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Review

SPARQL is a feature-rich query language:

• Basic graph patterns (conjunctions of triple patterns)

• Property path patterns

• Filters

• Union, Optional, Minus

• Subqueries, Values, Bind

• Solution set modifiers

• Aggregates
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Review: Answers to BGPs
What is the result of a SPARQL query?

Definition 6.1: A solution mapping is a partial function µ from variable names to
RDF terms. A solution sequence is a list of solution mappings.

Note: When no specific order is required, the solutions computed for a SPARQL query
can be represented by a multiset (= “a set with repeated elements” = “an unordered list”).

Definition 6.2: Given an RDF graph G and a BGP P, a solution mapping µ is a
solution to P over G if it is defined exactly on the variable names in P and there is
a mapping σ from blank nodes in P to RDF terms such that µ(σ(P)) ⊆ G.

The cardinality of µ in the multiset of solutions is the number of distinct such map-
pings σ. The multiset of these solutions is denoted BGPG(P), where we omit G if
clear from the context.

Note: Here, we write µ(σ(P)) to denote the graph given by the triples in P after first
replacing bnodes according to σ, and then replacing variables according to µ.
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Understanding BGP Multiplicities (1)

G = eg:Arrival eg:actorRole eg:aux1, eg:aux2 .

eg:aux1 eg:actor eg:Adams ; eg:character "Louise Banks" .

eg:aux2 eg:actor eg:Renner ; eg:character "Ian Donnelly" .

eg:Gravity eg:actorRole [ eg:actor eg:Bullock;

eg:character "Ryan Stone" ] .

BGP P1 = ?film eg:actorRole ?ar . ?ar eg:actor ?person . has solution multiset:

film ar person cardinality

eg:Arrival eg:aux1 eg:Adams 1

eg:Arrival eg:aux2 eg:Renner 1

eg:Gravity _:1 eg:Bullock 1

For example, for µ : film 7→ eg:Arrival, ar 7→ eg:aux1, person 7→ eg:Adams, there is
exactly one mapping σ : ∅ → RDF Terms (defined on the bnodes in P1) such that
µ(σ(P1)) ⊆ G.
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Understanding BGP Multiplicities (2)

P1 = ?film eg:actorRole ?ar . ?ar eg:actor ?person .

film ar person cardinality

eg:Arrival eg:aux1 eg:Adams 1
eg:Arrival eg:aux2 eg:Renner 1
eg:Gravity _:1 eg:Bullock 1

P2 = ?film eg:actorRole [ eg:actor ?person ]

film person cardinality

eg:Arrival eg:Adams 1
eg:Arrival eg:Renner 1
eg:Gravity eg:Bullock 1

P3 = ?film eg:actorRole [ eg:actor [] ]

film cardinality

eg:Arrival 2
eg:Gravity 1

Markus Krötzsch, 16th Nov 2021 Knowledge Graphs slide 5 of 23



Understanding BGP Multiplicities (2)

P1 = ?film eg:actorRole ?ar . ?ar eg:actor ?person .

film ar person cardinality

eg:Arrival eg:aux1 eg:Adams 1
eg:Arrival eg:aux2 eg:Renner 1
eg:Gravity _:1 eg:Bullock 1

P2 = ?film eg:actorRole [ eg:actor ?person ]

film person cardinality

eg:Arrival eg:Adams 1
eg:Arrival eg:Renner 1
eg:Gravity eg:Bullock 1

P3 = ?film eg:actorRole [ eg:actor [] ]

film cardinality

eg:Arrival 2
eg:Gravity 1

Markus Krötzsch, 16th Nov 2021 Knowledge Graphs slide 5 of 23



Understanding BGP Multiplicities (2)

P1 = ?film eg:actorRole ?ar . ?ar eg:actor ?person .

film ar person cardinality

eg:Arrival eg:aux1 eg:Adams 1
eg:Arrival eg:aux2 eg:Renner 1
eg:Gravity _:1 eg:Bullock 1

P2 = ?film eg:actorRole [ eg:actor ?person ]

film person cardinality

eg:Arrival eg:Adams 1
eg:Arrival eg:Renner 1
eg:Gravity eg:Bullock 1

P3 = ?film eg:actorRole [ eg:actor [] ]

film cardinality

eg:Arrival 2
eg:Gravity 1

Markus Krötzsch, 16th Nov 2021 Knowledge Graphs slide 5 of 23



Understanding BGP Multiplicities (2)

P1 = ?film eg:actorRole ?ar . ?ar eg:actor ?person .

film ar person cardinality

eg:Arrival eg:aux1 eg:Adams 1
eg:Arrival eg:aux2 eg:Renner 1
eg:Gravity _:1 eg:Bullock 1

P2 = ?film eg:actorRole [ eg:actor ?person ]

film person cardinality

eg:Arrival eg:Adams 1
eg:Arrival eg:Renner 1
eg:Gravity eg:Bullock 1

P3 = ?film eg:actorRole [ eg:actor [] ]

film cardinality

eg:Arrival 2
eg:Gravity 1

Markus Krötzsch, 16th Nov 2021 Knowledge Graphs slide 5 of 23



Understanding BGP Multiplicities (2)

P1 = ?film eg:actorRole ?ar . ?ar eg:actor ?person .

film ar person cardinality

eg:Arrival eg:aux1 eg:Adams 1
eg:Arrival eg:aux2 eg:Renner 1
eg:Gravity _:1 eg:Bullock 1

P2 = ?film eg:actorRole [ eg:actor ?person ]

film person cardinality

eg:Arrival eg:Adams 1
eg:Arrival eg:Renner 1
eg:Gravity eg:Bullock 1

P3 = ?film eg:actorRole [ eg:actor [] ]

film cardinality

eg:Arrival 2
eg:Gravity 1

Markus Krötzsch, 16th Nov 2021 Knowledge Graphs slide 5 of 23



Review: Projection and Duplicates

Projection can increase the multiplicity of solutions

Definition 6.3: The projection of a solutions mapping µ to a set of variables V is
the restriction of the partial function µ to variables in V. The projection of a solu-
tion sequence is the set of all projections of its solution mappings, ordered by the
first occurrence of each projected solution mapping.

The cardinality of a solution mapping µ in a solution Ω is the sum of the cardinali-
ties of all mappings ν ∈ Ω that project to the same mapping µ.

{ using blank nodes in patterns has the same effect as using variables that are
projected away
(but bnode values cannot be used to compute aggregates or computed functions)
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Finding BGP solutions using joins

To answer BGPs, real graph database retrieve solutions for triple patterns and combine
them with joins.

Definition 6.4: Two solution mappings µ1 and µ2 are compatible if µ1(x) = µ2(x)
for all variable names x ∈ dom(µ1) ∩ dom(µ2), where dom is the domain on which
a (partial) function is defined. In this case, µ1 ] µ2 is the mapping defined as

µ1 ] µ2(x) =


µ1(x) if x ∈ dom(µ1)

µ2(x) if x ∈ dom(µ2)

undefined otherwise

Definition 6.5: The join of two multisets Ω1 and Ω2 of solution mappings is the
multiset Join(Ω1, Ω2) = {µ1 ] µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, and µ1 and µ2 are compatible}.

The multiplicity cardΩ(µ) of each solution µ ∈ Ω = Join(Ω1, Ω2) is given as
cardΩ(µ) =

∑
µ1∈Ω1,µ2∈Ω2,µ1]µ2=µ cardΩ1 (µ1) × cardΩ2 (µ2).
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Finding BGP solutions using joins

Theorem 6.6: Let G be an RDF graph, and let P = P1 ∪ P2 be a bnode-free BGP
that is a disjoint union of two BGPs P1 and P2. Then

BGPG(P) = Join(BGPG(P1), BGPG(P2)).

So BGPG(P) is the join of the solution multisets of all individual triple patterns in
P.

Proof: Since P contains no bnodes, solutions are defined without considering mappings
“σ” and the multiplicity of any solution will therefore be 1.

“⊆” Consider µ ∈ BGPG(P).
• Let µi be the restriction of µ to variables in Pi (i = 1, 2)

• Then µi ∈ BGPG(Pi) and µ1 and µ2 are compatible

• Therefore µ1 ] µ2 = µ ∈ Join(BGPG(P1), BGPG(P2))
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Finding BGP solutions . . . in practice

Theorem 6.6 does not work if the patterns contains blank nodes! (see exercise)

In practice, we can treat bnodes like variables that are projected away later on (leading
to increased multiplicities).

Real graph databases compute joins in highly optimised ways:

• Efficient data structures for finding compatible solutions to triple patterns (e.g.,
hash maps, tries, ordered lists, . . . )

• Query planners for optimising order of joins (goal: small intermediate results)

• Streaming joins: returning first results before join is complete

• Sometimes: multi-way joins (joining more than two triple patterns at once)

. . . but they still compute BGP solutions by joining partial solutions and hoping for an
overall match

In the worst case, any known algorithm needs exponential time.
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Semantics of SPARQL queries
SPARQL query features are defined by corresponding query algebra operations that
produce results (i.e., multisets of solution mappings).

We already encountered some such operations:
• BGPG produced results for BGPs and property path patterns
• Join computed the natural join of two results

We omitted the according operation for FILTER so far. It is simple; we just need to take
into account that the meaning of some filter expressions (e.g., NOT EXISTS) depends on
the given RDF graph:

Definition 6.7: Given a filter expression ϕ, a multiset M of solution mappings,
and an RDF graph G, we define the multiset

FilterG(ϕ, M) = {µ | µ ∈ M and ϕ evaluates to true for µ (over G)}

with the cardinality of a solution mapping µ defined as cardFilterG(ϕ,M)(µ) =

cardM(µ).
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Semantics of UNION

The semantics of UNION is defined by the operation Union(M1, M2), which computes the
union of two multisets M1 and M2 of solution mappings:

Definition 6.8: Given multisets M1 and M2 of solution mappings, we define the
multiset

Union(M1, M2) = {µ | µ ∈ M1 or µ ∈ M2}

with the cardinality of a solution mapping µ defined as

cardUnion(M1,M2)(µ) = cardM1 (µ) + cardM2 (µ).
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Semantics of MINUS

The semantics of MINUS is defined by the operation Minus(M1, M2), which computes the
set difference of two results M1 and M2:

Definition 6.9: Given multisets M1 and M2 of solution mappings, we define the
multiset

Minus(M1, M2) = {µ | µ ∈ M1 and for all µ′ ∈ M2 : µ and µ′ are not compatible

or have disjoint domains: dom(µ) ∩ dom(µ′) = ∅}

with the cardinality of a mapping µ defined as cardMinus(M1,M2)(µ) = cardM1 (µ).

Recall: mappings µ1 and µ2 are compatible if µ1(x) = µ2(x) for all variable names
x ∈ dom(µ1) ∩ dom(µ2)

Note: Minus(M1, M2) does not depend on cardinalities of mappings in M2.
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Semantics of OPTIONAL
The semantics of OPTIONAL is defined by the operation LeftJoinG(M1, M2,ϕ), which
augments solutions in M1 with compatible solutions in M2 if this combination satisfies
the filter condition ϕ (w.r.t. graph G):

Definition 6.10: Given multisets M1 and M2 of solution mappings, a filter expres-
sion ϕ, and an RDF graph G, we define the multiset

LeftJoinG(M1, M2,ϕ) = FilterG(ϕ, Join(M1, M2)) ∪

{µ1 ∈ M1 | for all µ2 ∈ M2 : µ1 incompatible µ2 or

ϕ evaluates to false on µ1 ] µ2 (over G)}

with the cardinality of each mapping µ being its cardinality
in FilterG(ϕ, Join(M1, M2)) (in case µ ∈ FilterG(ϕ, Join(M1, M2)))
or in M1 (in case µ < FilterG(ϕ, Join(M1, M2))).
Note that only one of the two cases can occur.

Recall: mappings µ1 and µ2 are compatible if µ1(x) = µ2(x) for all variable names
x ∈ dom(µ1) ∩ dom(µ2)
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Optional and filters

We defined LeftJoin to include filter conditions. Note the difference:

Example 6.11:

SELECT ?person ?spouse
WHERE {
?person eg:birthdate ?bd .

OPTIONAL {
?person eg:spouse ?spouse .

?spouse eg:birthdate ?bd2 .

FILTER (year(?bd)=year(?bd2))
}

}

Example 6.12:

SELECT ?person ?spouse
WHERE {
{ ?person eg:birthdate ?bd .

OPTIONAL {
?person eg:spouse ?spouse .

?spouse eg:birthdate ?bd2 .

}

}

FILTER (year(?bd)=year(?bd2))
}

“People with birthdate, and, optionally,
their spouses born in the same year.”

“Pairs of people with birthdate and
spouses that were born in the same year.”

Markus Krötzsch, 16th Nov 2021 Knowledge Graphs slide 15 of 23



Optional and filters

We defined LeftJoin to include filter conditions. Note the difference:

Example 6.11:

SELECT ?person ?spouse
WHERE {
?person eg:birthdate ?bd .

OPTIONAL {
?person eg:spouse ?spouse .

?spouse eg:birthdate ?bd2 .

FILTER (year(?bd)=year(?bd2))
}

}

Example 6.12:

SELECT ?person ?spouse
WHERE {
{ ?person eg:birthdate ?bd .

OPTIONAL {
?person eg:spouse ?spouse .

?spouse eg:birthdate ?bd2 .

}

}

FILTER (year(?bd)=year(?bd2))
}

“People with birthdate, and, optionally,
their spouses born in the same year.”

“Pairs of people with birthdate and
spouses that were born in the same year.”

Markus Krötzsch, 16th Nov 2021 Knowledge Graphs slide 15 of 23



Semantics of subqueries

The semantics of subqueries does not require any special operator: the result multiset
of the subquery is simply used like the result of any other (sub) group graph pattern.

Notes:

• The order of results from subqueries is not conveyed to the enclosing query
(subqueries return multisets, not sequences).

• The use of ORDER BY is still meaningful to select top-k results by some ordering.

• Only selected variable names are part of the subquery result; other variables might
be hidden from the enclosing query
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Semantics of VALUES (review)

VALUES behaves just like a subquery with the specified result.

• As with subqueries, order does not matter.

• The special value UNDEF is used to signify that a variable should be unbound for a
solution mapping

• Otherwise, only IRIs or literals can be used in VALUES – especially no functions
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Semantics of BIND

The semantics of BIND is defined by the operation Extend(M, v,ϕ), which computes the
extension of solution mappings in M by assigning the output of expression ϕ to variable
name v.

Definition 6.13: Consider a variable name v and an expression ϕ. Given a solu-
tion mapping µ such that v < dom(µ), we define an extended mapping

Extend(µ, v,ϕ) =

 µ ∪ {v 7→ eval(µ(ϕ))} if eval(µ(ϕ)) is not “error”

µ if eval(µ(ϕ)) is “error”

Given a multiset M of solution mappings, we define Extend(M, v,ϕ) =

{Extend(µ, v,ϕ) | µ ∈ M}, where the cardinalities of extended mappings are the
same as in M.

Notation: eval(µ(ϕ)) denotes the evaluation of the expression obtained from ϕ by
replacing variables by their values in µ.
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Summary: SPARQL algebra
We have already encountered a number of operators for extending results:
• Join(M1, M2): join compatible mappings from M1 and M2

• FilterG(ϕ, M): remove from multiset M all mappings for which ϕ does not evaluate
to EBV “true”

• Union(M1, M2): compute the union of mappings from multisets M1 and M2

• Minus(M1, M2): remove from multiset M1 all mappings compatible with a
non-empty mapping in M2

• LeftJoinG(M1, M2,ϕ): extend mappings from M1 by compatible mappings from M2

when filter condition is satisfied; keep remaining mappings from M1 unchanged
• Extend(M, v,ϕ): extend all mappings from M by assigning v the value of ϕ.

SPARQL also defines operators for solution set modifiers, which work on lists of
mappings (“ordered multisets”):
• OrderBy(L, condition): sort list by a condition
• Slice(L, start, length): apply limit and offset modifiers

Further operators exist, e.g., Distinct(L).
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From query to algebra expression by example

It is often not hard to give a correct algebra expression for a group graph pattern:

Example 6.14: The pattern

{ ?person eg:birthdate ?bd .

OPTIONAL {
{ ?person eg:spouse ?s } UNION { ?person eg:civilPartner ?s }
{ ?s eg:birthdate ?bd2 . }

FILTER (year(?bd)=year(?bd2))
}

}

can be solved, e.g., by an algebra expression:

LeftJoin(BGP(?person eg:birthdate ?bd),
Join(Union(BGP(?person eg:spouse ?s), BGP(?person eg:civilPartner ?s)),

BGP(?s eg:birthdate ?bd2)),
year(?bd)=year(?bd2))
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A partial algorithm

Transformation for queries with only BGPs, filters, unions, and optional:

(1) Replace all basic graph patterns P with BGP(P)

(2) Replace all patterns of the form P UNION Q by Union(P, Q)

(3) Now select an innermost sequence S of expressions
(all sub-patterns processed already)

– Remove all FILTER expressions, and store them combined into a
conjunction ψ

– Initialise a result R to be the empty SPARQL expression Z
– Process the remaining list of subexpressions SE iteratively

• If SE is of the form OPTIONAL Filter(ϕ, A) then set
R := LeftJoin(R, A,ϕ)

• Else, if SE is of the form OPTIONAL A then set
R := LeftJoin(R, A, true)

• Else set R := Join(R, SE)
– Finally, replace S by the expression Filter(ψ, R)



Missing parts

Specifying the translation of SPARQL queries to SPARQL algebra in a fully formal way
requires some further details:

• All operators must be taken into account

• Rules are needed to clarify the scope of operators when omitting some { and }

Example 6.15: The pattern on the left is a short form for that on the right:

{ { s1 p1 o1 } OPTIONAL

{ s2 p2 o2 } UNION

{ s3 p3 o3 } OPTIONAL

{ s4 p4 o4 } }

{ { { { s1 p1 o1 } OPTIONAL { s2 p2 o2 }

} UNION { s3 p3 o3 }

} OPTIONAL { s4 p4 o4 }

}

{ we are not interested in all the details in this course
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Summary

SPARQL query results are multi-sets of answers (and lists if order was defined)

The semantics of SPARQL is defined using a variety of algebraic operators

SPARQL queries can be converted into nested expressions of operators that compute
the result.

What’s next?

• SPARQL complexity

• Expressive limits of SPARQL

• Other graph models and their query languages
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