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Motivation: Objective
Goal: Define semantics for (rule-based) KR formalisms in the presence of:
Recursion
• transitive closure
• indirect effects of actions

Negation
• shorter and more intuitive descriptions
• defaults and assumptions (e.g. closed world, non-effects of actions)
Recursion Through Negation
• mutually exclusive alternatives
• non-deterministic effects of actions
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Motivation: Overview
Approximation Fixpoint Theory
• Framework for studying semantics of (non-monotonic) KR formalisms
• Due to Denecker, Marek, and Truszczyński [2000, 2003, 2004]
• Based on lattice theory and operators:

KB Modelshas

Operator
defines

Fixpointshas
correspond

Approximator
defines

Fixpointshas
approximate
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Motivation: History and Context

Approximation Fixpoint Theory
. . . emerged from similarities in the semantics of
• Default Logic [Reiter, 1980]
• Autoepistemic Logic [Moore, 1985]
• Logic Programs, in particular Stable Models [Gelfond and Lifschitz, 1988]
. . . and has since been applied to define/reconstruct semantics of . . .
• Abstract Argumentation Frameworks
• Abstract Dialectical Frameworks
• Active Integrity Constraints
• Recursive SHACL
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Agenda

PreliminariesLattice TheoryLogic Programming
Approximating OperatorsApproximatorDefining Semantics
Stable OperatorsSemantics via Fixpoints
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Foundations of Knowledge Representation

Preliminaries
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Partially Ordered Sets
Definition
A partially ordered set is a pair (L,6) with
• L a set, and (carrier set)
• 6 ⊆ L× L a partial order. (reflexive, antisymmetric, transitive)

A partially ordered set (L,6) has a
• bottom element ⊥ ∈ L iff ⊥ 6 x for all x ∈ L,
• top element > ∈ L iff x 6 > for all x ∈ L.
Examples
• (N,≤): natural numbers with “usual” ordering, ⊥ = 0, no >
• (2S,⊆): any powerset with subset relation, ⊥ = ∅, > = S
• (N, |): natural numbers with divisibility relation, ⊥ = 1, > = 0
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Minimal, Maximal, Least, Greatest
Definition
Let (L,6) be a partially ordered set with S ⊆ L and x ∈ S. We say that:
• x is aminimal element of S iff for each y ∈ S, y 6 x implies y = x, dually,
• x is amaximal element of S iff for each y ∈ S, x 6 y implies y = x;

• x is the least element of S iff for each y ∈ S, we have x 6 y, dually,
• x is the greatest element of S iff for each y ∈ S, we have y 6 x.
Example
In (N, |) (natural numbers with divisibility a | b ⇐⇒ (∃k ∈N)a · k = b), . . .
• the set {2, 3, 6} has minimal elements 2 and 3, greatest element 6,
• the set {2, 4, 6} has least element 2, and maximal elements 4 and 6.
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Least Upper and Greatest Lower Bounds
Definition
Let (L,6) be a partially ordered set with S ⊆ P and x ∈ P.
• x is an upper bound of S iff for each s ∈ S, we have s 6 x, dually,
• x is a lower bound of S iff for each s ∈ S, we have x 6 s.

The set of all upper bounds of S is denoted by Su, its lower bounds by S`.
• If Su has a least element z ∈ S, z is the least upper bound of S, dually,
• if S` has a greatest element z ∈ S, z is the greatest lower bound of S.
We denote the glb of {x, y} by x ∧ y, and the lub of {x, y} by x ∨ y.We denote the glb of S by ∧S, and the lub of S by ∨S.
Examples
• In (2S,⊆), ∧ = ∩ and ∨ = ∪;
• in (N, |), ∧ = gcd and ∨ = lcm, e.g. 4∨ 6 = 12 and 23∧ 42 = 1.
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(Complete) Lattices
Definition
Let (L,6) be a partially ordered set.
1. (L,6) is a lattice if and only if for all x, y ∈ P, both x ∧ y and x ∨ y exist;

2. (L,6) is a complete lattice iff for all S ⊆ P, both ∧S and ∨S exist.
In particular, a complete lattice has ∨∅ =

∧
P = ⊥ and ∧∅ =

∨
P = >.

Examples
• (2S,⊆) is a complete lattice for every set S.
• (N, |) is a complete lattice.
• ({M ⊆N | M is finite},⊆) is a lattice.
• Every lattice (L,6) with L finite is a complete lattice. (induction on |S|)
Further reading: B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Second Edition.Cambridge University Press, 2002
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Operators and Their Properties
Definition
Let (L,6) be a partially ordered set.An operator O : L→ L is 6-monotone if and only if for all x, y ∈ L,

x 6 y implies O(x) 6 O(y)

Intuition: Operator application preserves ordering.

Example
Consider (2N,⊆) with operator O : 2N → 2N, M 7→ {∏ K | K ⊆ M, K finite}.
• O({2, 3}) = {1, 2, 3, 6} and O({2, 3, 5}) = {1, 2, 3, 5, 6, 10, 15, 30}.
• O is ⊆-monotone:

– Let M1 ⊆ M2 ⊆N and consider k ∈ O(M1).– Then there is a K ⊆ M1 with k = ∏ K.– By K ⊆ M1 ⊆ M2, we get k ∈ O(M2).
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Fixpoints of Operators
Definition
Let (L,6) be a partially ordered set and O : L→ L be an operator.
• x ∈ L is a fixpoint of O iff O(x) = x;
• x ∈ L is a prefixpoint of O iff O(x) 6 x;
• x ∈ L is a postfixpoint of O iff x 6 O(x).
Theorem (Knaster/Tarski)
Let (L,6) be a complete lattice and O : L→ L be a monotone operator.Then the set F of fixpoints of O has a least element and a greatest element.

Order-preserving operators on complete lattices have a fixpoint.
Example (Continued.)
Consider (2N,⊆) with operator O : 2N → 2N, M 7→ {∏ K | K ⊆ M, K finite}.
O has least and greatest fixpoints: O({1}) = {1} and O(N) = N.
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O has least and greatest fixpoints: O({1}) = {1} and O(N) = N.
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Fixpoints of Operators (2)
Theorem (Knaster/Tarski)
Let (L,6) be a complete lattice and O : L→ L be a monotone operator.Then the set F of fixpoints of O has a least element and a greatest element.
Proof.
Define A = {x ∈ L | O(x) 6 x} and α =

∧
A. (A 6= ∅ as > ∈ A.)

• For every x ∈ A, we have α 6 x and by monotonicity O(α) 6 O(x) 6 x.
• Thus O(α) is a lower bound of A.
• Since α is the greatest lower bound of A, we get O(α) 6 α, that is, α ∈ A.
• Furthermore, monotonicity yields O(O(α)) 6 O(α), whence O(α) ∈ A.
• Since α is a lower bound of A, we get α 6 O(α), thus O(α) = α.
• Greatest fixpoint β is obtained dually: B = {x ∈ L | x 6 O(x)}, β =

∨
B.

(F,6) is a complete lattice: for G ⊆ F, take ([
∨

G,
∨

P],6) and ([
∧

P,
∧

G],6).
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Definite Logic Programs
Consider a set A of propositional atoms.
Definition
A definite logic program over A is a set P of rules of the form

a0 ← a1, . . . , am

for a0, . . . , am ∈ A with 0 ≤ m.
A set of definite Horn clauses (exactly one positive literal).

Definition
• A set S ⊆ A is closed under a rule a← a1, . . . , am if and only if
{a1, . . . , am} ⊆ S implies a ∈ S.

• The least model of P is the ⊆-least set that is closed under all rules in P.
Does such a least model always exist?
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Semantics via Operators
Definition
Let P be a definite logic program over atoms A.The one-step consequence operator of P is given by PT : 2A → 2A with

S 7→ {a0 ∈ A | a0 ← a1, . . . , am ∈ P, {a1, . . . , am} ⊆ S}

The PT operator maps an interpretation S to a revised interpretation PT(S).

Proposition
For any definite logic program P, the operator PT is ⊆-monotone.

Theorem
Every definite logic program P has a least model, given by the least fixpointof PT in (2A,⊆).
The least model of P captures its intended meaning.
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Definite Logic Programs: Example
Example
Consider A = {a, b, c} and the logic program P = {a←, b← a, c← c}.
The operator PT maps as follows:

∅

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Least fixpoint

Greatest fixpointComplete lattice of fixpoints
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Quiz: Definite Logic Programs

Recall: For S ⊆ A, PT(S) = {a0 ∈ A | a0 ← a1, . . . , am ∈ P, {a1, . . . , am} ⊆ S}.
Quiz
Consider the definite logic program P: . . .
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Normal Logic Programs
Definition
A normal logic program over A is a set P of rules of the form
a0 ← a1, . . . , am, ∼am+1, . . . , ∼an for a0, . . . , an ∈ A with 0 ≤ m ≤ n.

Allow negated atoms ∼a in rule bodies.

Definition
Let P be a normal logic program. The operator PT on (2A,⊆) assigns thus:

S 7→ {a0 ∈ A | a0 ← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P,
{a1, . . . , am} ⊆ S, {am+1, . . . , an} ∩ S = ∅}

A set S ⊆ A is a supported model of P iff it is a fixpoint of PT.
Allow to derive the rule head from S whenever the rule body is satisfied in S.
Alternative definition of supported models via Clark completion.

Approximation Fixpoint TheoryComputational Logic Group // Hannes StrassDresden, 17th January 2022 Slide 18 of 43 Computational
Logic ∴ Group



Normal Logic Programs
Definition
A normal logic program over A is a set P of rules of the form
a0 ← a1, . . . , am, ∼am+1, . . . , ∼an for a0, . . . , an ∈ A with 0 ≤ m ≤ n.

Allow negated atoms ∼a in rule bodies.
Definition
Let P be a normal logic program. The operator PT on (2A,⊆) assigns thus:

S 7→ {a0 ∈ A | a0 ← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P,
{a1, . . . , am} ⊆ S, {am+1, . . . , an} ∩ S = ∅}

A set S ⊆ A is a supported model of P iff it is a fixpoint of PT.
Allow to derive the rule head from S whenever the rule body is satisfied in S.
Alternative definition of supported models via Clark completion.

Approximation Fixpoint TheoryComputational Logic Group // Hannes StrassDresden, 17th January 2022 Slide 18 of 43 Computational
Logic ∴ Group



Normal Logic Programs: Example
Example
Let A = {a, b, c}.Consider the normal logic program
P = {a←, b← a, ∼c, c← c, ∼b}.
Operator PT visualised by

PT is not ⊆-monotone.
In {a, c}, atom c justifies itself.

∅

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

• How to avoid self-justification?
• How to obtain interpretation operators with “nice” properties?
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Stable Model Semantics
Definition
Let P be a normal logic program and S ⊆ A be a set of atoms.The reduct of P with S is the definite logic program PS given by:
{a← a1, . . . , am | a← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P, {am+1, . . . , an} ∩ S = ∅}
A set S ⊆ A is a stable model of P iff S is the ⊆-least model of PS.

In other words, PS is obtained from P by:• removing all rules containing ∼a for some a ∈ S;• removing all ∼a from the remaining rules.
Example (Continued.)
Reconsider logic program P = {a←, b← a, ∼c, c← c, ∼b} withsupported models {a, b} and {a, c}. Are they stable models?
• P{a,b} = {a←, b← a} with least model {a, b}, so {a, b} is a stable model.
• P{a,c} = {a←, c← c} with least model {a}, so {a, c} is not stable.

Approximation Fixpoint TheoryComputational Logic Group // Hannes StrassDresden, 17th January 2022 Slide 20 of 43 Computational
Logic ∴ Group



Stable Model Semantics
Definition
Let P be a normal logic program and S ⊆ A be a set of atoms.The reduct of P with S is the definite logic program PS given by:
{a← a1, . . . , am | a← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P, {am+1, . . . , an} ∩ S = ∅}
A set S ⊆ A is a stable model of P iff S is the ⊆-least model of PS.
In other words, PS is obtained from P by:• removing all rules containing ∼a for some a ∈ S;• removing all ∼a from the remaining rules.

Example (Continued.)
Reconsider logic program P = {a←, b← a, ∼c, c← c, ∼b} withsupported models {a, b} and {a, c}. Are they stable models?
• P{a,b} = {a←, b← a} with least model {a, b}, so {a, b} is a stable model.
• P{a,c} = {a←, c← c} with least model {a}, so {a, c} is not stable.

Approximation Fixpoint TheoryComputational Logic Group // Hannes StrassDresden, 17th January 2022 Slide 20 of 43 Computational
Logic ∴ Group



Stable Model Semantics
Definition
Let P be a normal logic program and S ⊆ A be a set of atoms.The reduct of P with S is the definite logic program PS given by:
{a← a1, . . . , am | a← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P, {am+1, . . . , an} ∩ S = ∅}
A set S ⊆ A is a stable model of P iff S is the ⊆-least model of PS.
In other words, PS is obtained from P by:• removing all rules containing ∼a for some a ∈ S;• removing all ∼a from the remaining rules.
Example (Continued.)
Reconsider logic program P = {a←, b← a, ∼c, c← c, ∼b} withsupported models {a, b} and {a, c}. Are they stable models?

• P{a,b} = {a←, b← a} with least model {a, b}, so {a, b} is a stable model.
• P{a,c} = {a←, c← c} with least model {a}, so {a, c} is not stable.

Approximation Fixpoint TheoryComputational Logic Group // Hannes StrassDresden, 17th January 2022 Slide 20 of 43 Computational
Logic ∴ Group



Stable Model Semantics
Definition
Let P be a normal logic program and S ⊆ A be a set of atoms.The reduct of P with S is the definite logic program PS given by:
{a← a1, . . . , am | a← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P, {am+1, . . . , an} ∩ S = ∅}
A set S ⊆ A is a stable model of P iff S is the ⊆-least model of PS.
In other words, PS is obtained from P by:• removing all rules containing ∼a for some a ∈ S;• removing all ∼a from the remaining rules.
Example (Continued.)
Reconsider logic program P = {a←, b← a, ∼c, c← c, ∼b} withsupported models {a, b} and {a, c}. Are they stable models?
• P{a,b} = {a←, b← a} with least model {a, b}, so {a, b} is a stable model.

• P{a,c} = {a←, c← c} with least model {a}, so {a, c} is not stable.

Approximation Fixpoint TheoryComputational Logic Group // Hannes StrassDresden, 17th January 2022 Slide 20 of 43 Computational
Logic ∴ Group



Stable Model Semantics
Definition
Let P be a normal logic program and S ⊆ A be a set of atoms.The reduct of P with S is the definite logic program PS given by:
{a← a1, . . . , am | a← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P, {am+1, . . . , an} ∩ S = ∅}
A set S ⊆ A is a stable model of P iff S is the ⊆-least model of PS.
In other words, PS is obtained from P by:• removing all rules containing ∼a for some a ∈ S;• removing all ∼a from the remaining rules.
Example (Continued.)
Reconsider logic program P = {a←, b← a, ∼c, c← c, ∼b} withsupported models {a, b} and {a, c}. Are they stable models?
• P{a,b} = {a←, b← a} with least model {a, b}, so {a, b} is a stable model.
• P{a,c} = {a←, c← c} with least model {a}, so {a, c} is not stable.

Approximation Fixpoint TheoryComputational Logic Group // Hannes StrassDresden, 17th January 2022 Slide 20 of 43 Computational
Logic ∴ Group



Stock-Taking

• Monotone operators in complete lattices have (least and greatest)fixpoints.
• Operators can be associated with knowledge bases such that theirfixpoints correspond to models.
• Definite logic programs lead to an operator that is monotone on (2A,⊆),and thus have unique least models.
• Normal logic programs lead to a non-monotone operator;model existence and uniqueness cannot be guaranteed.
• Stable model semantics deals with self-justification.
• Can we find an operator-based version of stable model semantics?
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Foundations of Knowledge Representation

Approximating Operators
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Approximating Operators
Main Idea
Use a more fine-grained structure to keep track of (partial) truth values.
Desiderata
• Preserve “interpretation revision” character of operators
• Preserve correspondence of fixpoints with models
• Obtain useful properties of operators
Approach
• Approximate sets of models by intervals.
• Use an information ordering on these approximations.
• Approximate operators by approximators – operators on intervals.
• Guarantee that fixpoints of approximators contain original fixpoints.

Approximation Fixpoint TheoryComputational Logic Group // Hannes StrassDresden, 17th January 2022 Slide 23 of 43 Computational
Logic ∴ Group



From Lattices to Bilattices
Definition
Let (L,6) be a partially ordered set.Its associated information bilattice is (L2,≤i) with L2 = L× L and

(u, v) ≤i (x, y) iff u 6 x and y 6 v

• A pair (x, y) approximates all z ∈ L with x 6 z 6 y.
• Information ordering =̂ interval inclusion: (u, v) ≤i (x, y) iff [x, y] ⊆ [u, v]

Proposition
If (L,6) is a complete lattice, then (L2,≤i) is a complete lattice. For S ⊆ L2:∧

iS =
(∧

S1,
∨

S2

) and ∨
iS =

(∨
S1,
∧

S2

)
S1={x | (x,y)∈S}
S2={y | (x,y)∈S}
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From Lattice to Bilattice: Example
Example

∅

{a} {b}

{a, b}

(∅, {a, b})

(∅, {a}) (∅, {b}) ({a} , {a, b}) ({b} , {a, b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a, b} , {a, b})

({a} , ∅) ({b} , ∅) ({ab} , {a}) ({a, b} , {b})

({a, b} , ∅)

Original lattice (2{a,b},⊆
) Bilattice (2{a,b} × 2{a,b},≤i

)

Pairs in the bilattice correspond to four-valued interpretations v : {a, b} → {t, f, u, i}.
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We will mostly be concerned with the consistent pairs.
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Elements of the original lattice correspond to exact pairs.
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Approximator
Recall approach: Approximate lattice operators on a richer structure.
Definition
Let (L,6) be a complete lattice and O : L→ L be an operator.An operator A : L2 → L2 approximates O iff for all x ∈ L, we have

A(x, x) = (O(x), O(x))

A is an approximator iff A approximates some O and A is ≤i-monotone.
Approximator coincides with the operator on exact pairs.

A : L2 → L2 induces A1, A2 : L2 → L with A(x, y) = (A1(x, y), A2(x, y)).
Definition
An approximator is symmetric iff A1(x, y) = A2(y, x).
If A is symmetric, then A(x, y) = (A1(x, y), A1(y, x)), so A1 fully specifies A.
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Approximator: Example
Example
Let P be a normal logic program.Recall its one-step consequence operator PT, defined by

PT(S) = {a0 ∈ A | a0 ← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P,
{a1, . . . , am} ⊆ S, {am+1, . . . , an} ∩ S = ∅}

A symmetric approximator for PT is given by PT with
PT1(L, U) = {a0 ∈ A | a0 ← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P,

{a1, . . . , am} ⊆ L, {am+1, . . . , an} ∩U = ∅}

That is, PT (L, U) = (PT1(L, U), PT1(U, L)).
For new lower bound: check truth against lower, falsity against upper bound.
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Approximator PT : Example

∅

{a} {b}

{a, b}

(∅, {a, b})

(∅, {a}) (∅, {b}) ({a} , {a, b}) ({b} , {a, b})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({a, b} , {a, b})

({a} , ∅) ({b} , ∅) ({ab} , {a}) ({a, b} , {b})

({a, b} , ∅)

Original lattice (2{a,b},⊆
)

Normal logic program
P = {a←, b← ∼a, ∼b}

PT:

Bilattice (2{a,b} × 2{a,b},≤i

)
Approximator PT for PT:
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Quiz: Approximator PT

Recall that for L, U ⊆ A we defined PT (L, U) = (PT1(L, U), PT1(U, L)) with
PT1(L, U) = {a0 ∈ A | a0 ← a1, . . . , am, ∼am+1, . . . , ∼an ∈ P,

{a1, . . . , am} ⊆ L, {am+1, . . . , an} ∩U = ∅}

Quiz
Consider the normal logic program P: . . .
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Approximator: Observations (1)
Lemma
Let (L,6) be a complete lattice and A an approximator on (L2,≤i).1. If C is a non-empty chain of consistent pairs, then ∨iC is consistent.
2. If (x, y) is consistent, then A(x, y) is consistent.
Approximators map consistent pairs to consistent pairs.

Proof.
1. Let a, b ∈ C. Since C is a chain, a ≤i b (then a1 6 b1 6 b2) or b ≤i a (then

a1 6 a2 6 b2). In any case, a1 6 b2. So every c2 ∈ C2 is an upper bound of
C1, and ∨C1 6 c2. Hence ∨C1 is a lower bound of C2 and ∨C1 6

∧
C2.

2. If x 6 y, then for z with x 6 z 6 y we have (x, y) ≤i (z, z). A is
≤i-monotone, thus A(x, y) ≤i A(z, z). A approximates some O, thus
A(z, z) = (O(z), O(z)). In combination A1(x, y) 6 O(z) 6 A2(x, y).
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Approximator: Observations (2)
Theorem
Let (L,6) be a complete lattice with O : L→ L, and A an approximator for O.
1. A has a ≤i-least fixpoint (x∗, y∗) with x∗ 6 y∗.
2. Every fixpoint z of O satisfies x∗ 6 z 6 y∗.
The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.
1. By Knaster/Tarski, A has a ≤i-least fixpoint (x∗, y∗). It is also consistent:Define Q =

{
(x, y) ∈ L2

∣∣ x 6 y & (x, y) ≤i A(x, y) & (x, y) ≤i (x∗, y∗)
}.

Q is non-empty as (⊥,>) ∈ Q. Each non-empty chain in Q has an upperbound in Q,
Let ∅ 6= C ⊆ Qbe a chain. Define
d =

∨
iC. (1) Bythe previous lemma, dis consistent. (2) Forevery c ∈ C we have

c ≤i d and thus c ≤i
A(c) ≤i A(d); thus A(d)is an upper bound of
C, whence d ≤i A(d).(3) We know that C ⊆
Q whence (x∗, y∗) isan upper bound of C,thus d ≤i (x∗, y∗).

therefore by Zorn’s Lemma, Q has a maximal element, ρ.Since ρ is maximal, ρ ≤i A(ρ) directly yields A(ρ) = ρ = (x∗, y∗).
2. If O(z) = z then A(z, z) = (O(z), O(z)) = (z, z) and (x∗, y∗) ≤i (z, z).
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Approximator PT : Examples

(∅, {a, b, c})

(∅, {a, b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a, b, c}) ({b} , {a, b, c}) ({c} , {a, b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a, b})

({a} , {a, c})
({b} , {a, b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a, b} , {a, b, c})

({a, c} , {a, b, c})
({b, c} , {a, b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a, b} , {a, b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a, b, c} , {a, b, c})
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Approximator PT : Examples

(∅, {a, b, c})

(∅, {a, b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a, b, c}) ({b} , {a, b, c}) ({c} , {a, b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a, b})

({a} , {a, c})
({b} , {a, b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a, b} , {a, b, c})

({a, c} , {a, b, c})
({b, c} , {a, b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a, b} , {a, b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a, b, c} , {a, b, c})

P1 = {a←, b← a, ∼c, c← c}
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(∅, {a, b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a, b, c}) ({b} , {a, b, c}) ({c} , {a, b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a, b})

({a} , {a, c})
({b} , {a, b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a, b} , {a, b, c})

({a, c} , {a, b, c})
({b, c} , {a, b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a, b} , {a, b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a, b, c} , {a, b, c})

P2 = {a← b, a← c, b← ∼c, c← ∼b}
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Recovering Semantics

Approximator fixpoints give rise to several semantics.
Proposition
Let P be a normal logic program over A with approximator PT , X ⊆ Y ⊆ A.
• X is a supported model of P iff PT (X, X) = (X, X).
• (X, Y) is a three-valued supported model of P iff PT (X, Y) = (X, Y).
• (X, Y) is the Kripke-Kleene semantics of P iff (X, Y) = lfp(PT ).
But what about stable model semantics?
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Foundations of Knowledge Representation

Stable Operators
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Stable Operator: Intuition
The Gelfond-Lifschitz Reduct of P . . .
• . . . starts out with a two-valued interpretation S ⊆ A;
• . . . removes all rules requiring some a ∈ S to be false;
• . . . assumes all a ∈ A \ S to be false in the remaining rules.

• To obtain reduct PS, assume all and only atoms a ∈ A \ S to be false.• Using PS, try to constructively prove all and only atoms a ∈ S to be true.• PS is a definite logic program, so PST is a ⊆-monotone operator on (2A,⊆).
Expressing the Reduct via an Operator
• For pair (X, Y), an a ∈ A is true iff a ∈ X; atom a is false iff a /∈ Y.
• Use PT1 to reconstruct what is true, fixing the upper bound to S:

PT1(·, S) : 2A → 2A, X 7→ PT1(X, S)
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Stable Operator: Preparation
Proposition
Let (L,6) be a complete lattice and A be an approximator on (L2,≤i).For every pair (x, y) ∈ L2, the following operators are 6-monotone:

A1(·, y) : L→ L, z 7→ A1(z, y) and A2(x, ·) : L→ L, z 7→ A2(x, z)

Proof.
1. Let x1 6 x2 and y ∈ L.Then (x1, y) ≤i (x2, y) and A(x1, y) ≤i A(x2, y), thus A1(x1, y) 6 A1(x2, y).
2. Let x ∈ L and y1 6 y2.Then (x, y2) ≤i (x, y1) and A(x, y2) ≤i A(x, y1), thus A2(x, y1) 6 A2(x, y2).
• A1(·, y) has a 6-least fixpoint, denoted lfp(A1(·, y));
• A2(x, ·) has a 6-least fixpoint, denoted lfp(A2(x, ·)).

Approximation Fixpoint TheoryComputational Logic Group // Hannes StrassDresden, 17th January 2022 Slide 36 of 43 Computational
Logic ∴ Group



Stable Operator: Preparation
Proposition
Let (L,6) be a complete lattice and A be an approximator on (L2,≤i).For every pair (x, y) ∈ L2, the following operators are 6-monotone:

A1(·, y) : L→ L, z 7→ A1(z, y) and A2(x, ·) : L→ L, z 7→ A2(x, z)

Proof.
1. Let x1 6 x2 and y ∈ L.

Then (x1, y) ≤i (x2, y) and A(x1, y) ≤i A(x2, y), thus A1(x1, y) 6 A1(x2, y).
2. Let x ∈ L and y1 6 y2.Then (x, y2) ≤i (x, y1) and A(x, y2) ≤i A(x, y1), thus A2(x, y1) 6 A2(x, y2).
• A1(·, y) has a 6-least fixpoint, denoted lfp(A1(·, y));
• A2(x, ·) has a 6-least fixpoint, denoted lfp(A2(x, ·)).

Approximation Fixpoint TheoryComputational Logic Group // Hannes StrassDresden, 17th January 2022 Slide 36 of 43 Computational
Logic ∴ Group



Stable Operator: Preparation
Proposition
Let (L,6) be a complete lattice and A be an approximator on (L2,≤i).For every pair (x, y) ∈ L2, the following operators are 6-monotone:

A1(·, y) : L→ L, z 7→ A1(z, y) and A2(x, ·) : L→ L, z 7→ A2(x, z)

Proof.
1. Let x1 6 x2 and y ∈ L.Then (x1, y) ≤i (x2, y) and A(x1, y) ≤i A(x2, y), thus A1(x1, y) 6 A1(x2, y).

2. Let x ∈ L and y1 6 y2.Then (x, y2) ≤i (x, y1) and A(x, y2) ≤i A(x, y1), thus A2(x, y1) 6 A2(x, y2).
• A1(·, y) has a 6-least fixpoint, denoted lfp(A1(·, y));
• A2(x, ·) has a 6-least fixpoint, denoted lfp(A2(x, ·)).

Approximation Fixpoint TheoryComputational Logic Group // Hannes StrassDresden, 17th January 2022 Slide 36 of 43 Computational
Logic ∴ Group



Stable Operator: Preparation
Proposition
Let (L,6) be a complete lattice and A be an approximator on (L2,≤i).For every pair (x, y) ∈ L2, the following operators are 6-monotone:

A1(·, y) : L→ L, z 7→ A1(z, y) and A2(x, ·) : L→ L, z 7→ A2(x, z)

Proof.
1. Let x1 6 x2 and y ∈ L.Then (x1, y) ≤i (x2, y) and A(x1, y) ≤i A(x2, y), thus A1(x1, y) 6 A1(x2, y).
2. Let x ∈ L and y1 6 y2.

Then (x, y2) ≤i (x, y1) and A(x, y2) ≤i A(x, y1), thus A2(x, y1) 6 A2(x, y2).
• A1(·, y) has a 6-least fixpoint, denoted lfp(A1(·, y));
• A2(x, ·) has a 6-least fixpoint, denoted lfp(A2(x, ·)).

Approximation Fixpoint TheoryComputational Logic Group // Hannes StrassDresden, 17th January 2022 Slide 36 of 43 Computational
Logic ∴ Group



Stable Operator: Preparation
Proposition
Let (L,6) be a complete lattice and A be an approximator on (L2,≤i).For every pair (x, y) ∈ L2, the following operators are 6-monotone:

A1(·, y) : L→ L, z 7→ A1(z, y) and A2(x, ·) : L→ L, z 7→ A2(x, z)

Proof.
1. Let x1 6 x2 and y ∈ L.Then (x1, y) ≤i (x2, y) and A(x1, y) ≤i A(x2, y), thus A1(x1, y) 6 A1(x2, y).
2. Let x ∈ L and y1 6 y2.Then (x, y2) ≤i (x, y1) and A(x, y2) ≤i A(x, y1), thus A2(x, y1) 6 A2(x, y2).
• A1(·, y) has a 6-least fixpoint, denoted lfp(A1(·, y));
• A2(x, ·) has a 6-least fixpoint, denoted lfp(A2(x, ·)).

Approximation Fixpoint TheoryComputational Logic Group // Hannes StrassDresden, 17th January 2022 Slide 36 of 43 Computational
Logic ∴ Group



Stable Operator: Definition
Definition
Let (L,6) be a complete lattice and A be an approximator on (L2,≤i).The stable approximator for A is given by Ast : L2 → L2 with

Ast
1 : L2 → L, (x, y) 7→ lfp(A1(·, y))

Ast
2 : L2 → L, (x, y) 7→ lfp(A2(x, ·))

• Ast
1 : improve lower bound for all fixpoints of O at or below upper bound;• Ast
2 : obtain tightmost new upper bound (eliminate non-minimal fixpoints).

Proposition
Let (x, y) be a postfixpoint of approximator A. Then

a ∈ [⊥, y] implies A1(a, y) ∈ [⊥, y] and b ∈ [x,>] implies A2(x, b) ∈ [x,>].
In particular, lfp(A1(·, y)) 6 y and x 6 lfp(A2(x, ·)).
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Stable Operator: Observations
Theorem
Let (L,6) be a complete lattice and A be an approximator on (L2,≤i).1. Ast is ≤i-monotone.
2. If (x, y) is a consistent postfixpoint of A, then Ast(x, y) is consistent.
Proof.
1. Let (u, v) ≤i (x, y).

Now y 6 v implies A1(z, v) 6 A1(z, y) for all z ∈ L since Ais ≤i-monotone. In particular, for z∗ = lfp(A1(·, y)),
A1(z∗, v) 6 A1(z∗, y) = z∗ whence z∗ is a prefixpoint of A1(·, v). Thuslfp(A1(·, v)) 6 z∗ = lfp(A1(·, y)).In combination, Ast

1 (u, v) = lfp(A1(·, v)) 6 lfp(A1(·, y)) = Ast
1 (x, y). Ast

2 : dual.2. Let x 6 y with (x, y) ≤i A(x, y). For every z ∈ L with x 6 z 6 y, we have
Ast

1 (x, y) 6 Ast
1 (z, z) = lfp(A1(·, z)) 6 z 6 lfp(A2(z, ·)) = Ast

2 (z, z) 6 Ast
2 (x, y).
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1. Let (u, v) ≤i (x, y). Now y 6 v implies A1(z, v) 6 A1(z, y) for all z ∈ L since Ais ≤i-monotone. In particular, for z∗ = lfp(A1(·, y)),

A1(z∗, v) 6 A1(z∗, y) = z∗ whence z∗ is a prefixpoint of A1(·, v).

Thuslfp(A1(·, v)) 6 z∗ = lfp(A1(·, y)).In combination, Ast
1 (u, v) = lfp(A1(·, v)) 6 lfp(A1(·, y)) = Ast

1 (x, y). Ast
2 : dual.2. Let x 6 y with (x, y) ≤i A(x, y). For every z ∈ L with x 6 z 6 y, we have

Ast
1 (x, y) 6 Ast

1 (z, z) = lfp(A1(·, z)) 6 z 6 lfp(A2(z, ·)) = Ast
2 (z, z) 6 Ast

2 (x, y).

Approximation Fixpoint TheoryComputational Logic Group // Hannes StrassDresden, 17th January 2022 Slide 38 of 43 Computational
Logic ∴ Group



Stable Operator: Observations
Theorem
Let (L,6) be a complete lattice and A be an approximator on (L2,≤i).1. Ast is ≤i-monotone.
2. If (x, y) is a consistent postfixpoint of A, then Ast(x, y) is consistent.
Proof.
1. Let (u, v) ≤i (x, y). Now y 6 v implies A1(z, v) 6 A1(z, y) for all z ∈ L since Ais ≤i-monotone. In particular, for z∗ = lfp(A1(·, y)),

A1(z∗, v) 6 A1(z∗, y) = z∗ whence z∗ is a prefixpoint of A1(·, v). Thuslfp(A1(·, v)) 6 z∗ = lfp(A1(·, y)).

In combination, Ast
1 (u, v) = lfp(A1(·, v)) 6 lfp(A1(·, y)) = Ast

1 (x, y). Ast
2 : dual.2. Let x 6 y with (x, y) ≤i A(x, y). For every z ∈ L with x 6 z 6 y, we have

Ast
1 (x, y) 6 Ast

1 (z, z) = lfp(A1(·, z)) 6 z 6 lfp(A2(z, ·)) = Ast
2 (z, z) 6 Ast

2 (x, y).

Approximation Fixpoint TheoryComputational Logic Group // Hannes StrassDresden, 17th January 2022 Slide 38 of 43 Computational
Logic ∴ Group



Stable Operator: Observations
Theorem
Let (L,6) be a complete lattice and A be an approximator on (L2,≤i).1. Ast is ≤i-monotone.
2. If (x, y) is a consistent postfixpoint of A, then Ast(x, y) is consistent.
Proof.
1. Let (u, v) ≤i (x, y). Now y 6 v implies A1(z, v) 6 A1(z, y) for all z ∈ L since Ais ≤i-monotone. In particular, for z∗ = lfp(A1(·, y)),

A1(z∗, v) 6 A1(z∗, y) = z∗ whence z∗ is a prefixpoint of A1(·, v). Thuslfp(A1(·, v)) 6 z∗ = lfp(A1(·, y)).In combination, Ast
1 (u, v) = lfp(A1(·, v)) 6 lfp(A1(·, y)) = Ast

1 (x, y).

Ast
2 : dual.2. Let x 6 y with (x, y) ≤i A(x, y). For every z ∈ L with x 6 z 6 y, we have

Ast
1 (x, y) 6 Ast

1 (z, z) = lfp(A1(·, z)) 6 z 6 lfp(A2(z, ·)) = Ast
2 (z, z) 6 Ast

2 (x, y).

Approximation Fixpoint TheoryComputational Logic Group // Hannes StrassDresden, 17th January 2022 Slide 38 of 43 Computational
Logic ∴ Group



Stable Operator: Observations
Theorem
Let (L,6) be a complete lattice and A be an approximator on (L2,≤i).1. Ast is ≤i-monotone.
2. If (x, y) is a consistent postfixpoint of A, then Ast(x, y) is consistent.
Proof.
1. Let (u, v) ≤i (x, y). Now y 6 v implies A1(z, v) 6 A1(z, y) for all z ∈ L since Ais ≤i-monotone. In particular, for z∗ = lfp(A1(·, y)),

A1(z∗, v) 6 A1(z∗, y) = z∗ whence z∗ is a prefixpoint of A1(·, v). Thuslfp(A1(·, v)) 6 z∗ = lfp(A1(·, y)).In combination, Ast
1 (u, v) = lfp(A1(·, v)) 6 lfp(A1(·, y)) = Ast

1 (x, y). Ast
2 : dual.

2. Let x 6 y with (x, y) ≤i A(x, y). For every z ∈ L with x 6 z 6 y, we have
Ast

1 (x, y) 6 Ast
1 (z, z) = lfp(A1(·, z)) 6 z 6 lfp(A2(z, ·)) = Ast

2 (z, z) 6 Ast
2 (x, y).

Approximation Fixpoint TheoryComputational Logic Group // Hannes StrassDresden, 17th January 2022 Slide 38 of 43 Computational
Logic ∴ Group



Stable Operator: Observations
Theorem
Let (L,6) be a complete lattice and A be an approximator on (L2,≤i).1. Ast is ≤i-monotone.
2. If (x, y) is a consistent postfixpoint of A, then Ast(x, y) is consistent.
Proof.
1. Let (u, v) ≤i (x, y). Now y 6 v implies A1(z, v) 6 A1(z, y) for all z ∈ L since Ais ≤i-monotone. In particular, for z∗ = lfp(A1(·, y)),

A1(z∗, v) 6 A1(z∗, y) = z∗ whence z∗ is a prefixpoint of A1(·, v). Thuslfp(A1(·, v)) 6 z∗ = lfp(A1(·, y)).In combination, Ast
1 (u, v) = lfp(A1(·, v)) 6 lfp(A1(·, y)) = Ast

1 (x, y). Ast
2 : dual.2. Let x 6 y with (x, y) ≤i A(x, y). For every z ∈ L with x 6 z 6 y, we have

Ast
1 (x, y) 6 Ast

1 (z, z) = lfp(A1(·, z)) 6 z 6 lfp(A2(z, ·)) = Ast
2 (z, z) 6 Ast

2 (x, y).
Approximation Fixpoint TheoryComputational Logic Group // Hannes StrassDresden, 17th January 2022 Slide 38 of 43 Computational

Logic ∴ Group



Stable Operator PT st: Example

(∅, {a, b, c})

(∅, {a, b}) (∅, {a, c}) (∅, {b, c}) ({a} , {a, b, c}) ({b} , {a, b, c}) ({c} , {a, b, c})

(∅, {a})
(∅, {b})

(∅, {c})
({a} , {a, b})

({a} , {a, c})
({b} , {a, b})

({b} , {b, c})
({c} , {a, c})

({c} , {b, c})
({a, b} , {a, b, c})

({a, c} , {a, b, c})
({b, c} , {a, b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a, b} , {a, b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a, b, c} , {a, b, c})

P1 = {a←, b← a, ∼c, c← c}
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({c} , {b, c})
({a, b} , {a, b, c})

({a, c} , {a, b, c})
({b, c} , {a, b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a, b} , {a, b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a, b, c} , {a, b, c})

P1 = {a←, b← a, ∼c, c← c} PT st(∅, {a, b, c}) = (lfp(PT1(·, {a, b, c})), lfp(PT2(∅, ·)))
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Stable Operator PT st: Example
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P1 = {a←, b← a, ∼c, c← c} lfp(PT st) = ({a, b} , {a, b}): well-founded semantics of P1
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Stable Operator PT st: Example
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P2 = {a← ∼b, b← ∼a, c← c} lfp(PT st): well-founded semantics of P2
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Stable Operator PT st: Example

(∅, {a, b, c})
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({c} , {a, c})
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({a, c} , {a, b, c})
({b, c} , {a, b, c})

(∅, ∅) ({a} , {a}) ({b} , {b}) ({c} , {c}) ({a, b} , {a, b}) ({a, c} , {a, c}) ({b, c} , {b, c}) ({a, b, c} , {a, b, c})

P2 = {a← ∼b, b← ∼a, c← c} three-valued stable models of P2
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Stable Semantics: Definition via Operators
Definition
Let (L,6) be a complete lattice, O : L→ L be an operator.Let A : L2 → L2 be an approximator of O in (L2,≤i). A pair (x, y) ∈ L2 is
• a two-valued stable model of A iff x = y and Ast(x, y) = (x, y);
• a three-valued stable model of A iff x 6 y and Ast(x, y) = (x, y);
• the well-founded model of A iff it is the least fixpoint of Ast.
Names inspired by notions from logic programming.
Theorem
1. lfp(A) ≤i lfp(Ast);
2. Ast(x, y) = (x, y) implies A(x, y) = (x, y);
3. if Ast(x, x) = (x, x) then x is a 6-minimal fixpoint of O;
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Reprise: How to Find an Approximator?
Definition
Let O : L→ L be an operator in a complete lattice (L,6).Define the ultimate approximator of O as follows:

UO : L2 → L2, (x, y) 7→
(∧
{O(z) | x 6 z 6 y} ,

∨
{O(z) | x 6 z 6 y}

)
Intuition: Consider glb and lub of applying O pointwise to given interval.
Theorem
For every approximator A of O and consistent pair (x, y) ∈ L2, we find

A(x, y) ≤i UO(x, y)

Ultimate approximator is most precise approximator possible.
Used e.g. for (PSP-)semantics of aggregates in logic programming.
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Foundations of Knowledge Representation

Conclusion
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Conclusion
Summary
• Operators in complete lattices can be used to define semantics of KRformalisms.
• Approximation fixpoint theory provides a general account ofoperator-based semantics.
• Stable approximator reconstructs well-founded and stable modelsemantics of logic programming.
Outlook
AFT can be used to show correspondence of . . .
• . . . extensions of default theories with stable models of logic programs;
• . . . expansions of autoepistemic theories with supported models of LPs;
• . . . semantics of argumentation frameworks with semantics of LPs.
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