \varphi_{2}\right)=\operatorname{rr}\left(\varphi_{1}\right) \cap \operatorname{rr}\left(\varphi_{2}\right)
\end{array}\right\}
$$

Exercise 7

Exercise. Use the function rr from the lecture to compute the set of range-restricted variables for the following queries:

1. $\varphi_{1}=\exists y_{\text {SID }}, y_{\text {Stop }}, y_{\text {To }}$. $\left(\operatorname{Stops}\left(y_{\text {SID }}, y_{\text {Stop }}, "\right.\right.$ true" $\left.) \wedge \operatorname{Connect}\left(y_{\text {SID }}, y_{\text {To }}, x_{\text {Line }}\right)\right)\left[x_{\text {Line }}\right]$
2. $\varphi_{2}=\neg \operatorname{Lines}(x$, "bus") $[x]$
3. $\varphi_{3}=\left(\right.$ Connect $\left(x_{1}\right.$, "42", "85") \vee Connect(" 57 ", $\left.\left.x_{2}, ~ " 85 "\right)\right)\left[x_{1}, x_{2}\right]$
4. $\varphi_{4}=\forall y . p(x, y)[x]=\neg \exists y$. $\neg p(x, y)[x]$
5. $\varphi_{5}=\exists x .(((p(x) \rightarrow q(c)) \rightarrow p(x)) \rightarrow p(x))=\exists x .(((\neg p(x) \vee q(c)) \wedge \neg p(x)) \vee p(x))$

Which of these queries is a safe-range query? Which of the queries is domain independent?

Solution.

$$
\operatorname{rr}\left(\varphi_{1}\right)=\left\{x_{\text {Line }}\right\} \quad \operatorname{rr}\left(\varphi_{2}\right)=\emptyset \quad \operatorname{rr}\left(\varphi_{3}\right)=\emptyset \quad \operatorname{rr}\left(\operatorname{SNRF}\left(\varphi_{4}\right)\right)=\text { Exception } \quad \operatorname{rr}\left(\operatorname{SNRF}\left(\varphi_{5}\right)\right)=\text { Exception }
$$

Definition (Lecture 2, Slide 26)

The set $\operatorname{rr}(\varphi)$ of range-restricted variables of φ in Safe-Range Normal Form is defined recursively:

$$
\left.\begin{array}{rlr}
\operatorname{rr}\left(R\left(t_{1}, \ldots, t_{n}\right)\right) & =\left\{x \mid x \text { is a variable among the } t_{1}, \ldots, t_{n}\right\} & \operatorname{rr}(x \approx a)=\{x\} \\
\operatorname{rr}\left(\varphi_{1} \wedge \varphi_{2}\right) & = \begin{cases}\operatorname{rr}\left(\varphi_{1}\right) \cup\{x, y\} & \text { if } \varphi_{2}=(x \approx y) \text { and }\{x, y\} \cap \operatorname{rr}\left(\varphi_{1}\right) \neq \emptyset\end{cases} & \operatorname{rr}(x \approx y)=\emptyset \\
\operatorname{rr}\left(\varphi_{1}\right) \cup \operatorname{rr}\left(\varphi_{2}\right) & \text { otherwise }
\end{array}\right] \begin{array}{lll}
\operatorname{rr}(\psi) \backslash\{y\} & \text { if } y \in \operatorname{rr}(\psi) & \operatorname{rr}\left(\varphi_{1} \vee \varphi_{2}\right)=\operatorname{rr}\left(\varphi_{1}\right) \cap \operatorname{rr}\left(\varphi_{2}\right) \\
\text { throw new NotSafeException }() & \text { if } y \notin \operatorname{rr}(\psi) & \operatorname{rr}(\neg \psi)=\emptyset \\
\operatorname{rr}(\exists y \cdot \psi) \operatorname{rr}(\psi) \text { is defined }
\end{array}
$$

Exercise 7

Exercise. Use the function rr from the lecture to compute the set of range-restricted variables for the following queries:

1. $\varphi_{1}=\exists y_{\text {SID }}, y_{\text {Stop }}, y_{\text {To }}$. $\left(\operatorname{Stops}\left(y_{\text {SID }}, y_{\text {Stop }}, "\right.\right.$ true" $\left.) \wedge \operatorname{Connect}\left(y_{\text {SID }}, y_{\text {To }}, x_{\text {Line }}\right)\right)\left[x_{\text {Line }}\right]$
2. $\varphi_{2}=\neg \operatorname{Lines}(x$, "bus") $[x]$
3. $\varphi_{3}=\left(\right.$ Connect $\left(x_{1}\right.$, "42", "85") \vee Connect(" 57 ", $\left.\left.x_{2}, ~ " 85 "\right)\right)\left[x_{1}, x_{2}\right]$
4. $\varphi_{4}=\forall y . p(x, y)[x]=\neg \exists y$. $\neg p(x, y)[x]$
5. $\varphi_{5}=\exists x .(((p(x) \rightarrow q(c)) \rightarrow p(x)) \rightarrow p(x))=\exists x .(((\neg p(x) \vee q(c)) \wedge \neg p(x)) \vee p(x))$

Which of these queries is a safe-range query? Which of the queries is domain independent?

Solution.

$$
\operatorname{rr}\left(\varphi_{1}\right)=\left\{x_{\text {Line }}\right\} \quad \operatorname{rr}\left(\varphi_{2}\right)=\emptyset \quad \operatorname{rr}\left(\varphi_{3}\right)=\emptyset \quad \operatorname{rr}\left(\operatorname{SNRF}\left(\varphi_{4}\right)\right)=\text { Exception } \quad \operatorname{rr}\left(\operatorname{SNRF}\left(\varphi_{5}\right)\right)=\text { Exception }
$$

Definition (Lecture 2, Slide 27)
An FO query $q=\varphi\left[x_{1}, \ldots, x_{n}\right]$ is a safe-range query if $\operatorname{rr}(\operatorname{SRNF}(\varphi))=\left\{x_{1}, \ldots, x_{n}\right\}$.

Exercise 7

Exercise. Use the function rr from the lecture to compute the set of range-restricted variables for the following queries:

1. $\varphi_{1}=\exists y_{\text {SID }}, y_{\text {Stop }}, y_{\text {To }}$. $\left(\operatorname{Stops}\left(y_{\text {SID }}, y_{\text {Stop }}, "\right.\right.$ true" $\left.) \wedge \operatorname{Connect}\left(y_{\text {SID }}, y_{\text {To }}, x_{\text {Line }}\right)\right)\left[x_{\text {Line }}\right]$
2. $\varphi_{2}=\neg \operatorname{Lines}(x$, "bus") $[x]$
3. $\varphi_{3}=\left(\right.$ Connect $\left(x_{1}\right.$, "42", "85") \vee Connect(" 57 ", $\left.\left.x_{2}, ~ " 85 "\right)\right)\left[x_{1}, x_{2}\right]$
4. $\varphi_{4}=\forall y . p(x, y)[x]=\neg \exists y$. $\neg p(x, y)[x]$
5. $\varphi_{5}=\exists x .(((p(x) \rightarrow q(c)) \rightarrow p(x)) \rightarrow p(x))=\exists x .(((\neg p(x) \vee q(c)) \wedge \neg p(x)) \vee p(x))$

Which of these queries is a safe-range query? Which of the queries is domain independent?

Solution.

$$
\operatorname{rr}\left(\varphi_{1}\right)=\left\{x_{\text {Line }}\right\} \quad \operatorname{rr}\left(\varphi_{2}\right)=\emptyset \quad \operatorname{rr}\left(\varphi_{3}\right)=\emptyset \quad \operatorname{rr}\left(\operatorname{SNRF}\left(\varphi_{4}\right)\right)=\text { Exception } \quad \operatorname{rr}\left(\operatorname{SNRF}\left(\varphi_{5}\right)\right)=\text { Exception }
$$

Definition (Lecture 2, Slide 27)
An FO query $q=\varphi\left[x_{1}, \ldots, x_{n}\right]$ is a safe-range query if $\operatorname{rr}(\operatorname{SRNF}(\varphi))=\left\{x_{1}, \ldots, x_{n}\right\}$.

Exercise 7

Exercise. Use the function rr from the lecture to compute the set of range-restricted variables for the following queries:

1. $\varphi_{1}=\exists y_{\text {SID }}, y_{\text {Stop }}, y_{\text {To }}$. $\left(\operatorname{Stops}\left(y_{\text {SID }}, y_{\text {Stop }}, "\right.\right.$ true" $\left.) \wedge \operatorname{Connect}\left(y_{\text {SID }}, y_{\text {To }}, x_{\text {Line }}\right)\right)\left[x_{\text {Line }}\right]$
2. $\varphi_{2}=\neg \operatorname{Lines}(x$, "bus") $[x]$
3. $\varphi_{3}=\left(\right.$ Connect $\left(x_{1}\right.$, "42", "85") \vee Connect(" 57 ", $\left.\left.x_{2}, ~ " 85 "\right)\right)\left[x_{1}, x_{2}\right]$
4. $\varphi_{4}=\forall y . p(x, y)[x]=\neg \exists y$. $\neg p(x, y)[x]$
5. $\varphi_{5}=\exists x .(((p(x) \rightarrow q(c)) \rightarrow p(x)) \rightarrow p(x))=\exists x .(((\neg p(x) \vee q(c)) \wedge \neg p(x)) \vee p(x))$

Which of these queries is a safe-range query? Which of the queries is domain independent?

Solution.

$$
\begin{aligned}
\operatorname{rr}\left(\varphi_{1}\right)= & \left\{x_{\text {Line }}\right\} & \operatorname{rr}\left(\varphi_{2}\right)=\emptyset & \operatorname{rr}\left(\varphi_{3}\right)=\emptyset \\
& \operatorname{SR}, \text { DI } & \operatorname{nr}\left(\operatorname{SNRF}\left(\varphi_{4}\right)\right)=\text { Exception } & \operatorname{rr}\left(\operatorname{SNRF}\left(\varphi_{5}\right)\right)=\text { Exception }
\end{aligned}
$$

Definition (Lecture 2, Slide 27)
An FO query $q=\varphi\left[x_{1}, \ldots, x_{n}\right]$ is a safe-range query if $\operatorname{rr}(\operatorname{SRNF}(\varphi))=\left\{x_{1}, \ldots, x_{n}\right\}$.

Exercise 7

Exercise. Use the function rr from the lecture to compute the set of range-restricted variables for the following queries:

1. $\varphi_{1}=\exists y_{\text {SID }}, y_{\text {Stop }}, y_{\text {To }}$. $\left(\operatorname{Stops}\left(y_{\text {SID }}, y_{\text {Stop }}, "\right.\right.$ true" $\left.) \wedge \operatorname{Connect}\left(y_{\text {SID }}, y_{\text {To }}, x_{\text {Line }}\right)\right)\left[x_{\text {Line }}\right]$
2. $\varphi_{2}=\neg \operatorname{Lines}(x$, "bus") $[x]$
3. $\varphi_{3}=\left(\right.$ Connect $\left(x_{1}\right.$, "42", "85") \vee Connect(" 57 ", $\left.\left.x_{2}, ~ " 85 "\right)\right)\left[x_{1}, x_{2}\right]$
4. $\varphi_{4}=\forall y . p(x, y)[x]=\neg \exists y$. $\neg p(x, y)[x]$
5. $\varphi_{5}=\exists x .(((p(x) \rightarrow q(c)) \rightarrow p(x)) \rightarrow p(x))=\exists x .(((\neg p(x) \vee q(c)) \wedge \neg p(x)) \vee p(x))$

Which of these queries is a safe-range query? Which of the queries is domain independent?

Solution.

$$
\begin{array}{rlrrr}
\operatorname{rr}\left(\varphi_{1}\right)=\left\{x_{\text {Line }}\right\} & \operatorname{rr}\left(\varphi_{2}\right)=\emptyset & \operatorname{rr}\left(\varphi_{3}\right)=\emptyset & \operatorname{rr}\left(\operatorname{SNRF}\left(\varphi_{4}\right)\right)=\text { Exception } & \operatorname{rr}\left(\operatorname{SNRF}\left(\varphi_{5}\right)\right)=\text { Exception } \\
& \text { SR, DI } & \text { not SR, not DI } & \text { not SR, not DI } &
\end{array}
$$

Definition (Lecture 2, Slide 27)
An FO query $q=\varphi\left[x_{1}, \ldots, x_{n}\right]$ is a safe-range query if $\operatorname{rr}(\operatorname{SRNF}(\varphi))=\left\{x_{1}, \ldots, x_{n}\right\}$.

Exercise 7

Exercise. Use the function rr from the lecture to compute the set of range-restricted variables for the following queries:

1. $\varphi_{1}=\exists y_{\text {SID }}, y_{\text {Stop }}, y_{\text {To }}$. $\left(\operatorname{Stops}\left(y_{\text {SID }}, y_{\text {Stop }}, "\right.\right.$ true" $\left.) \wedge \operatorname{Connect}\left(y_{\text {SID }}, y_{\text {To }}, x_{\text {Line }}\right)\right)\left[x_{\text {Line }}\right]$
2. $\varphi_{2}=\neg \operatorname{Lines}(x$, "bus") $[x]$
3. $\varphi_{3}=\left(\operatorname{Connect}\left(x_{1}, " 42 ", " 85 "\right) \vee \operatorname{Connect}\left(" 57 ", x_{2}, " 85 "\right)\right)\left[x_{1}, x_{2}\right]$
4. $\varphi_{4}=\forall y . p(x, y)[x]=\neg \exists y$. $\neg p(x, y)[x]$
5. $\varphi_{5}=\exists x .(((p(x) \rightarrow q(c)) \rightarrow p(x)) \rightarrow p(x))=\exists x .(((\neg p(x) \vee q(c)) \wedge \neg p(x)) \vee p(x))$

Which of these queries is a safe-range query? Which of the queries is domain independent?

Solution.

$$
\begin{array}{rrrrr}
\operatorname{rr}\left(\varphi_{1}\right)=\left\{x_{\text {Line }}\right\} & \operatorname{rr}\left(\varphi_{2}\right)=\emptyset & \operatorname{rr}\left(\varphi_{3}\right)=\emptyset & \operatorname{rr}\left(\operatorname{SNRF}\left(\varphi_{4}\right)\right)=\text { Exception } & \operatorname{rr}\left(\operatorname{SNRF}\left(\varphi_{5}\right)\right)=\text { Exception } \\
& \text { SR, DI } & \text { not SR, not DI } & \text { not SR, not DI } & \text { not SR, not DI }
\end{array}
$$

Definition (Lecture 2, Slide 27)
An FO query $q=\varphi\left[x_{1}, \ldots, x_{n}\right]$ is a safe-range query if $\operatorname{rr}(\operatorname{SRNF}(\varphi))=\left\{x_{1}, \ldots, x_{n}\right\}$.

Exercise 7

Exercise. Use the function rr from the lecture to compute the set of range-restricted variables for the following queries:

1. $\varphi_{1}=\exists y_{\text {SID }}, y_{\text {Stop }}, y_{\text {To }}$. $\left(\operatorname{Stops}\left(y_{\text {SID }}, y_{\text {Stop }}, "\right.\right.$ true" $\left.) \wedge \operatorname{Connect}\left(y_{\text {SID }}, y_{\text {To }}, x_{\text {Line }}\right)\right)\left[x_{\text {Line }}\right]$
2. $\varphi_{2}=\neg \operatorname{Lines}(x$, "bus") $[x]$
3. $\varphi_{3}=\left(\operatorname{Connect}\left(x_{1}, " 42 ", " 85 "\right) \vee \operatorname{Connect}\left(" 57 ", x_{2}, " 85 "\right)\right)\left[x_{1}, x_{2}\right]$
4. $\varphi_{4}=\forall y . p(x, y)[x]=\neg \exists y$. $\neg p(x, y)[x]$
5. $\varphi_{5}=\exists x .(((p(x) \rightarrow q(c)) \rightarrow p(x)) \rightarrow p(x))=\exists x .(((\neg p(x) \vee q(c)) \wedge \neg p(x)) \vee p(x))$

Which of these queries is a safe-range query? Which of the queries is domain independent?

Solution.

$$
\begin{array}{rrrrr}
\operatorname{rr}\left(\varphi_{1}\right)=\left\{x_{\text {Line }}\right\} & \operatorname{rr}\left(\varphi_{2}\right)=\emptyset & \operatorname{rr}\left(\varphi_{3}\right)=\emptyset & \operatorname{rr}\left(\operatorname{SNRF}\left(\varphi_{4}\right)\right)=\text { Exception } & \operatorname{rr}\left(\operatorname{SNRF}\left(\varphi_{5}\right)\right)=\text { Exception } \\
\text { SR, DI } & \text { not SR, not DI } & \text { not SR, not DI } & \text { not SR, not DI } & \text { not SR, DI }
\end{array}
$$

Definition (Lecture 2, Slide 27)
An FO query $q=\varphi\left[x_{1}, \ldots, x_{n}\right]$ is a safe-range query if $\operatorname{rr}(\operatorname{SRNF}(\varphi))=\left\{x_{1}, \ldots, x_{n}\right\}$.

