
Artificial Intelligence, Computational Logic

ABSTRACT ARGUMENTATION

Answer Set Programming Encodings for
Argumentation Frameworks

Sarah Gaggl

Dresden, ICCL Summer School 2016

Motivation

• Argumentation Frameworks provide a formalism for a compact
representation and evaluation of such scenarios.

• More complex semantics, especially in combination with an increasing
amount of data, requires an automated computation of such solutions.

• Most of these problems are intractable, so implementing dedicated
systems from the scratch is not the best idea.

• Distinction between direct implementation and reduction-based approach.
• We focus on reductions to propositional logic and Answer-Set

Programming (ASP).

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 2 of 59

Outline

1 Direct- vs. Reduction-based Approach

2 Answer-Set Programming

3 ASP Approach to Abstract Argumentation

4 Evaluation

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 3 of 59

Laziness and Implementations

Alternative 1: The eastern way
• Implement a separate algorithm for each reasoning task
• Implementation is complicated because most reasoning tasks are

inherently intricate (+ the complexity results given before)
• Implementation, testing, etc. require much effort and time

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 4 of 59

Laziness and Implementations

Alternative 1: The eastern way
• Implement a separate algorithm for each reasoning task
• Implementation is complicated because most reasoning tasks are

inherently intricate (+ the complexity results given before)
• Implementation, testing, etc. require much effort and time

Alternative 2 : The southern way
• Life is short; try to keep your effort as small as possible
• Let others work for you and use their results and software
• Be smart; apply what you have learned

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 5 of 59

The rapid implementation approach (RIA)

We know:
• Any complete problem can be translated into any other complete problem

of the same complexity class

• Moreover, there exists poly-time translations (reductions)

• Complexity results (incl. completeness) for many reasoning tasks

We used already:
• e.g., the PTIME reduction from a CNF ϕ to an AF F(ϕ) such that

ϕ is satisfiable iff F(ϕ) has an admissible set containing ϕ

• Can we “reverse” the reduction, i.e., from AFs to formulas?

• YES! Reduce to formalisms for which “good” solvers are available
+ But we have to find the PTIME reduction!

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 6 of 59

The rapid implementation approach (2)

• Reduce reasoning tasks for AF, e.g., to SAT problems of (Q)BFs

• Reductions are “cheap” (wrt. runtime and implementation effort!)

• Good SAT and QSAT solvers are available; simply use them

Benefits:
• Reductions are much easier to implement than full-fledged algorithms

especially for “hard” reasoning tasks

• Basic reductions can be combined and reused

• Different formalisms can be reduced to same target formalism
å beneficial for comparative studies

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 7 of 59

The rapid implementation approach (3)

Target formalisms are:
• The SAT problem for propositional formulas

• The SAT problem for quantified Boolean formulas

• Answer-set programs

Tools are available to solve all these three formalisms

Many developers are happy to give away their tool

They work hard to improve the tool’s performance (for you!)

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 8 of 59

Required properties of reductions:
Faithfulness

• Let Π be a decision problem

• FΠ(·) a reduction to a target formalism

• FΠ(·) has to satisfy the following three conditions:

1 FΠ(·) is faithful, i.e., FΠ(K) is true iff K is a yes-instance of Π

2 For each instance K, FΠ(K) is poly-time computable wrt size of K

3 Determining the truth of FΠ(K) is computationally not harder than
deciding Π

Faithfulness guarantees a correct “simulation” of K

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 9 of 59

Outline

1 Direct- vs. Reduction-based Approach

2 Answer-Set Programming

3 ASP Approach to Abstract Argumentation

4 Evaluation

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 10 of 59

General Idea of Answer-Set Programming

Fundamental concept:
• Models = set of atoms
• Models, not proofs, represent solutions!
• Need techniques to compute models (not to compute proofs)

å Methodology to solve search problems

Solving search problems with ASP
• Given a problem Π and an instance K , reduce it to the problem of

computing intended models of a logic program:

1 Encode (Π, K) as a logic program P such that the solutions of Π for
the instance K are represented by the intended models of P

2 Compute one intended model M (an "answer set") of P
3 Reconstruct a solution for K from M

• Variant: Compute all intended models to obtain all solutions

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 11 of 59

ASP Solvers

Efficient solvers available
• gringo/clasp, clingo (University of Potsdam)
• dlv (TU Wien, University of Calabria)
• smodels, GnT (Aalto University, Finland)
• ASSAT (Hong Kong University of Science and Technology)

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 12 of 59

Answer-Set Programming Syntax

• We assume a first-order vocabulary Σ comprised of nonempty finite sets
of constants, variables, and predicate symbols, but no function symbols

• A term is either a variable or a constant
• An atom is an expression of form p(t1, . . . , tn), where

• p is a predicate symbol of arity n ≥ 0 from Σ, and
• t1, . . . , tn are terms

• A literal is an atom p or a negated atom ¬p
+ ¬ is called strong negation, or classical negation

• A literal is ground if it contains no variable.

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 13 of 59

Answer-Set Programming Syntax ctd.

ASP Syntax
A rule r is an expression of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm,

with n ≥ 0, m ≥ k ≥ 0, n + m > 0, where a1, . . . , an, b1, . . . , bm are atoms, and
“not ” stands for default negation.

We call
• H(r) = {a1, . . . , an} the head of r;
• B(r) = {b1, . . . , bk, not bk+1, . . . , not bm} the body of r;
• B+(r) = {b1, . . . , bk} the positive body of r;
• B−(r) = {bk+1, . . . , bm} the negative body of r.
• Intuitive meaning of r: if b1, . . . , bk are derivable, but bk+1, . . . , bm are not

derivable, then one of a1, . . . , an is asserted
• A program is a finite set of rules

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 14 of 59

Answer-Set Programming Syntax ctd.

A rule a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm is
• a fact if m = 0 and n ≥ 1
• a constraint if n = 0 (i.e., the head is empty)
• basic if m = k and n ≥ 1
• non-disjunctive if n = 1
• normal if it is non-disjunctive and contains no strong negation ¬
• Horn if it is normal and basic
• ground if all its literals are ground

A program is basic, normal, etc., if all of its rules are

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 15 of 59

ASP Semantics

• An interpretation I satisfies a ground rule r iff H(r) ∩ I 6= ∅ whenever
• B+(r) ⊆ I,
• B−(r) ∩ I = ∅.

• I satisfies a ground program π, if each r ∈ π is satisfied by I.
• A non-ground rule r (resp., a program π) is satisfied by an interpretation I

iff I satisfies all groundings of r (resp., Gr(π)).

Gelfond-Lifschitz reduct
An interpretation I is an answer set of π iff it is a subset-minimal set satisfying

πI = {H(r)← B+(r) | I ∩ B−(r) = ∅, r ∈ Gr(π)}.

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 16 of 59

Outline

1 Direct- vs. Reduction-based Approach

2 Answer-Set Programming
Guess and Check Methodology

3 ASP Approach to Abstract Argumentation
ASP Encodings for Argumentation Semantics
Saturation Encodings for Preferred
Optimized Encodings for Preferred
Metasp Encodings for Preferred

4 Evaluation

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 17 of 59

Programming Methodology

Simplest technique: Guess and check
• Guess: Generate candidates for answer sets in the first step
• Check: Filter the answer sets and delete undesirable ones

Example (Graph coloring)

node(a).node(b).node(c).edge(a, b).edge(b, c). }facts

col(red, X) ∨ col(green, X) ∨ col(blue, X)← node(X). }guess

← edge(X, Y), col(C, X), col(C, Y). }check

G: Generate all possible coloring candidates

C: Delete all candidates where adjacent nodes have same color

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 18 of 59

Corresponding Complexity Results

Complexity of Argumentation
adm pref semi stage grd∗

Cred NP-c NP-c Σp
2-c Σp

2-c NP-c
Skept (trivial) Πp

2-c Πp
2-c Πp

2-c co-NP-c

[Baroni et al. 11; Dimopoulos & Torres 96; Dunne & Bench-Capon 02; Dvořák &
Woltran 10]

Recall: Data-Complexity of Datalog
normal programs disjunctive program optimization programs

|=c NP Σp
2 Σp

2

|=s co-NP Πp
2 Πp

2

[Dantsin,Eiter,Gottlob,Voronkov 01]

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 19 of 59

Outline

1 Direct- vs. Reduction-based Approach

2 Answer-Set Programming

3 ASP Approach to Abstract Argumentation

4 Evaluation

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 20 of 59

ASPARTIX - System Description

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 21 of 59

ASP Encodings

Conflict-free Set
Given an AF (A, R).
A set S ⊆ A is conflict-free in F, if, for each a, b ∈ S, (a, b) /∈ R.

Encoding for F = (A, R)

F̂ = {arg(a) | a ∈ A} ∪ {att(a, b) | (a, b) ∈ R}

πcf =

 in(X) ← not out(X), arg(X)
out(X) ← not in(X), arg(X)

← in(X), in(Y), att(X, Y)

Result: For each AF F, cf (F) ≡ AS(πcf (F̂))

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 22 of 59

Outline

1 Direct- vs. Reduction-based Approach

2 Answer-Set Programming
Guess and Check Methodology

3 ASP Approach to Abstract Argumentation
ASP Encodings for Argumentation Semantics
Saturation Encodings for Preferred
Optimized Encodings for Preferred
Metasp Encodings for Preferred

4 Evaluation

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 23 of 59

ASP Encodings cont.

Admissible Sets
Given an AF F = (A, R). A set S ⊆ A is admissible in F, if

• S is conflict-free in F

• each a ∈ S is defended by S in F
• a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R, there

exists a c ∈ S, such that (c, b) ∈ R.

Encoding

πadm = πcf ∪
{

defeated(X) ← in(Y), att(Y, X)
← in(X), att(Y, X), not defeated(Y)

}
Result: For each AF F, adm(F) ≡ AS(πadm(F̂))

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 24 of 59

ASP Encodings ctd.

Stable Extensions
Given an AF F = (A, R). A set S ⊆ A is a stable extension of F, if

• S is conflict-free in F

• for each a ∈ A \ S, there exists a b ∈ S, such that (b, a) ∈ R

Encoding

πstable = πcf ∪
{

defeated(X) ← in(Y), att(Y, X)
← out(X), not defeated(X)

}
Result: For each AF F, stable(F) ≡ AS(πstable(F̂))

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 25 of 59

ASP Encodings ctd.

Grounded Extension
Given an AF F = (A, R). The characteristic function FF : 2A → 2A of F is
defined as

FF(E) = {x ∈ A | x is defended by E}.

The least fixed point of FF is the grounded extension.

Order over domain

π< =

lt(X, Y) ← arg(X), arg(Y), X < Y
nsucc(X, Z) ← lt(X, Y), lt(Y, Z)
succ(X, Y) ← lt(X, Y), not nsucc(X, Y)
ninf(X) ← lt(Y, X)
nsup(X) ← lt(X, Y)
inf(X) ← not ninf(X), arg(X)
sup(X) ← not nsup(X), arg(X)

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 26 of 59

ASP Encodings ctd.

Grounded Extension
Given an AF F = (A, R). The characteristic function FF : 2A → 2A of F is
defined as

FF(E) = {x ∈ A | x is defended by E}.

The least fixed point of FF is the grounded extension.

Encodings Grounded Extension

πground =

def_upto(X, Y) ← inf(Y), arg(X), not att(Y, X)
def_upto(X, Y) ← inf(Y), in(Z), att(Z, Y), att(Y, X)
def_upto(X, Y) ← succ(Z, Y), def_upto(X, Z), not att(Y, X)
def_upto(X, Y) ← succ(Z, Y), def_upto(X, Z), in(V),

att(V, Y), att(Y, X)
defended(X) ← sup(Y), def_upto(X, Y)
in(X) ← defended(X)

Result: For each AF F, ground(F) ≡ AS(πground(F̂))

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 27 of 59

ASP Encodings

Preferred Extensions
Given an AF F = (A, R). A set S ⊆ A is a preferred extension of F, if

• S is admissible in F

• for each T ⊆ A admissible in F, S 6⊂ T

Encoding
• Preferred semantics needs subset maximization task.
• Can be encoded in standard ASP but requires insight and expertise.

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 28 of 59

Outline

1 Direct- vs. Reduction-based Approach

2 Answer-Set Programming
Guess and Check Methodology

3 ASP Approach to Abstract Argumentation
ASP Encodings for Argumentation Semantics
Saturation Encodings for Preferred
Optimized Encodings for Preferred
Metasp Encodings for Preferred

4 Evaluation

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 29 of 59

Saturation Encodings

Preferred Extension
Given an AF (A, R). A set S ⊆ A is preferred in F, if S is admissible in F and for
each T ⊆ A admissible in T, S 6⊂ T.

Encoding

πsaturate =

inN(X) ∨ outN(X) ← out(X);
inN(X) ← in(X)
spoil ← eq
spoil ← inN(X), inN(Y), att(X, Y)
spoil ← inN(X), outN(Y), att(Y, X),

undefeated(Y)
inN(X) ← spoil, arg(X)
outN(X) ← spoil, arg(X)

← not spoil

πpref = πadm ∪ πhelpers ∪ πsaturate

Result: For each AF F, pref (F) ≡ AS(πpref (F̂))

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 30 of 59

Loop Encodings

Check if second guess is equal to the first one.
equpto(Y) ← inf(Y), in(Y), inN(Y)
equpto(Y) ← inf(Y), out(Y), outN(Y)
equpto(Y) ← succ(Z, Y), in(Y), inN(Y), equpto(Z)
equpto(Y) ← succ(Z, Y), out(Y), outN(Y), equpto(Z)
eq ← sup(Y), equpto(Y)

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 31 of 59

Outline

1 Direct- vs. Reduction-based Approach

2 Answer-Set Programming
Guess and Check Methodology

3 ASP Approach to Abstract Argumentation
ASP Encodings for Argumentation Semantics
Saturation Encodings for Preferred
Optimized Encodings for Preferred
Metasp Encodings for Preferred

4 Evaluation

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 32 of 59

Alternative Characterization for Preferred
[Gaggl et al., 2015]

Proposition 1
Let F = (A, R) be an AF and S ⊆ A be admissible in F. Then, S ∈ pref (F) iff, for
each E ∈ adm(F) such that E 6⊆ S, E ∪ S /∈ cf (F).

Example

a b

c

d

e f

adm(F) = {∅, {a}, {c}, {a, c}, {a, d}, {c, f}, {a, c, f}, {a, d, f}}, and
pref (F) = {{a, c, f},{a, d, f}}

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 33 of 59

New Encodings for Preferred

Proposition 1
Let F = (A, R) be an AF and S ⊆ A be admissible in F. Then, S ∈ pref (F) iff, for
each E ∈ adm(F) such that E 6⊆ S, E ∪ S /∈ cf (F).

πsatpref 2

πsatpref 2 =

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial
spoil|witness(Z) : att(Z, Y) ← witness(X), att(Y, X)
spoil ← att(X, Y), witness(X),

witness(Y)
spoil ← in(X), witness(Y), att(X, Y)
witness(X) ← spoil, arg(X)

← not spoil, nontrivial

πpref 2 = πadm ∪ πsatpref 2

Result: For each AF F, pref (F) ≡ AS(πpref 2 (F̂))

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 34 of 59

Functionality of New Encodings

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial

Example

a b

c

d

e f

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 35 of 59

Functionality of New Encodings

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial

Example

a b

c

d

e f

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 36 of 59

Functionality of New Encodings

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial
spoil|witness(Z) : att(Z, Y) ← witness(X), att(Y, X)

Example

a b

c

d

e f

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 37 of 59

Functionality of New Encodings

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial
spoil|witness(Z) : att(Z, Y) ← witness(X), att(Y, X)
spoil ← att(X, Y), witness(X), witness(Y)

Example

a b

c

d

e f

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 38 of 59

Functionality of New Encodings

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial
spoil|witness(Z) : att(Z, Y) ← witness(X), att(Y, X)
spoil ← att(X, Y), witness(X), witness(Y)
spoil ← in(X), witness(Y), att(X, Y)

Example

a b

c

d

e f

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 39 of 59

Functionality of New Encodings

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial
spoil|witness(Z) : att(Z, Y) ← witness(X), att(Y, X)
spoil ← att(X, Y), witness(X), witness(Y)
spoil ← in(X), witness(Y), att(X, Y)
witness(X) ← spoil, arg(X)

← not spoil, nontrivial

Example

a b

c

d

e f

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 40 of 59

Functionality of New Encodings

Proposition 1
Let F = (A, R) be an AF and S ⊆ A be admissible in F. Then, S ∈ pref (F) iff, for
each E ∈ adm(F) such that E 6⊆ S, E ∪ S /∈ cf (F).

Example

a b

c

d

e f

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 41 of 59

Positive Example

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial

Example

a b

c

d

e f

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 42 of 59

Positive Example

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial

Example

a b

c

d

e f

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 43 of 59

Positive Example

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial
spoil|witness(Z) : att(Z, Y) ← witness(X), att(Y, X)

Example

a b

c

d

e f

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 44 of 59

Positive Example

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial
spoil|witness(Z) : att(Z, Y) ← witness(X), att(Y, X)
spoil ← att(X, Y), witness(X), witness(Y)

Example

a b

c

d

e f

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 45 of 59

Positive Example

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial
spoil|witness(Z) : att(Z, Y) ← witness(X), att(Y, X)
spoil ← att(X, Y), witness(X), witness(Y)
spoil ← in(X), witness(Y), att(X, Y)

Example

a b

c

d

e f

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 46 of 59

Positive Example

nontrivial ← out(X)
witness(X) : out(X) ← nontrivial
spoil|witness(Z) : att(Z, Y) ← witness(X), att(Y, X)
spoil ← att(X, Y), witness(X), witness(Y)
spoil ← in(X), witness(Y), att(X, Y)
witness(X) ← spoil, arg(X)

← not spoil, nontrivial

Example

a b

c

d

e f

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 47 of 59

Outline

1 Direct- vs. Reduction-based Approach

2 Answer-Set Programming
Guess and Check Methodology

3 ASP Approach to Abstract Argumentation
ASP Encodings for Argumentation Semantics
Saturation Encodings for Preferred
Optimized Encodings for Preferred
Metasp Encodings for Preferred

4 Evaluation

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 48 of 59

Metasp [Gebser et al., 2011]

• metasp front-end for the gringo/clasp package.
• The problem encoding is first grounded with the reify option, which

outputs ground program as facts.
• Next the meta encodings mirror answer-set generation.
• Meta encodings also implement subset minimization for the

#minimize-statement.

Encoding metasp Solverreify grounding

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 49 of 59

Metasp Encoding

• Together with the module admissibility, the remaining encoding for subset
maximization reduces to

Preferred Extensions
πadm ∪ {#minimize[out(X)]}.

• This relocates the optimization encoding to the meta-encodings.
• Enables simple encodings and performs surprisingly well.

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 50 of 59

Outline

1 Direct- vs. Reduction-based Approach

2 Answer-Set Programming

3 ASP Approach to Abstract Argumentation

4 Evaluation

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 51 of 59

Evaluation

• New encodings were tested against CSP system ConArg, original
encodings, and Metasp encodings

• Collection of 4972 frameworks (structured and random)
• Reasoning task: enumeration of all extensions
• 10 min timeout

Bull HPC-Cluster (Taurus)
• Intel Xeon CPU (E5-2670) with

2.60GHz
• 6.5 GB Ram, 600 seconds
• from 16 cores we used every 4th

We thank the Center for Information Services and High Performance Computing (ZIH) at TU Dresden for

generous allocations of computer time.

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 52 of 59

Results

PR usc solved med
ConArg 60 2814 43.65
Original - 3425 180.36

Meta 1 4626 20.83
New 101 4765 5.77

 0

 100

 200

 300

 400

 500

 600

 0 1000 2000 3000 4000 5000

ti
m

e
 i
n

 s
e

c
o

n
d

s

solved frameworks

CONARG-PR

META-PR

NEW-PR

ORIGINAL-PR

Figure: Runtimes for preferred (PR) semantics.

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 53 of 59

ICCMA 2015 Results
New encodings for preferred semantics reached in two categories of the first
International Competition on Computational Models of Argument the 4th rank.

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 54 of 59

Additional info on encodings and extensions

ASPARTIX (ASP Argumentation Reasoning Tool)
• Encodings are used together with an ASP-solver, like clasp or dvl

• Implements all prominent argumentation semantics

• Even for extended frameworks like PAFs, VAFs, BAPs, . . .

• Easy to use

• Web-interface available:
http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/

Info and encodings are available under:
http://www.dbai.tuwien.ac.at/research/project/argumentation/

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 55 of 59

http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/
http://www.dbai.tuwien.ac.at/research/project/argumentation/

Conclusion and Future Work

• With new characterization we avoided complicated looping techniques
• New encodings clearly outperform original and metasp encodings
• New encodings scored good results at ICCMA 2015
• Same results also for stage and semi-stable semantics (in the paper)
• Encodings and benchmarks are available at
http://dbai.tuwien.ac.at/research/project/
argumentation/systempage/#conditional

Future Work
Optimize ASP encodings for ideal and eager semantics

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 56 of 59

http://dbai.tuwien.ac.at/research/project/argumentation/systempage/#conditional
http://dbai.tuwien.ac.at/research/project/argumentation/systempage/#conditional

Related work

Other encodings
• by [Nieves et al., 2008] and follow-up papers; mostly a new program has

to be constructed for each instance

• Related approaches: reductions to
SAT/QSAT [Besnard and Doutre, 2004, Egly and Woltran, 2006]

• DIAMOND (DIAlectical MOdels eNcoDing) is a software system to
compute different ADF models (see
https://isysrv.informatik.uni-leipzig.de/diamond)

• ConArg is a tool, based on Constraint
Programming [Bistarelli and Santini, 2012] (see
http://www.dmi.unipg.it/conarg/)

Other systems
• Collection:

http://wyner.info/LanguageLogicLawSoftware/index.php/software/

• System Demos at COMMA 2014:
http://comma2014.arg.dundee.ac.uk/demoprogram

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 57 of 59

https://isysrv.informatik.uni-leipzig.de/diamond
http://www.dmi.unipg.it/conarg/
http://wyner.info/LanguageLogicLawSoftware/index.php/software/
http://comma2014.arg.dundee.ac.uk/demoprogram

Philippe Besnard and Sylvie Doutre.
Checking the acceptability of a set of arguments.
In Proceedings of the 10th International Workshop on Non-Monotonic Reasoning (NMR’02), pages
59–64, 2004.

S. Bistarelli, F. Santini, Conarg: a tool to solve (weighted) abstract argumentation frameworks with
(soft) constraints, CoRR abs/1212.2857.

Dung, P. M. (1995).
On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games.
Artif. Intell., 77(2):321–358.

Dvořák, W., Gaggl, S. A., Wallner, J., and Woltran, S. (2011).
Making use of advances in answer-set programming for abstract argumentation systems.

Uwe Egly and Stefan Woltran.
Reasoning in argumentation frameworks using quantified boolean formulas.
In Proceedings of the 1st Conference on Computational Models of Argument (COMMA’06), pages
133–144. IOS Press, 2006.

Uwe Egly, Sarah Gaggl, and Stefan Woltran.
Answer-set programming encodings for argumentation frameworks.
In Argument and Computation, 1(2):147–177, 2010.

Sarah Alice Gaggl, Norbert Manthey, Alessandro Ronca, Johannes Peter Wallner, and Stefan
Woltran
Improved answer-set programming encodings for abstract argumentation.
TPLP, 15(4-5): 434-448 (2015).

Gebser, M., Kaminski, R., and Schaub, T. (2011).
Complex optimization in answer set programming.
TPLP, 11(4-5):821–839.

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 58 of 59

Juan Carlos Nieves, Mauricio Osorio, and Ulises Cortés.
Preferred extensions as stable models.
Theory and Practice of Logic Programming, 8(4):527–543, July 2008.

TU Dresden, ICCL Summer School 2016 Abstract Argumentation slide 59 of 59

	Direct- vs. Reduction-based Approach
	Answer-Set Programming
	Guess and Check Methodology

	ASP Approach to Abstract Argumentation
	ASP Encodings for Argumentation Semantics
	Saturation Encodings for Preferred
	Optimized Encodings for Preferred
	Metasp Encodings for Preferred

	Evaluation

