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Motivation

• Argumentation Frameworks provide a formalism for a compact
representation and evaluation of such scenarios.

• More complex semantics, especially in combination with an increasing
amount of data, requires an automated computation of such solutions.

• Most of these problems are intractable, so implementing dedicated
systems from the scratch is not the best idea.

• Distinction between direct implementation and reduction-based approach.
• We focus on reductions to propositional logic and Answer-Set

Programming (ASP).
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Laziness and Implementations

Alternative 1: The eastern way
• Implement a separate algorithm for each reasoning task
• Implementation is complicated because most reasoning tasks are

inherently intricate (+ the complexity results given before)
• Implementation, testing, etc. require much effort and time
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Laziness and Implementations

Alternative 1: The eastern way
• Implement a separate algorithm for each reasoning task
• Implementation is complicated because most reasoning tasks are

inherently intricate (+ the complexity results given before)
• Implementation, testing, etc. require much effort and time

Alternative 2 : The southern way
• Life is short; try to keep your effort as small as possible
• Let others work for you and use their results and software
• Be smart; apply what you have learned
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The rapid implementation approach (RIA)

We know:
• Any complete problem can be translated into any other complete problem

of the same complexity class

• Moreover, there exists poly-time translations (reductions)

• Complexity results (incl. completeness) for many reasoning tasks

We used already:
• e.g., the PTIME reduction from a CNF ϕ to an AF F(ϕ) such that

ϕ is satisfiable iff F(ϕ) has an admissible set containing ϕ

• Can we “reverse” the reduction, i.e., from AFs to formulas?

• YES! Reduce to formalisms for which “good” solvers are available
+ But we have to find the PTIME reduction!
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The rapid implementation approach (2)

• Reduce reasoning tasks for AF, e.g., to SAT problems of (Q)BFs

• Reductions are “cheap” (wrt. runtime and implementation effort!)

• Good SAT and QSAT solvers are available; simply use them

Benefits:
• Reductions are much easier to implement than full-fledged algorithms

especially for “hard” reasoning tasks

• Basic reductions can be combined and reused

• Different formalisms can be reduced to same target formalism
å beneficial for comparative studies
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The rapid implementation approach (3)

Target formalisms are:
• The SAT problem for propositional formulas

• The SAT problem for quantified Boolean formulas

• Answer-set programs

Tools are available to solve all these three formalisms

Many developers are happy to give away their tool

They work hard to improve the tool’s performance (for you!)
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Required properties of reductions:
Faithfulness

• Let Π be a decision problem

• FΠ(·) a reduction to a target formalism

• FΠ(·) has to satisfy the following three conditions:

1 FΠ(·) is faithful, i.e., FΠ(K) is true iff K is a yes-instance of Π

2 For each instance K, FΠ(K) is poly-time computable wrt size of K

3 Determining the truth of FΠ(K) is computationally not harder than
deciding Π

Faithfulness guarantees a correct “simulation” of K
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General Idea of Answer-Set Programming

Fundamental concept:
• Models = set of atoms
• Models, not proofs, represent solutions!
• Need techniques to compute models (not to compute proofs)

å Methodology to solve search problems

Solving search problems with ASP
• Given a problem Π and an instance K , reduce it to the problem of

computing intended models of a logic program:

1 Encode (Π, K) as a logic program P such that the solutions of Π for
the instance K are represented by the intended models of P

2 Compute one intended model M (an "answer set") of P
3 Reconstruct a solution for K from M

• Variant: Compute all intended models to obtain all solutions
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ASP Solvers

Efficient solvers available
• gringo/clasp, clingo (University of Potsdam)
• dlv (TU Wien, University of Calabria)
• smodels, GnT (Aalto University, Finland)
• ASSAT (Hong Kong University of Science and Technology)
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Answer-Set Programming Syntax

• We assume a first-order vocabulary Σ comprised of nonempty finite sets
of constants, variables, and predicate symbols, but no function symbols

• A term is either a variable or a constant
• An atom is an expression of form p(t1, . . . , tn), where

• p is a predicate symbol of arity n ≥ 0 from Σ, and
• t1, . . . , tn are terms

• A literal is an atom p or a negated atom ¬p
+ ¬ is called strong negation, or classical negation

• A literal is ground if it contains no variable.
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Answer-Set Programming Syntax ctd.

ASP Syntax
A rule r is an expression of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm,

with n ≥ 0, m ≥ k ≥ 0, n + m > 0, where a1, . . . , an, b1, . . . , bm are atoms, and
“not ” stands for default negation.

We call
• H(r) = {a1, . . . , an} the head of r;
• B(r) = {b1, . . . , bk, not bk+1, . . . , not bm} the body of r;
• B+(r) = {b1, . . . , bk} the positive body of r;
• B−(r) = {bk+1, . . . , bm} the negative body of r.
• Intuitive meaning of r: if b1, . . . , bk are derivable, but bk+1, . . . , bm are not

derivable, then one of a1, . . . , an is asserted
• A program is a finite set of rules
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Answer-Set Programming Syntax ctd.

A rule a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm is
• a fact if m = 0 and n ≥ 1
• a constraint if n = 0 (i.e., the head is empty)
• basic if m = k and n ≥ 1
• non-disjunctive if n = 1
• normal if it is non-disjunctive and contains no strong negation ¬
• Horn if it is normal and basic
• ground if all its literals are ground

A program is basic, normal, etc., if all of its rules are
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ASP Semantics

• An interpretation I satisfies a ground rule r iff H(r) ∩ I 6= ∅ whenever
• B+(r) ⊆ I,
• B−(r) ∩ I = ∅.

• I satisfies a ground program π, if each r ∈ π is satisfied by I.
• A non-ground rule r (resp., a program π) is satisfied by an interpretation I

iff I satisfies all groundings of r (resp., Gr(π)).

Gelfond-Lifschitz reduct
An interpretation I is an answer set of π iff it is a subset-minimal set satisfying

πI = {H(r)← B+(r) | I ∩ B−(r) = ∅, r ∈ Gr(π)}.
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Programming Methodology

Simplest technique: Guess and check
• Guess: Generate candidates for answer sets in the first step
• Check: Filter the answer sets and delete undesirable ones

Example (Graph coloring)

node(a).node(b).node(c).edge(a, b).edge(b, c). }facts

col(red, X) ∨ col(green, X) ∨ col(blue, X)← node(X). }guess

← edge(X, Y), col(C, X), col(C, Y). }check

G: Generate all possible coloring candidates

C: Delete all candidates where adjacent nodes have same color
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Corresponding Complexity Results

Complexity of Argumentation
adm pref semi stage grd∗

Cred NP-c NP-c Σp
2-c Σp

2-c NP-c
Skept (trivial) Πp

2-c Πp
2-c Πp

2-c co-NP-c

[Baroni et al. 11; Dimopoulos & Torres 96; Dunne & Bench-Capon 02; Dvořák &
Woltran 10]

Recall: Data-Complexity of Datalog
normal programs disjunctive program optimization programs

|=c NP Σp
2 Σp

2

|=s co-NP Πp
2 Πp

2

[Dantsin,Eiter,Gottlob,Voronkov 01]
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ASPARTIX - System Description
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ASP Encodings

Conflict-free Set
Given an AF (A, R).
A set S ⊆ A is conflict-free in F, if, for each a, b ∈ S, (a, b) /∈ R.

Encoding for F = (A, R)

F̂ = {arg(a) | a ∈ A} ∪ {att(a, b) | (a, b) ∈ R}

πcf =

 in(X) ← not out(X), arg(X)
out(X) ← not in(X), arg(X)

← in(X), in(Y), att(X, Y)


Result: For each AF F, cf (F) ≡ AS(πcf (F̂))
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ASP Encodings cont.

Admissible Sets
Given an AF F = (A, R). A set S ⊆ A is admissible in F, if

• S is conflict-free in F

• each a ∈ S is defended by S in F
• a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R, there

exists a c ∈ S, such that (c, b) ∈ R.

Encoding

πadm = πcf ∪
{

defeated(X) ← in(Y), att(Y, X)
← in(X), att(Y, X), not defeated(Y)

}
Result: For each AF F, adm(F) ≡ AS(πadm(F̂))
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ASP Encodings ctd.

Stable Extensions
Given an AF F = (A, R). A set S ⊆ A is a stable extension of F, if

• S is conflict-free in F

• for each a ∈ A \ S, there exists a b ∈ S, such that (b, a) ∈ R

Encoding

πstable = πcf ∪
{

defeated(X) ← in(Y), att(Y, X)
← out(X), not defeated(X)

}
Result: For each AF F, stable(F) ≡ AS(πstable(F̂))
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ASP Encodings ctd.

Grounded Extension
Given an AF F = (A, R). The characteristic function FF : 2A → 2A of F is
defined as

FF(E) = {x ∈ A | x is defended by E}.

The least fixed point of FF is the grounded extension.

Order over domain

π< =



lt(X, Y) ← arg(X), arg(Y), X < Y
nsucc(X, Z) ← lt(X, Y), lt(Y, Z)
succ(X, Y) ← lt(X, Y), not nsucc(X, Y)
ninf(X) ← lt(Y, X)
nsup(X) ← lt(X, Y)
inf(X) ← not ninf(X), arg(X)
sup(X) ← not nsup(X), arg(X)
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ASP Encodings ctd.

Grounded Extension
Given an AF F = (A, R). The characteristic function FF : 2A → 2A of F is
defined as

FF(E) = {x ∈ A | x is defended by E}.

The least fixed point of FF is the grounded extension.

Encodings Grounded Extension

πground =



def_upto(X, Y) ← inf(Y), arg(X), not att(Y, X)
def_upto(X, Y) ← inf(Y), in(Z), att(Z, Y), att(Y, X)
def_upto(X, Y) ← succ(Z, Y), def_upto(X, Z), not att(Y, X)
def_upto(X, Y) ← succ(Z, Y), def_upto(X, Z), in(V),

att(V, Y), att(Y, X)
defended(X) ← sup(Y), def_upto(X, Y)
in(X) ← defended(X)


Result: For each AF F, ground(F) ≡ AS(πground(F̂))
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ASP Encodings

Preferred Extensions
Given an AF F = (A, R). A set S ⊆ A is a preferred extension of F, if

• S is admissible in F

• for each T ⊆ A admissible in F, S 6⊂ T

Encoding
• Preferred semantics needs subset maximization task.
• Can be encoded in standard ASP but requires insight and expertise.
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Saturation Encodings

Preferred Extension
Given an AF (A, R). A set S ⊆ A is preferred in F, if S is admissible in F and for
each T ⊆ A admissible in T, S 6⊂ T.

Encoding

πsaturate =



inN(X) ∨ outN(X) ← out(X);
inN(X) ← in(X)
spoil ← eq
spoil ← inN(X), inN(Y), att(X, Y)
spoil ← inN(X), outN(Y), att(Y, X),

undefeated(Y)
inN(X) ← spoil, arg(X)
outN(X) ← spoil, arg(X)

← not spoil


πpref = πadm ∪ πhelpers ∪ πsaturate

Result: For each AF F, pref (F) ≡ AS(πpref (F̂))
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Loop Encodings

Check if second guess is equal to the first one.
equpto(Y) ← inf(Y), in(Y), inN(Y)
equpto(Y) ← inf(Y), out(Y), outN(Y)
equpto(Y) ← succ(Z, Y), in(Y), inN(Y), equpto(Z)
equpto(Y) ← succ(Z, Y), out(Y), outN(Y), equpto(Z)
eq ← sup(Y), equpto(Y)
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Alternative Characterization for Preferred
[Gaggl et al., 2015]

Proposition 1
Let F = (A, R) be an AF and S ⊆ A be admissible in F. Then, S ∈ pref (F) iff, for
each E ∈ adm(F) such that E 6⊆ S, E ∪ S /∈ cf (F).

Example

a b

c

d

e f

adm(F) = {∅, {a}, {c}, {a, c}, {a, d}, {c, f}, {a, c, f}, {a, d, f}}, and
pref (F) = {{a, c, f},{a, d, f}}
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New Encodings for Preferred

Proposition 1
Let F = (A, R) be an AF and S ⊆ A be admissible in F. Then, S ∈ pref (F) iff, for
each E ∈ adm(F) such that E 6⊆ S, E ∪ S /∈ cf (F).

πsatpref 2

πsatpref 2 =



nontrivial ← out(X)
witness(X) : out(X) ← nontrivial
spoil|witness(Z) : att(Z, Y) ← witness(X), att(Y, X)
spoil ← att(X, Y), witness(X),

witness(Y)
spoil ← in(X), witness(Y), att(X, Y)
witness(X) ← spoil, arg(X)

← not spoil, nontrivial


πpref 2 = πadm ∪ πsatpref 2

Result: For each AF F, pref (F) ≡ AS(πpref 2 (F̂))
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Functionality of New Encodings

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial

Example

a b

c

d

e f
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Functionality of New Encodings

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial

Example

a b

c

d

e f
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Functionality of New Encodings

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial
spoil|witness(Z) : att(Z, Y) ← witness(X), att(Y, X)

Example

a b

c

d

e f
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Functionality of New Encodings

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial
spoil|witness(Z) : att(Z, Y) ← witness(X), att(Y, X)
spoil ← att(X, Y), witness(X), witness(Y)

Example

a b

c

d

e f
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Functionality of New Encodings

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial
spoil|witness(Z) : att(Z, Y) ← witness(X), att(Y, X)
spoil ← att(X, Y), witness(X), witness(Y)
spoil ← in(X), witness(Y), att(X, Y)

Example

a b

c

d

e f
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Functionality of New Encodings

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial
spoil|witness(Z) : att(Z, Y) ← witness(X), att(Y, X)
spoil ← att(X, Y), witness(X), witness(Y)
spoil ← in(X), witness(Y), att(X, Y)
witness(X) ← spoil, arg(X)

← not spoil, nontrivial

Example

a b

c

d

e f
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Functionality of New Encodings

Proposition 1
Let F = (A, R) be an AF and S ⊆ A be admissible in F. Then, S ∈ pref (F) iff, for
each E ∈ adm(F) such that E 6⊆ S, E ∪ S /∈ cf (F).

Example

a b

c

d

e f
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Positive Example

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial

Example

a b

c

d

e f
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Positive Example

nontrivial ← out(X)
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Positive Example

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial
spoil|witness(Z) : att(Z, Y) ← witness(X), att(Y, X)

Example

a b

c

d

e f
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Positive Example

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial
spoil|witness(Z) : att(Z, Y) ← witness(X), att(Y, X)
spoil ← att(X, Y), witness(X), witness(Y)

Example

a b

c

d

e f
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Positive Example

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial
spoil|witness(Z) : att(Z, Y) ← witness(X), att(Y, X)
spoil ← att(X, Y), witness(X), witness(Y)
spoil ← in(X), witness(Y), att(X, Y)

Example

a b

c

d

e f
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Positive Example

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial
spoil|witness(Z) : att(Z, Y) ← witness(X), att(Y, X)
spoil ← att(X, Y), witness(X), witness(Y)
spoil ← in(X), witness(Y), att(X, Y)
witness(X) ← spoil, arg(X)

← not spoil, nontrivial

Example

a b

c

d

e f
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Metasp [Gebser et al., 2011]

• metasp front-end for the gringo/clasp package.
• The problem encoding is first grounded with the reify option, which

outputs ground program as facts.
• Next the meta encodings mirror answer-set generation.
• Meta encodings also implement subset minimization for the

#minimize-statement.

Encoding metasp Solverreify grounding
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Metasp Encoding

• Together with the module admissibility, the remaining encoding for subset
maximization reduces to

Preferred Extensions
πadm ∪ {#minimize[out(X)]}.

• This relocates the optimization encoding to the meta-encodings.
• Enables simple encodings and performs surprisingly well.
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Evaluation

• New encodings were tested against CSP system ConArg, original
encodings, and Metasp encodings

• Collection of 4972 frameworks (structured and random)
• Reasoning task: enumeration of all extensions
• 10 min timeout

Bull HPC-Cluster (Taurus)
• Intel Xeon CPU (E5-2670) with

2.60GHz
• 6.5 GB Ram, 600 seconds
• from 16 cores we used every 4th

We thank the Center for Information Services and High Performance Computing (ZIH) at TU Dresden for

generous allocations of computer time.
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Results

PR usc solved med
ConArg 60 2814 43.65
Original - 3425 180.36

Meta 1 4626 20.83
New 101 4765 5.77

 0

 100

 200

 300

 400

 500

 600

 0  1000  2000  3000  4000  5000

ti
m

e
 i
n

 s
e

c
o

n
d

s

solved frameworks

CONARG-PR

META-PR

NEW-PR

ORIGINAL-PR

Figure: Runtimes for preferred (PR) semantics.
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ICCMA 2015 Results
New encodings for preferred semantics reached in two categories of the first
International Competition on Computational Models of Argument the 4th rank.
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Additional info on encodings and extensions

ASPARTIX (ASP Argumentation Reasoning Tool)
• Encodings are used together with an ASP-solver, like clasp or dvl

• Implements all prominent argumentation semantics

• Even for extended frameworks like PAFs, VAFs, BAPs, . . .

• Easy to use

• Web-interface available:
http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/

Info and encodings are available under:
http://www.dbai.tuwien.ac.at/research/project/argumentation/
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Conclusion and Future Work

• With new characterization we avoided complicated looping techniques
• New encodings clearly outperform original and metasp encodings
• New encodings scored good results at ICCMA 2015
• Same results also for stage and semi-stable semantics (in the paper)
• Encodings and benchmarks are available at
http://dbai.tuwien.ac.at/research/project/
argumentation/systempage/#conditional

Future Work
Optimize ASP encodings for ideal and eager semantics
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Related work

Other encodings
• by [Nieves et al., 2008] and follow-up papers; mostly a new program has

to be constructed for each instance

• Related approaches: reductions to
SAT/QSAT [Besnard and Doutre, 2004, Egly and Woltran, 2006]

• DIAMOND (DIAlectical MOdels eNcoDing) is a software system to
compute different ADF models (see
https://isysrv.informatik.uni-leipzig.de/diamond )

• ConArg is a tool, based on Constraint
Programming [Bistarelli and Santini, 2012] (see
http://www.dmi.unipg.it/conarg/)

Other systems
• Collection:

http://wyner.info/LanguageLogicLawSoftware/index.php/software/

• System Demos at COMMA 2014:
http://comma2014.arg.dundee.ac.uk/demoprogram
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