

Foundations of Knowledge Representation

Hannes Strass

Faculty of Computer Science, Institute for Artificial Intelligence, Computational Logic Group

Approximation Fixpoint Theory

A Unifying Framework for Non-monotonic Semantics // Dresden, 17th January 2022

Motivation: Objective

Goal: Define semantics for (rule-based) KR formalisms in the presence of:

Recursion

- transitive closure
- indirect effects of actions

Motivation: Objective

Goal: Define semantics for (rule-based) KR formalisms in the presence of:

Recursion

- transitive closure
- indirect effects of actions

Negation

- shorter and more intuitive descriptions
- defaults and assumptions (e.g. closed world, non-effects of actions)

Motivation: Objective

Goal: Define semantics for (rule-based) KR formalisms in the presence of:

Recursion

- transitive closure
- indirect effects of actions

Negation

- shorter and more intuitive descriptions
- defaults and assumptions (e.g. closed world, non-effects of actions)

Recursion Through Negation

- · mutually exclusive alternatives
- non-deterministic effects of actions

Motivation: Overview

Approximation Fixpoint Theory

- Framework for studying semantics of (non-monotonic) KR formalisms
- Due to Denecker, Marek, and Truszczyński [2000, 2003, 2004]
- Based on lattice theory and operators:

Motivation: Overview

Approximation Fixpoint Theory

- Framework for studying semantics of (non-monotonic) KR formalisms
- Due to Denecker, Marek, and Truszczyński [2000, 2003, 2004]
- Based on lattice theory and operators:

Motivation: Overview

Approximation Fixpoint Theory

- Framework for studying semantics of (non-monotonic) KR formalisms
- Due to Denecker, Marek, and Truszczyński [2000, 2003, 2004]
- Based on lattice theory and operators:

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Slide 3 of 43

Motivation: History and Context

Approximation Fixpoint Theory

... emerged from similarities in the semantics of

- Default Logic [Reiter, 1980]
- Autoepistemic Logic [Moore, 1985]
- Logic Programs, in particular Stable Models [Gelfond and Lifschitz, 1988]
- ... and has since been applied to define/reconstruct semantics of ...
- Abstract Argumentation Frameworks
- Abstract Dialectical Frameworks
- Active Integrity Constraints
- Recursive SHACL

Agenda

Preliminaries Lattice Theory Logic Programming

Approximating Operators Approximator Defining Semantics

Stable Operators Semantics via Fixpoints

Conclusion

Preliminaries

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Slide 6 of 43

Partially Ordered Sets

Definition

A **partially ordered set** is a pair (L, \leq) with

- L a set, and
- $\leq \subseteq L \times L$ a partial order.

(carrier set)

(reflexive, antisymmetric, transitive)

Partially Ordered Sets

Definition

A **partially ordered set** is a pair (L, \leq) with

• *L* a set, and

(carrier set)

- $\leq \subseteq L \times L$ a partial order. (reflexive, antisymmetric, transitive)
- A partially ordered set (L, \leq) has a
- **bottom element** $\bot \in L$ iff $\bot \leq x$ for all $x \in L$,
- **top element** $\top \in L$ iff $x \leq \top$ for all $x \in L$.

Partially Ordered Sets

Definition

A **partially ordered set** is a pair (L, \leq) with

• *L* a set, and

- (carrier set)
- $\leq \subseteq L \times L$ a partial order. (reflexive, antisymmetric, transitive)
- A partially ordered set (L, \leq) has a
- **bottom element** $\bot \in L$ iff $\bot \leq x$ for all $x \in L$,
- **top element** $\top \in L$ iff $x \leq \top$ for all $x \in L$.

Examples

- (\mathbb{N},\leq) : natural numbers with "usual" ordering, $\perp=0$, no \top
- $(2^S, \subseteq)$: any powerset with subset relation, $\bot = \emptyset$, $\top = S$
- (\mathbb{N}, \bot) : natural numbers with divisibility relation, $\bot = 1, \top = 0$

Minimal, Maximal, Least, Greatest

Definition

Let (L, \leq) be a partially ordered set with $S \subseteq L$ and $x \in S$. We say that:

- *x* is a **minimal element** of *S* iff for each $y \in S$, $y \leq x$ implies y = x, dually,
- *x* is a **maximal element** of *S* iff for each $y \in S$, $x \leq y$ implies y = x;

Minimal, Maximal, Least, Greatest

Definition

Let (L, \leq) be a partially ordered set with $S \subseteq L$ and $x \in S$. We say that:

- *x* is a **minimal element** of *S* iff for each $y \in S$, $y \leq x$ implies y = x, dually,
- *x* is a **maximal element** of *S* iff for each $y \in S$, $x \leq y$ implies y = x;
- *x* is the **least element** of *S* iff for each $y \in S$, we have $x \leq y$, dually,
- *x* is the **greatest element** of *S* iff for each $y \in S$, we have $y \leq x$.

Minimal, Maximal, Least, Greatest

Definition

Let (L, \leq) be a partially ordered set with $S \subseteq L$ and $x \in S$. We say that:

- *x* is a **minimal element** of *S* iff for each $y \in S$, $y \leq x$ implies y = x, dually,
- *x* is a **maximal element** of *S* iff for each $y \in S$, $x \leq y$ implies y = x;
- *x* is the **least element** of *S* iff for each $y \in S$, we have $x \leq y$, dually,
- *x* is the **greatest element** of *S* iff for each $y \in S$, we have $y \leq x$.

Example

In $(\mathbb{N}, |)$ (natural numbers with divisibility $a | b \iff (\exists k \in \mathbb{N})a \cdot k = b), \dots$

- the set {2,3,6} has minimal elements 2 and 3, greatest element 6,
- the set $\{2, 4, 6\}$ has least element 2, and maximal elements 4 and 6.

Definition

Let (L, \leq) be a partially ordered set with $S \subseteq P$ and $x \in P$.

- *x* is an **upper bound** of *S* iff for each $s \in S$, we have $s \leq x$, dually,
- *x* is a **lower bound** of *S* iff for each $s \in S$, we have $x \leq s$.

Definition

Let (L, \leq) be a partially ordered set with $S \subseteq P$ and $x \in P$.

- *x* is an **upper bound** of *S* iff for each $s \in S$, we have $s \leq x$, dually,
- *x* is a **lower bound** of *S* iff for each $s \in S$, we have $x \leq s$.

Definition

Let (L, \leq) be a partially ordered set with $S \subseteq P$ and $x \in P$.

- *x* is an **upper bound** of *S* iff for each $s \in S$, we have $s \leq x$, dually,
- *x* is a **lower bound** of *S* iff for each $s \in S$, we have $x \leq s$.

- If S^u has a least element $z \in S$, z is the **least upper bound** of S, dually,
- if S^{ℓ} has a greatest element $z \in S$, z is the **greatest lower bound** of S.

Definition

Let (L, \leq) be a partially ordered set with $S \subseteq P$ and $x \in P$.

- *x* is an **upper bound** of *S* iff for each $s \in S$, we have $s \leq x$, dually,
- *x* is a **lower bound** of *S* iff for each $s \in S$, we have $x \leq s$.

- If S^u has a least element $z \in S$, z is the **least upper bound** of S, dually,
- if S^ℓ has a greatest element z ∈ S, z is the greatest lower bound of S.
 We denote the glb of {x, y} by x ∧ y, and the lub of {x, y} by x ∨ y.

Definition

Let (L, \leq) be a partially ordered set with $S \subseteq P$ and $x \in P$.

- *x* is an **upper bound** of *S* iff for each $s \in S$, we have $s \leq x$, dually,
- *x* is a **lower bound** of *S* iff for each $s \in S$, we have $x \leq s$.

- If S^u has a least element $z \in S$, z is the **least upper bound** of S, dually,
- if S^ℓ has a greatest element z ∈ S, z is the greatest lower bound of S.
 We denote the glb of {x, y} by x ∧ y, and the lub of {x, y} by x ∨ y.
 We denote the glb of S by ∧S, and the lub of S by ∨S.

Definition

Let (L, \leq) be a partially ordered set with $S \subseteq P$ and $x \in P$.

- *x* is an **upper bound** of *S* iff for each $s \in S$, we have $s \leq x$, dually,
- *x* is a **lower bound** of *S* iff for each $s \in S$, we have $x \leq s$.

The set of all upper bounds of *S* is denoted by S^{u} , its lower bounds by S^{ℓ} .

- If S^u has a least element $z \in S$, z is the **least upper bound** of S, dually,
- if S^ℓ has a greatest element z ∈ S, z is the greatest lower bound of S.
 We denote the glb of {x, y} by x ∧ y, and the lub of {x, y} by x ∨ y.
 We denote the glb of S by ∧S, and the lub of S by ∨S.

Examples

- In $(2^S, \subseteq)$, $\land = \cap$ and $\lor = \cup$;
- in $(\mathbb{N}, |)$, $\wedge = \text{gcd}$ and $\vee = \text{lcm}$, e.g. $4 \vee 6 = 12$ and $23 \wedge 42 = 1$.

Definition

Let (L, \leq) be a partially ordered set.

1. (*L*, \leq) is a **lattice** if and only if for all $x, y \in P$, both $x \land y$ and $x \lor y$ exist;

Definition

Let (L, \leq) be a partially ordered set.

- 1. (*L*, \leq) is a **lattice** if and only if for all *x*, *y* \in *P*, both *x* \wedge *y* and *x* \vee *y* exist;
- 2. (L, \leq) is a **complete lattice** iff for all $S \subseteq P$, both $\land S$ and $\lor S$ exist.

Definition

Let (L, \leq) be a partially ordered set.

- 1. (*L*, \leq) is a **lattice** if and only if for all $x, y \in P$, both $x \wedge y$ and $x \vee y$ exist;
- 2. (L, \leq) is a **complete lattice** iff for all $S \subseteq P$, both $\land S$ and $\lor S$ exist.

In particular, a complete lattice has $\forall \emptyset = \bigwedge P = \bot$ and $\bigwedge \emptyset = \forall P = \top$.

Definition

Let (L, \leq) be a partially ordered set.

- 1. (*L*, \leq) is a **lattice** if and only if for all $x, y \in P$, both $x \wedge y$ and $x \vee y$ exist;
- 2. (L, \leq) is a **complete lattice** iff for all $S \subseteq P$, both $\land S$ and $\lor S$ exist.

In particular, a complete lattice has $\forall \emptyset = \bigwedge P = \bot$ and $\bigwedge \emptyset = \forall P = \top$.

Examples

- $(2^S, \subseteq)$ is a complete lattice for every set *S*.
- $(\mathbb{N}, |)$ is a complete lattice.
- $({M \subseteq \mathbb{N} \mid M \text{ is finite}}, \subseteq) \text{ is a lattice.}$
- Every lattice (L, \leq) with L finite is a complete lattice.

(induction on |S|)

Further reading: B.A. Davey and H.A. Priestley. *Introduction to Lattices and Order*. Second Edition. Cambridge University Press, 2002

Definition

```
Let (L, \leq) be a partially ordered set.
An operator O: L \to L is \leq-monotone if and only if for all x, y \in L,
x \leq y implies O(x) \leq O(y)
```

Intuition: Operator application preserves ordering.

Definition

Let (L, \leq) be a partially ordered set. An operator $O: L \to L$ is \leq -**monotone** if and only if for all $x, y \in L$,

 $x \leqslant y$ implies $O(x) \leqslant O(y)$

Intuition: Operator application preserves ordering.

Example

Definition

Let (L, \leq) be a partially ordered set. An operator $O: L \to L$ is \leq -**monotone** if and only if for all $x, y \in L$,

 $x \leqslant y$ implies $O(x) \leqslant O(y)$

Intuition: Operator application preserves ordering.

Example

Consider $(2^{\mathbb{N}}, \subseteq)$ with operator $O: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$, $M \mapsto \{\prod K \mid K \subseteq M, K \text{ finite}\}.$

• $O(\{2,3\}) = \{1,2,3,6\}$ and $O(\{2,3,5\}) = \{1,2,3,5,6,10,15,30\}.$

Definition

Let (L, \leq) be a partially ordered set. An operator $O: L \to L$ is \leq -**monotone** if and only if for all $x, y \in L$,

 $x \leqslant y$ implies $O(x) \leqslant O(y)$

Intuition: Operator application preserves ordering.

Example

- $O(\{2,3\}) = \{1,2,3,6\}$ and $O(\{2,3,5\}) = \{1,2,3,5,6,10,15,30\}.$
- O is \subseteq -monotone:

Definition

Let (L, \leq) be a partially ordered set. An operator $O: L \to L$ is \leq -**monotone** if and only if for all $x, y \in L$,

 $x \leqslant y$ implies $O(x) \leqslant O(y)$

Intuition: Operator application preserves ordering.

Example

- $O(\{2,3\}) = \{1,2,3,6\}$ and $O(\{2,3,5\}) = \{1,2,3,5,6,10,15,30\}.$
- O is \subseteq -monotone:
 - Let $M_1 \subseteq M_2 \subseteq \mathbb{N}$ and consider $k \in O(M_1)$.

Definition

Let (L, \leq) be a partially ordered set. An operator $O: L \to L$ is \leq -**monotone** if and only if for all $x, y \in L$,

 $x \leqslant y$ implies $O(x) \leqslant O(y)$

Intuition: Operator application preserves ordering.

Example

- $O(\{2,3\}) = \{1,2,3,6\}$ and $O(\{2,3,5\}) = \{1,2,3,5,6,10,15,30\}.$
- O is \subseteq -monotone:
 - Let $M_1 \subseteq M_2 \subseteq \mathbb{N}$ and consider $k \in O(M_1)$.
 - Then there is a $K \subseteq M_1$ with $k = \prod K$.

Definition

Let (L, \leq) be a partially ordered set. An operator $O: L \to L$ is \leq -**monotone** if and only if for all $x, y \in L$,

 $x \leqslant y$ implies $O(x) \leqslant O(y)$

Intuition: Operator application preserves ordering.

Example

- $O(\{2,3\}) = \{1,2,3,6\}$ and $O(\{2,3,5\}) = \{1,2,3,5,6,10,15,30\}.$
- O is \subseteq -monotone:
 - Let $M_1 \subseteq M_2 \subseteq \mathbb{N}$ and consider $k \in O(M_1)$.
 - Then there is a $K \subseteq M_1$ with $k = \prod K$.
 - By $K \subseteq M_1 \subseteq M_2$, we get $k \in O(M_2)$.

Fixpoints of Operators

Definition

Let (L, \leqslant) be a partially ordered set and $O: L \to L$ be an operator.

- $x \in L$ is a **fixpoint** of *O* iff O(x) = x;
- $x \in L$ is a **prefixpoint** of *O* iff $O(x) \leq x$;
- $x \in L$ is a **postfixpoint** of *O* iff $x \leq O(x)$.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O : L \to L$ be a monotone operator. Then the set *F* of fixpoints of *O* has a least element and a greatest element.

Fixpoints of Operators

Definition

Let (L, \leqslant) be a partially ordered set and $O: L \to L$ be an operator.

- $x \in L$ is a **fixpoint** of *O* iff O(x) = x;
- $x \in L$ is a **prefixpoint** of *O* iff $O(x) \leq x$;
- $x \in L$ is a **postfixpoint** of *O* iff $x \leq O(x)$.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O : L \to L$ be a monotone operator. Then the set *F* of fixpoints of *O* has a least element and a greatest element.

Order-preserving operators on complete lattices have a fixpoint.

Fixpoints of Operators

Definition

Let (L, \leqslant) be a partially ordered set and $O: L \to L$ be an operator.

- $x \in L$ is a **fixpoint** of *O* iff O(x) = x;
- $x \in L$ is a **prefixpoint** of *O* iff $O(x) \leq x$;
- $x \in L$ is a **postfixpoint** of *O* iff $x \leq O(x)$.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O : L \to L$ be a monotone operator. Then the set *F* of fixpoints of *O* has a least element and a greatest element.

Order-preserving operators on complete lattices have a fixpoint.

Example (Continued.)

Consider $(2^{\mathbb{N}}, \subseteq)$ with operator $O: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$, $M \mapsto \{\prod K \mid K \subseteq M, K \text{ finite}\}$. O has least and greatest fixpoints: $O(\{1\}) = \{1\}$ and $O(\mathbb{N}) = \mathbb{N}$.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O : L \to L$ be a monotone operator. Then the set *F* of fixpoints of *O* has a least element and a greatest element.

Proof.

Define $A = \{x \in L \mid O(x) \leq x\}$ and $\alpha = \bigwedge A$.

 $(A \neq \emptyset \text{ as } \top \in A.)$

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O : L \to L$ be a monotone operator. Then the set *F* of fixpoints of *O* has a least element and a greatest element.

Proof.

Define $A = \{x \in L \mid O(x) \leq x\}$ and $\alpha = \bigwedge A$. (A)

```
(A \neq \emptyset \text{ as } \top \in A.)
```

• For every $x \in A$, we have $\alpha \leq x$ and by monotonicity $O(\alpha) \leq O(x) \leq x$.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O : L \to L$ be a monotone operator. Then the set *F* of fixpoints of *O* has a least element and a greatest element.

Proof.

Define $A = \{x \in L \mid O(x) \leq x\}$ and $\alpha = \bigwedge A$.

$$(A \neq \emptyset \text{ as } \top \in A.)$$

- For every $x \in A$, we have $\alpha \leq x$ and by monotonicity $O(\alpha) \leq O(x) \leq x$.
- Thus $O(\alpha)$ is a lower bound of *A*.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O : L \to L$ be a monotone operator. Then the set *F* of fixpoints of *O* has a least element and a greatest element.

Proof.

Define $A = \{x \in L \mid O(x) \leq x\}$ and $\alpha = \bigwedge A$.

$$(A \neq \emptyset \text{ as } \top \in A.)$$

- For every $x \in A$, we have $\alpha \leq x$ and by monotonicity $O(\alpha) \leq O(x) \leq x$.
- Thus $O(\alpha)$ is a lower bound of *A*.
- Since α is the greatest lower bound of A, we get $O(\alpha) \leq \alpha$, that is, $\alpha \in A$.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O : L \to L$ be a monotone operator. Then the set *F* of fixpoints of *O* has a least element and a greatest element.

Proof.

Define $A = \{x \in L \mid O(x) \leq x\}$ and $\alpha = \bigwedge A$. $(A \neq \emptyset \text{ as } \top \in A.)$

- For every $x \in A$, we have $\alpha \leq x$ and by monotonicity $O(\alpha) \leq O(x) \leq x$.
- Thus $O(\alpha)$ is a lower bound of *A*.
- Since α is the greatest lower bound of A, we get $O(\alpha) \leq \alpha$, that is, $\alpha \in A$.
- Furthermore, monotonicity yields $O(O(\alpha)) \leq O(\alpha)$, whence $O(\alpha) \in A$.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O : L \to L$ be a monotone operator. Then the set *F* of fixpoints of *O* has a least element and a greatest element.

Proof.

Define $A = \{x \in L \mid O(x) \leq x\}$ and $\alpha = \bigwedge A$. $(A \neq \emptyset \text{ as } \top \in A.)$

- For every $x \in A$, we have $\alpha \leq x$ and by monotonicity $O(\alpha) \leq O(x) \leq x$.
- Thus $O(\alpha)$ is a lower bound of *A*.
- Since α is the greatest lower bound of A, we get $O(\alpha) \leq \alpha$, that is, $\alpha \in A$.
- Furthermore, monotonicity yields $O(O(\alpha)) \leq O(\alpha)$, whence $O(\alpha) \in A$.
- Since α is a lower bound of A, we get $\alpha \leq O(\alpha)$, thus $O(\alpha) = \alpha$.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O : L \to L$ be a monotone operator. Then the set *F* of fixpoints of *O* has a least element and a greatest element.

Proof.

Define $A = \{x \in L \mid O(x) \leq x\}$ and $\alpha = \bigwedge A$. $(A \neq \emptyset \text{ as } \top \in A.)$

- For every $x \in A$, we have $\alpha \leq x$ and by monotonicity $O(\alpha) \leq O(x) \leq x$.
- Thus $O(\alpha)$ is a lower bound of *A*.
- Since α is the greatest lower bound of A, we get $O(\alpha) \leq \alpha$, that is, $\alpha \in A$.
- Furthermore, monotonicity yields $O(O(\alpha)) \leq O(\alpha)$, whence $O(\alpha) \in A$.
- Since α is a lower bound of A, we get $\alpha \leq O(\alpha)$, thus $O(\alpha) = \alpha$.
- Greatest fixpoint β is obtained dually: $B = \{x \in L \mid x \leq O(x)\}, \beta = \bigvee B$.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O : L \to L$ be a monotone operator. Then the set *F* of fixpoints of *O* has a least element and a greatest element.

Proof.

Define $A = \{x \in L \mid O(x) \leq x\}$ and $\alpha = \bigwedge A$. $(A \neq \emptyset \text{ as } \top \in A.)$

- For every $x \in A$, we have $\alpha \leq x$ and by monotonicity $O(\alpha) \leq O(x) \leq x$.
- Thus $O(\alpha)$ is a lower bound of *A*.
- Since α is the greatest lower bound of A, we get $O(\alpha) \leq \alpha$, that is, $\alpha \in A$.
- Furthermore, monotonicity yields $O(O(\alpha)) \leq O(\alpha)$, whence $O(\alpha) \in A$.
- Since α is a lower bound of A, we get $\alpha \leq O(\alpha)$, thus $O(\alpha) = \alpha$.
- Greatest fixpoint β is obtained dually: $B = \{x \in L \mid x \leq O(x)\}, \beta = \bigvee B$.

 (F, \leqslant) is a complete lattice: for $G \subseteq F$, take $([\lor G, \lor P], \leqslant)$ and $([\land P, \land G], \leqslant)$.

Consider a set \mathcal{A} of propositional atoms.

Definition

A **definite logic program** over A is a set P of rules of the form

 $a_0 \leftarrow a_1, \ldots, a_m$

for $a_0, \ldots, a_m \in \mathcal{A}$ with $0 \leq m$.

A set of definite Horn clauses (exactly one positive literal).

Consider a set $\ensuremath{\mathcal{A}}$ of propositional atoms.

Definition

A **definite logic program** over A is a set P of rules of the form

 $a_0 \leftarrow a_1, \ldots, a_m$

for $a_0, \ldots, a_m \in \mathcal{A}$ with $0 \leq m$.

A set of definite Horn clauses (exactly one positive literal).

Definition

• A set $S \subseteq A$ is **closed** under a rule $a \leftarrow a_1, \ldots, a_m$ if and only if $\{a_1, \ldots, a_m\} \subseteq S$ implies $a \in S$.

Consider a set \mathcal{A} of propositional atoms.

Definition

A **definite logic program** over A is a set P of rules of the form

 $a_0 \leftarrow a_1, \ldots, a_m$

for $a_0, \ldots, a_m \in \mathcal{A}$ with $0 \leq m$.

A set of definite Horn clauses (exactly one positive literal).

Definition

- A set $S \subseteq A$ is **closed** under a rule $a \leftarrow a_1, \ldots, a_m$ if and only if $\{a_1, \ldots, a_m\} \subseteq S$ implies $a \in S$.
- The **least model** of *P* is the \subseteq -least set that is closed under all rules in *P*.

Consider a set \mathcal{A} of propositional atoms.

Definition

A **definite logic program** over A is a set P of rules of the form

 $a_0 \leftarrow a_1, \ldots, a_m$

for $a_0, \ldots, a_m \in \mathcal{A}$ with $0 \leq m$.

A set of definite Horn clauses (exactly one positive literal).

Definition

- A set $S \subseteq A$ is **closed** under a rule $a \leftarrow a_1, \ldots, a_m$ if and only if $\{a_1, \ldots, a_m\} \subseteq S$ implies $a \in S$.
- The **least model** of *P* is the \subseteq -least set that is closed under all rules in *P*.

Does such a least model always exist?

Definition

Let *P* be a definite logic program over atoms \mathcal{A} . The **one-step consequence operator** of *P* is given by $_{P}T : 2^{\mathcal{A}} \to 2^{\mathcal{A}}$ with

 $S \mapsto \{a_0 \in \mathcal{A} \mid a_0 \leftarrow a_1, \ldots, a_m \in P, \{a_1, \ldots, a_m\} \subseteq S\}$

The $_{P}T$ operator maps an interpretation S to a revised interpretation $_{P}T(S)$.

Definition

Let *P* be a definite logic program over atoms \mathcal{A} . The **one-step consequence operator** of *P* is given by $_{P}T : 2^{\mathcal{A}} \to 2^{\mathcal{A}}$ with

$$S \mapsto \{a_0 \in \mathcal{A} \mid a_0 \leftarrow a_1, \ldots, a_m \in P, \{a_1, \ldots, a_m\} \subseteq S\}$$

The $_{P}T$ operator maps an interpretation S to a revised interpretation $_{P}T(S)$.

Proposition

For any definite logic program *P*, the operator $_{P}T$ is \subseteq -monotone.

Definition

Let *P* be a definite logic program over atoms A. The **one-step consequence operator** of *P* is given by $_{P}T : 2^{A} \rightarrow 2^{A}$ with

$$S \mapsto \{a_0 \in \mathcal{A} \mid a_0 \leftarrow a_1, \ldots, a_m \in P, \{a_1, \ldots, a_m\} \subseteq S\}$$

The $_{P}T$ operator maps an interpretation S to a revised interpretation $_{P}T(S)$.

Proposition

For any definite logic program *P*, the operator $_{P}T$ is \subseteq -monotone.

Proof.

```
Let S_1 \subseteq S_2 \subseteq \mathcal{A} and a \in {}_PT(S_1).
```


Definition

Let *P* be a definite logic program over atoms A. The **one-step consequence operator** of *P* is given by $_{P}T : 2^{A} \rightarrow 2^{A}$ with

$$S \mapsto \{a_0 \in \mathcal{A} \mid a_0 \leftarrow a_1, \ldots, a_m \in P, \{a_1, \ldots, a_m\} \subseteq S\}$$

The $_{P}T$ operator maps an interpretation S to a revised interpretation $_{P}T(S)$.

Proposition

For any definite logic program *P*, the operator $_{P}T$ is \subseteq -monotone.

Proof.

Let $S_1 \subseteq S_2 \subseteq A$ and $a \in {}_PT(S_1)$. Then there is a rule $a \leftarrow a_1, \ldots, a_m \in P$ with $\{a_1, \ldots, a_m\} \subseteq S_1$.

Definition

Let *P* be a definite logic program over atoms A. The **one-step consequence operator** of *P* is given by $_{P}T : 2^{A} \rightarrow 2^{A}$ with

$$S \mapsto \{a_0 \in \mathcal{A} \mid a_0 \leftarrow a_1, \ldots, a_m \in P, \{a_1, \ldots, a_m\} \subseteq S\}$$

The $_{P}T$ operator maps an interpretation S to a revised interpretation $_{P}T(S)$.

Proposition

For any definite logic program *P*, the operator $_{P}T$ is \subseteq -monotone.

Proof.

Let $S_1 \subseteq S_2 \subseteq A$ and $a \in {}_{P}T(S_1)$. Then there is a rule $a \leftarrow a_1, \ldots, a_m \in P$ with $\{a_1, \ldots, a_m\} \subseteq S_1$. But then $\{a_1, \ldots, a_m\} \subseteq S_1 \subseteq S_2$, thus $a \in {}_{P}T(S_2)$.

Definition

Let *P* be a definite logic program over atoms \mathcal{A} . The **one-step consequence operator** of *P* is given by $_{P}T : 2^{\mathcal{A}} \to 2^{\mathcal{A}}$ with

 $S \mapsto \{a_0 \in \mathcal{A} \mid a_0 \leftarrow a_1, \ldots, a_m \in P, \{a_1, \ldots, a_m\} \subseteq S\}$

The $_{P}T$ operator maps an interpretation S to a revised interpretation $_{P}T(S)$.

Proposition

For any definite logic program *P*, the operator $_{P}T$ is \subseteq -monotone.

Theorem

Every definite logic program *P* has a least model, given by the least fixpoint of $_{P}T$ in $(2^{\mathcal{A}}, \subseteq)$.

The least model of *P* captures its intended meaning.

Example

Consider $A = \{a, b, c\}$ and the logic program $P = \{a \leftarrow, b \leftarrow a, c \leftarrow c\}$. The operator $_{P}T$ maps as follows:

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Example

Consider $A = \{a, b, c\}$ and the logic program $P = \{a \leftarrow, b \leftarrow a, c \leftarrow c\}$. The operator $_{P}T$ maps as follows:

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Example

Consider $A = \{a, b, c\}$ and the logic program $P = \{a \leftarrow, b \leftarrow a, c \leftarrow c\}$. The operator $_{P}T$ maps as follows:

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Example

Consider $A = \{a, b, c\}$ and the logic program $P = \{a \leftarrow, b \leftarrow a, c \leftarrow c\}$. The operator $_{P}T$ maps as follows:

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Example

Consider $A = \{a, b, c\}$ and the logic program $P = \{a \leftarrow, b \leftarrow a, c \leftarrow c\}$. The operator $_{P}T$ maps as follows:

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Example

Consider $A = \{a, b, c\}$ and the logic program $P = \{a \leftarrow, b \leftarrow a, c \leftarrow c\}$. The operator $_{P}T$ maps as follows:

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Example

Consider $A = \{a, b, c\}$ and the logic program $P = \{a \leftarrow, b \leftarrow a, c \leftarrow c\}$. The operator $_{P}T$ maps as follows:

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Example

Consider $A = \{a, b, c\}$ and the logic program $P = \{a \leftarrow, b \leftarrow a, c \leftarrow c\}$. The operator $_{P}T$ maps as follows:

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Example

Consider $A = \{a, b, c\}$ and the logic program $P = \{a \leftarrow, b \leftarrow a, c \leftarrow c\}$. The operator $_{P}T$ maps as follows:

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Quiz: Definite Logic Programs

Recall: For $S \subseteq A$, $_{P}T(S) = \{a_0 \in A \mid a_0 \leftarrow a_1, \ldots, a_m \in P, \{a_1, \ldots, a_m\} \subseteq S\}.$

Quiz

Consider the definite logic program *P*: ...

Normal Logic Programs

Definition

A **normal logic program** over \mathcal{A} is a set P of rules of the form $a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$ for $a_0, \ldots, a_n \in \mathcal{A}$ with $0 \le m \le n$.

Allow negated atoms $\sim a$ in rule bodies.

Normal Logic Programs

Definition

A **normal logic program** over \mathcal{A} is a set P of rules of the form $a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$ for $a_0, \ldots, a_n \in \mathcal{A}$ with $0 \le m \le n$.

Allow negated atoms $\sim a$ in rule bodies.

Definition

Let *P* be a normal logic program. The operator $_{P}T$ on $(2^{\mathcal{A}}, \subseteq)$ assigns thus: $S \mapsto \{a_0 \in \mathcal{A} \mid a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n \in P,$ $\{a_1, \ldots, a_m\} \subseteq S, \{a_{m+1}, \ldots, a_n\} \cap S = \emptyset\}$

A set $S \subseteq A$ is a **supported model** of *P* iff it is a fixpoint of $_{P}T$.

Allow to derive the rule head from *S* whenever the rule body is satisfied in *S*. Alternative definition of supported models via Clark completion.

Example

Example

Example

Example

Example

Let $\mathcal{A} = \{a, b, c\}$. Consider the normal logic program $P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}$. Operator $_{P}T$ visualised by

Example

Let $\mathcal{A} = \{a, b, c\}$. Consider the normal logic program $P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}$. Operator $_{P}T$ visualised by

Example

Let $\mathcal{A} = \{a, b, c\}$. Consider the normal logic program $P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}$. Operator $_{P}T$ visualised by

Example

Let $\mathcal{A} = \{a, b, c\}$. Consider the normal logic program $P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}$. Operator $_{P}T$ visualised by

Slide 19 of 43

Example

Let $\mathcal{A} = \{a, b, c\}$. Consider the normal logic program $P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}$. Operator $_{P}T$ visualised by

Slide 19 of 43

Example

Let $\mathcal{A} = \{a, b, c\}$. Consider the normal logic program $P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}$. Operator $_{P}T$ visualised by

Example

Let $\mathcal{A} = \{a, b, c\}$. Consider the normal logic program $P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}$. Operator $_{P}T$ visualised by

Slide 19 of 43

Example

Let $\mathcal{A} = \{a, b, c\}$. Consider the normal logic program $P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}$. Operator $_{P}T$ visualised by $_{P}T$ is not \subseteq -monotone. In $\{a, c\}$, atom c justifies itself.

Slide 19 of 43

Example

Let $\mathcal{A} = \{a, b, c\}$. Consider the normal logic program $P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}$. Operator $_{P}T$ visualised by \longrightarrow $_{P}T$ is not \subseteq -monotone. In $\{a, c\}$, atom c justifies itself.

- How to avoid self-justification?
- · How to obtain interpretation operators with "nice" properties?

Definition

Let *P* be a normal logic program and $S \subseteq A$ be a set of atoms. The **reduct of** *P* **with** *S* is the definite logic program P^S given by:

 $\{a \leftarrow a_1, \ldots, a_m \mid a \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n \in P, \{a_{m+1}, \ldots, a_n\} \cap S = \emptyset\}$ A set $S \subseteq A$ is a **stable model of** P iff S is the \subseteq -least model of P^S .

Definition

Let *P* be a normal logic program and $S \subseteq A$ be a set of atoms. The **reduct of** *P* **with** *S* is the definite logic program P^S given by:

 $\{a \leftarrow a_1, \ldots, a_m \mid a \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n \in P, \{a_{m+1}, \ldots, a_n\} \cap S = \emptyset\}$ A set $S \subseteq A$ is a **stable model of** P iff S is the \subseteq -least model of P^S .

In other words, P^S is obtained from P by:

- removing all rules containing $\sim a$ for some $a \in S$;
- removing all $\sim a$ from the remaining rules.

Definition

Let *P* be a normal logic program and $S \subseteq A$ be a set of atoms. The **reduct of** *P* **with** *S* is the definite logic program P^S given by:

 $\{a \leftarrow a_1, \ldots, a_m \mid a \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n \in P, \{a_{m+1}, \ldots, a_n\} \cap S = \emptyset\}$ A set $S \subseteq A$ is a **stable model of** P iff S is the \subseteq -least model of P^S .

In other words, P^S is obtained from P by:

- removing all rules containing $\sim a$ for some $a \in S$;
- removing all $\sim a$ from the remaining rules.

Example (Continued.)

Reconsider logic program $P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}$ with supported models $\{a, b\}$ and $\{a, c\}$. Are they stable models?

Definition

Let *P* be a normal logic program and $S \subseteq A$ be a set of atoms. The **reduct of** *P* **with** *S* is the definite logic program P^S given by:

 $\{a \leftarrow a_1, \ldots, a_m \mid a \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n \in P, \{a_{m+1}, \ldots, a_n\} \cap S = \emptyset\}$ A set $S \subseteq \mathcal{A}$ is a **stable model of** P iff S is the \subseteq -least model of P^S .

In other words, P^S is obtained from P by:

- removing all rules containing $\sim a$ for some $a \in S$;
- removing all $\sim a$ from the remaining rules.

Example (Continued.)

Reconsider logic program $P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}$ with supported models $\{a, b\}$ and $\{a, c\}$. Are they stable models?

• $P^{\{a,b\}} = \{a \leftarrow, b \leftarrow a\}$ with least model $\{a,b\}$, so $\{a,b\}$ is a stable model.

Definition

Let *P* be a normal logic program and $S \subseteq A$ be a set of atoms. The **reduct of** *P* **with** *S* is the definite logic program P^S given by:

 $\{a \leftarrow a_1, \ldots, a_m \mid a \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n \in P, \{a_{m+1}, \ldots, a_n\} \cap S = \emptyset\}$ A set $S \subseteq A$ is a **stable model of** P iff S is the \subseteq -least model of P^S .

In other words, P^S is obtained from P by:

- removing all rules containing $\sim a$ for some $a \in S$;
- removing all $\sim a$ from the remaining rules.

Example (Continued.)

Reconsider logic program $P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}$ with supported models $\{a, b\}$ and $\{a, c\}$. Are they stable models?

- $P^{\{a,b\}} = \{a \leftarrow, b \leftarrow a\}$ with least model $\{a,b\}$, so $\{a,b\}$ is a stable model.
- $P^{\{a,c\}} = \{a \leftarrow, c \leftarrow c\}$ with least model $\{a\}$, so $\{a,c\}$ is not stable.

Stock-Taking

- Monotone operators in complete lattices have (least and greatest) fixpoints.
- Operators can be associated with knowledge bases such that their fixpoints correspond to models.
- Definite logic programs lead to an operator that is monotone on $(2^{\mathcal{A}}, \subseteq)$, and thus have unique least models.
- Normal logic programs lead to a non-monotone operator; model existence and uniqueness cannot be guaranteed.
- Stable model semantics deals with self-justification.
- Can we find an operator-based version of stable model semantics?

Approximating Operators

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Approximating Operators

Main Idea

Use a more fine-grained structure to keep track of (partial) truth values.

Desiderata

- Preserve "interpretation revision" character of operators
- Preserve correspondence of fixpoints with models
- Obtain useful properties of operators

Approach

- Approximate sets of models by intervals.
- Use an information ordering on these approximations.
- Approximate operators by approximators operators on intervals.
- Guarantee that fixpoints of approximators contain original fixpoints.

From Lattices to Bilattices

Definition

Let (L, \leq) be a partially ordered set. Its associated **information bilattice** is (L^2, \leq_i) with $L^2 = L \times L$ and

 $(u,v) \leq_i (x,y)$ iff $u \leq x$ and $y \leq v$

- A pair (x, y) approximates all $z \in L$ with $x \leq z \leq y$.
- Information ordering $\hat{=}$ interval inclusion: $(u, v) \leq_i (x, y)$ iff $[x, y] \subseteq [u, v]$

Proposition

If (L, \leq) is a complete lattice, then (L^2, \leq_i) is a complete lattice. For $S \subseteq L^2$:

$$\bigwedge_{i} S = \left(\bigwedge S_{1}, \bigvee S_{2}\right) \quad \text{and} \quad \bigvee_{i} S = \left(\bigvee S_{1}, \bigwedge S_{2}\right) \qquad \begin{array}{c} S_{1} = \{x \mid (x,y) \in S\}\\ S_{2} = \{y \mid (x,y) \in S\}\end{array}$$

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Recall approach: Approximate lattice operators on a richer structure.

Definition

Let (L, \leq) be a complete lattice and $O: L \to L$ be an operator. An operator $A: L^2 \to L^2$ **approximates** O iff for all $x \in L$, we have

A(x, x) = (O(x), O(x))

A is an **approximator** iff A approximates some O and A is \leq_i -monotone.

Approximator coincides with the operator on exact pairs.

Recall approach: Approximate lattice operators on a richer structure.

Definition

Let (L, \leq) be a complete lattice and $O: L \to L$ be an operator. An operator $A: L^2 \to L^2$ **approximates** O iff for all $x \in L$, we have

A(x, x) = (O(x), O(x))

A is an **approximator** iff A approximates some O and A is \leq_i -monotone.

Approximator coincides with the operator on exact pairs.

 $A: L^2 \to L^2$ induces $A_1, A_2: L^2 \to L$ with $A(x, y) = (A_1(x, y), A_2(x, y)).$

Recall approach: Approximate lattice operators on a richer structure.

Definition

Let (L, \leq) be a complete lattice and $O: L \to L$ be an operator. An operator $A: L^2 \to L^2$ **approximates** O iff for all $x \in L$, we have

A(x, x) = (O(x), O(x))

A is an **approximator** iff A approximates some O and A is \leq_i -monotone.

Approximator coincides with the operator on exact pairs.

 $A: L^2 \to L^2$ induces $A_1, A_2: L^2 \to L$ with $A(x, y) = (A_1(x, y), A_2(x, y))$.

Definition

An approximator is **symmetric** iff $A_1(x, y) = A_2(y, x)$.

Recall approach: Approximate lattice operators on a richer structure.

Definition

Let (L, \leq) be a complete lattice and $O: L \to L$ be an operator. An operator $A: L^2 \to L^2$ **approximates** O iff for all $x \in L$, we have

A(x, x) = (O(x), O(x))

A is an **approximator** iff A approximates some O and A is \leq_i -monotone.

Approximator coincides with the operator on exact pairs.

 $A: L^2 \to L^2$ induces $A_1, A_2: L^2 \to L$ with $A(x, y) = (A_1(x, y), A_2(x, y))$.

Definition

An approximator is **symmetric** iff $A_1(x, y) = A_2(y, x)$.

If A is symmetric, then $A(x, y) = (A_1(x, y), A_1(y, x))$, so A_1 fully specifies A.

Approximator: Example

Example

Let *P* be a normal logic program. Recall its one-step consequence operator $_{P}T$, defined by

$${}_{P}T(S) = \{a_0 \in \mathcal{A} \mid a_0 \leftarrow a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n \in P, \\ \{a_1, \dots, a_m\} \subseteq S, \{a_{m+1}, \dots, a_n\} \cap S = \emptyset\}$$

Approximator: Example

Example

Let *P* be a normal logic program. Recall its one-step consequence operator $_{P}T$, defined by

$$pT(S) = \{a_0 \in \mathcal{A} \mid a_0 \leftarrow a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n \in P, \\ \{a_1, \dots, a_m\} \subseteq S, \{a_{m+1}, \dots, a_n\} \cap S = \emptyset\}$$

A symmetric approximator for ${}_{P}T$ is given by ${}_{P}\mathcal{T}$ with

$${}_{P}\mathcal{T}_{1}(L,U) = \{a_{0} \in \mathcal{A} \mid a_{0} \leftarrow a_{1}, \dots, a_{m}, \sim a_{m+1}, \dots, \sim a_{n} \in P, \\ \{a_{1}, \dots, a_{m}\} \subseteq L, \{a_{m+1}, \dots, a_{n}\} \cap U = \emptyset\}$$

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Approximator: Example

Example

Let *P* be a normal logic program. Recall its one-step consequence operator $_{P}T$, defined by

$$pT(S) = \{a_0 \in \mathcal{A} \mid a_0 \leftarrow a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n \in P, \\ \{a_1, \dots, a_m\} \subseteq S, \{a_{m+1}, \dots, a_n\} \cap S = \emptyset\}$$

A symmetric approximator for ${}_{P}T$ is given by ${}_{P}\mathcal{T}$ with

$${}_{P}\mathcal{T}_{1}(L,U) = \{a_{0} \in \mathcal{A} \mid a_{0} \leftarrow a_{1}, \dots, a_{m}, \sim a_{m+1}, \dots, \sim a_{n} \in P, \\ \{a_{1}, \dots, a_{m}\} \subseteq L, \{a_{m+1}, \dots, a_{n}\} \cap U = \emptyset\}$$

That is, ${}_{P}\mathcal{T}(L, U) = ({}_{P}\mathcal{T}_{1}(L, U), {}_{P}\mathcal{T}_{1}(U, L)).$

Slide 27 of 43

Approximator: Example

Example

Let *P* be a normal logic program. Recall its one-step consequence operator $_{P}T$, defined by

$$DT(S) = \{a_0 \in \mathcal{A} \mid a_0 \leftarrow a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n \in P, \\ \{a_1, \dots, a_m\} \subseteq S, \{a_{m+1}, \dots, a_n\} \cap S = \emptyset\}$$

A symmetric approximator for ${}_{P}T$ is given by ${}_{P}\mathcal{T}$ with

$$p\mathcal{T}_1(L,U) = \{a_0 \in \mathcal{A} \mid a_0 \leftarrow a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n \in P, \\ \{a_1, \dots, a_m\} \subseteq L, \{a_{m+1}, \dots, a_n\} \cap U = \emptyset\}$$

That is, ${}_{P}\mathcal{T}(L, U) = ({}_{P}\mathcal{T}_{1}(L, U), {}_{P}\mathcal{T}_{1}(U, L)).$

For new lower bound: check truth against lower, falsity against upper bound.

Slide 28 of 43

Approximator _P**T**: **Example**

Slide 28 of 43

Original lattice $(2^{\{a,b\}}, \subseteq)$ Normal logic program $P = \{a \leftarrow, b \leftarrow \neg a, \neg b\}$ $_{p}T$:

Slide 28 of 43

Original lattice $(2^{\{a,b\}}, \subseteq)$ Normal logic program $P = \{a \leftarrow, b \leftarrow \neg a, \neg b\}$ $_{p}T:$

Original lattice $(2^{\{a,b\}}, \subseteq)$ Normal logic program $P = \{a \leftarrow, b \leftarrow \neg a, \neg b\}$ $_{p}T:$

Quiz: Approximator ${}_{P}\mathcal{T}$

Recall that for $L, U \subseteq A$ we defined ${}_{P}\mathcal{T}(L, U) = ({}_{P}\mathcal{T}_{1}(L, U), {}_{P}\mathcal{T}_{1}(U, L))$ with

$${}_{P}\mathcal{T}_{1}(L,U) = \{a_{0} \in \mathcal{A} \mid a_{0} \leftarrow a_{1}, \dots, a_{m}, \sim a_{m+1}, \dots, \sim a_{n} \in P, \\ \{a_{1}, \dots, a_{m}\} \subseteq L, \{a_{m+1}, \dots, a_{n}\} \cap U = \emptyset\}$$

Quiz

Consider the normal logic program *P*: ...

Lemma

Let (L, \leq) be a complete lattice and A an approximator on (L^2, \leq_i) .

- 1. If *C* is a non-empty chain of consistent pairs, then $\bigvee_i C$ is consistent.
- 2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

Lemma

Let (L, \leq) be a complete lattice and A an approximator on (L^2, \leq_i) .

- 1. If *C* is a non-empty chain of consistent pairs, then $\bigvee_i C$ is consistent.
- 2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

Proof.

1. Let $a, b \in C$. Since C is a chain, $a \leq_i b$ (then $a_1 \leq b_1 \leq b_2$) or $b \leq_i a$ (then $a_1 \leq a_2 \leq b_2$).

Lemma

Let (L, \leq) be a complete lattice and A an approximator on (L^2, \leq_i) .

- 1. If *C* is a non-empty chain of consistent pairs, then $\bigvee_i C$ is consistent.
- 2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

Proof.

1. Let $a, b \in C$. Since C is a chain, $a \leq_i b$ (then $a_1 \leq b_1 \leq b_2$) or $b \leq_i a$ (then $a_1 \leq a_2 \leq b_2$). In any case, $a_1 \leq b_2$. So every $c_2 \in C_2$ is an upper bound of C_1 , and $\bigvee C_1 \leq c_2$.

Lemma

Let (L, \leq) be a complete lattice and A an approximator on (L^2, \leq_i) .

- 1. If *C* is a non-empty chain of consistent pairs, then $\bigvee_i C$ is consistent.
- 2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

Proof.

1. Let $a, b \in C$. Since C is a chain, $a \leq_i b$ (then $a_1 \leq b_1 \leq b_2$) or $b \leq_i a$ (then $a_1 \leq a_2 \leq b_2$). In any case, $a_1 \leq b_2$. So every $c_2 \in C_2$ is an upper bound of C_1 , and $\bigvee C_1 \leq c_2$. Hence $\bigvee C_1$ is a lower bound of C_2 and $\bigvee C_1 \leq \wedge C_2$.

Lemma

Let (L, \leq) be a complete lattice and A an approximator on (L^2, \leq_i) .

- 1. If *C* is a non-empty chain of consistent pairs, then $\bigvee_i C$ is consistent.
- 2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

Proof.

- 1. Let $a, b \in C$. Since C is a chain, $a \leq_i b$ (then $a_1 \leq b_1 \leq b_2$) or $b \leq_i a$ (then $a_1 \leq a_2 \leq b_2$). In any case, $a_1 \leq b_2$. So every $c_2 \in C_2$ is an upper bound of C_1 , and $\bigvee C_1 \leq c_2$. Hence $\bigvee C_1$ is a lower bound of C_2 and $\bigvee C_1 \leq \wedge C_2$.
- 2. If $x \leq y$, then for z with $x \leq z \leq y$ we have $(x, y) \leq_i (z, z)$. A is \leq_i -monotone, thus $A(x, y) \leq_i A(z, z)$.

Lemma

Let (L, \leq) be a complete lattice and A an approximator on (L^2, \leq_i) .

- 1. If *C* is a non-empty chain of consistent pairs, then $\bigvee_i C$ is consistent.
- 2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

Proof.

- 1. Let $a, b \in C$. Since C is a chain, $a \leq_i b$ (then $a_1 \leq b_1 \leq b_2$) or $b \leq_i a$ (then $a_1 \leq a_2 \leq b_2$). In any case, $a_1 \leq b_2$. So every $c_2 \in C_2$ is an upper bound of C_1 , and $\forall C_1 \leq c_2$. Hence $\forall C_1$ is a lower bound of C_2 and $\forall C_1 \leq \land C_2$.
- 2. If $x \leq y$, then for z with $x \leq z \leq y$ we have $(x, y) \leq_i (z, z)$. A is \leq_i -monotone, thus $A(x, y) \leq_i A(z, z)$. A approximates some O, thus A(z, z) = (O(z), O(z)).

Lemma

Let (L, \leq) be a complete lattice and A an approximator on (L^2, \leq_i) .

- 1. If *C* is a non-empty chain of consistent pairs, then $\bigvee_i C$ is consistent.
- 2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

Proof.

- 1. Let $a, b \in C$. Since C is a chain, $a \leq_i b$ (then $a_1 \leq b_1 \leq b_2$) or $b \leq_i a$ (then $a_1 \leq a_2 \leq b_2$). In any case, $a_1 \leq b_2$. So every $c_2 \in C_2$ is an upper bound of C_1 , and $\bigvee C_1 \leq c_2$. Hence $\bigvee C_1$ is a lower bound of C_2 and $\bigvee C_1 \leq \bigwedge C_2$.
- 2. If $x \leq y$, then for z with $x \leq z \leq y$ we have $(x, y) \leq_i (z, z)$. A is \leq_i -monotone, thus $A(x, y) \leq_i A(z, z)$. A approximates some O, thus A(z, z) = (O(z), O(z)). In combination $A_1(x, y) \leq O(z) \leq A_2(x, y)$.

Theorem

Let (L, \leq) be a complete lattice with $O: L \to L$, and A an approximator for O.

- 1. *A* has a \leq_i -least fixpoint (x^*, y^*) with $x^* \leq y^*$.
- 2. Every fixpoint *z* of *O* satisfies $x^* \leq z \leq y^*$.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Theorem

Let (L, \leq) be a complete lattice with $O: L \to L$, and A an approximator for O.

- 1. *A* has a \leq_i -least fixpoint (x^*, y^*) with $x^* \leq y^*$.
- 2. Every fixpoint *z* of *O* satisfies $x^* \leq z \leq y^*$.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, A has a \leq_i -least fixpoint (x^*, y^*).

Theorem

Let (L, \leq) be a complete lattice with $O: L \to L$, and A an approximator for O.

- 1. *A* has a \leq_i -least fixpoint (x^*, y^*) with $x^* \leq y^*$.
- 2. Every fixpoint *z* of *O* satisfies $x^* \leq z \leq y^*$.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, A has a \leq_i -least fixpoint (x^*, y^*). It is also consistent:

Theorem

Let (L, \leq) be a complete lattice with $O: L \to L$, and A an approximator for O.

- 1. *A* has a \leq_i -least fixpoint (x^*, y^*) with $x^* \leq y^*$.
- 2. Every fixpoint *z* of *O* satisfies $x^* \leq z \leq y^*$.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, A has a \leq_i -least fixpoint (x^*, y^*) . It is also consistent: Define $Q = \{(x, y) \in L^2 \mid x \leq y \& (x, y) \leq_i A(x, y) \& (x, y) \leq_i (x^*, y^*)\}.$

Theorem

Let (L, \leq) be a complete lattice with $O: L \to L$, and A an approximator for O.

- 1. *A* has a \leq_i -least fixpoint (x^*, y^*) with $x^* \leq y^*$.
- 2. Every fixpoint *z* of *O* satisfies $x^* \leq z \leq y^*$.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, A has a \leq_i -least fixpoint (x^*, y^*) . It is also consistent: Define $Q = \{(x, y) \in L^2 \mid x \leq y \& (x, y) \leq_i A(x, y) \& (x, y) \leq_i (x^*, y^*)\}$. Q is non-empty as $(\bot, \top) \in Q$.

Theorem

Let (L, \leq) be a complete lattice with $O: L \to L$, and A an approximator for O.

- 1. *A* has a \leq_i -least fixpoint (x^*, y^*) with $x^* \leq y^*$.
- 2. Every fixpoint *z* of *O* satisfies $x^* \leq z \leq y^*$.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, *A* has a \leq_i -least fixpoint (x^*, y^*) . It is also consistent: Define $Q = \{(x, y) \in L^2 \mid x \leq y \& (x, y) \leq_i A(x, y) \& (x, y) \leq_i (x^*, y^*)\}$. *Q* is non-empty as $(\bot, \top) \in Q$. Each non-empty chain in *Q* has an upper bound in *Q*,

Let $0 \neq C \subseteq Q$ be a chain. Define $d = \sqrt{C}$. (1) by the previous lemma, d is consistent. (2) for every $c \in C$ we have $c \leq d$ and thus $c \leq A(d)$. (3) We know that $C \leq Q$ whence $d \leq A(d)$. (3) We know that $C \leq Q$ whence $d \leq A(d)$. (3) We know that $C \leq Q$ whence $d \leq A(d)$.

Theorem

Let (L, \leq) be a complete lattice with $O: L \to L$, and A an approximator for O.

- 1. *A* has a \leq_i -least fixpoint (x^*, y^*) with $x^* \leq y^*$.
- 2. Every fixpoint *z* of *O* satisfies $x^* \leq z \leq y^*$.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, *A* has a \leq_i -least fixpoint (x^*, y^*) . It is also consistent: Define $Q = \{(x, y) \in L^2 \mid x \leq y \& (x, y) \leq_i A(x, y) \& (x, y) \leq_i (x^*, y^*)\}$. *Q* is non-empty as $(\bot, \top) \in Q$. Each non-empty chain in *Q* has an upper bound in *Q*, therefore by Zorn's Lemma, *Q* has a maximal element, ρ .

Let $\emptyset \neq C \subseteq Q$ be a chain. Define $d = \sqrt{C}$. (1) by the previous lemma, dis consistent. (2) for every $c \in C$ we have $c \leq c \leq d$ and thus $c \leq c \leq d$ $A(c) \leq A(d)$, thus A(d)is an upper bound of C, whence $d \leq c A(d)$. (2) We know that $C \leq Q$ whence $(c < c)^{-1}$ an upper bound of C, buse $A(c < c)^{-1}$

Theorem

Let (L, \leq) be a complete lattice with $O: L \to L$, and A an approximator for O.

- 1. *A* has a \leq_i -least fixpoint (x^*, y^*) with $x^* \leq y^*$.
- 2. Every fixpoint *z* of *O* satisfies $x^* \leq z \leq y^*$.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, *A* has a \leq_i -least fixpoint (x^*, y^*) . It is also consistent: Define $Q = \{(x, y) \in L^2 \mid x \leq y \& (x, y) \leq_i A(x, y) \& (x, y) \leq_i (x^*, y^*)\}$. *Q* is non-empty as $(\bot, \top) \in Q$. Each non-empty chain in *Q* has an upper bound in *Q*, therefore by Zorn's Lemma, *Q* has a maximal element, ρ . Since ρ is maximal, $\rho \leq_i A(\rho)$ directly yields $A(\rho) = \rho = (x^*, y^*)$.

Theorem

Let (L, \leq) be a complete lattice with $O: L \to L$, and A an approximator for O.

- 1. *A* has a \leq_i -least fixpoint (x^*, y^*) with $x^* \leq y^*$.
- 2. Every fixpoint *z* of *O* satisfies $x^* \leq z \leq y^*$.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, *A* has a \leq_i -least fixpoint (x^*, y^*) . It is also consistent: Define $Q = \{(x, y) \in L^2 \mid x \leq y \& (x, y) \leq_i A(x, y) \& (x, y) \leq_i (x^*, y^*)\}$. *Q* is non-empty as $(\bot, \top) \in Q$. Each non-empty chain in *Q* has an upper bound in *Q*, therefore by Zorn's Lemma, *Q* has a maximal element, ρ . Since ρ is maximal, $\rho \leq_i A(\rho)$ directly yields $A(\rho) = \rho = (x^*, y^*)$. 2. If O(z) = z then A(z, z) = (O(z), O(z)) = (z, z) and $(x^*, y^*) \leq_i (z, z)$.

whence (x*,y*)

n upper bound of

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Slide 32 of 43

 $P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\}$

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Slide 32 of 43

 $P_2 = \{a \leftarrow b, \quad a \leftarrow c, \quad b \leftarrow \neg c, \quad c \leftarrow \neg b\}$

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Slide 32 of 43

Recovering Semantics

Approximator fixpoints give rise to several semantics.

Proposition

Let *P* be a normal logic program over A with approximator ${}_{P}\mathcal{T}$, $X \subseteq Y \subseteq A$.

- *X* is a supported model of *P* iff $_{P}\mathcal{T}(X, X) = (X, X)$.
- (X, Y) is a three-valued supported model of *P* iff $_{P}\mathcal{T}(X, Y) = (X, Y)$.
- (X, Y) is the Kripke-Kleene semantics of *P* iff $(X, Y) = lfp(_{P}T)$.

But what about stable model semantics?

Stable Operators

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Slide 34 of 43

Stable Operator: Intuition

The Gelfond-Lifschitz Reduct of P ...

- ... starts out with a two-valued interpretation $S \subseteq A$;
- ... removes all rules requiring some $a \in S$ to be false;
- ... assumes all $a \in A \setminus S$ to be false in the remaining rules.

Stable Operator: Intuition

The Gelfond-Lifschitz Reduct of P ...

- ... starts out with a two-valued interpretation $S \subseteq A$;
- ... removes all rules requiring some $a \in S$ to be false;
- ... assumes all $a \in A \setminus S$ to be false in the remaining rules.
- To obtain reduct P^S , assume all and only atoms $a \in A \setminus S$ to be false.
- Using P^S , try to constructively prove all and only atoms $a \in S$ to be true.
- P^S is a definite logic program, so $_{P^S}T$ is a \subseteq -monotone operator on $(2^A, \subseteq)$.

Stable Operator: Intuition

The Gelfond-Lifschitz Reduct of P ...

- ... starts out with a two-valued interpretation $S \subseteq A$;
- ... removes all rules requiring some $a \in S$ to be false;
- ... assumes all $a \in A \setminus S$ to be false in the remaining rules.
- To obtain reduct P^S , assume all and only atoms $a \in A \setminus S$ to be false.
- Using P^S , try to constructively prove all and only atoms $a \in S$ to be true.
- P^S is a definite logic program, so $_{P^S}T$ is a \subseteq -monotone operator on $(2^A, \subseteq)$.

Expressing the Reduct via an Operator

- For pair (*X*, *Y*), an $a \in A$ is true iff $a \in X$; atom *a* is false iff $a \notin Y$.
- Use ${}_{P}\mathcal{T}_{1}$ to reconstruct what is true, fixing the upper bound to *S*:

$${}_{P}\mathcal{T}_{1}(\cdot,S): 2^{\mathcal{A}} \to 2^{\mathcal{A}}, \quad X \mapsto {}_{P}\mathcal{T}_{1}(X,S)$$

Stable Operator: Preparation

Proposition

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) . For every pair $(x, y) \in L^2$, the following operators are \leq -monotone:

 $A_1(\cdot, y): L \to L, \quad z \mapsto A_1(z, y) \quad \text{and} \quad A_2(x, \cdot): L \to L, \quad z \mapsto A_2(x, z)$

Stable Operator: Preparation

Proposition

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) . For every pair $(x, y) \in L^2$, the following operators are \leq -monotone:

 $A_1(\cdot, y): L \to L, \quad z \mapsto A_1(z, y) \quad \text{and} \quad A_2(x, \cdot): L \to L, \quad z \mapsto A_2(x, z)$

Proof.

1. Let $x_1 \leq x_2$ and $y \in L$.

Stable Operator: Preparation

Proposition

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) . For every pair $(x, y) \in L^2$, the following operators are \leq -monotone:

 $A_1(\cdot, y): L \to L, \quad z \mapsto A_1(z, y) \quad \text{and} \quad A_2(x, \cdot): L \to L, \quad z \mapsto A_2(x, z)$

Proof.

1. Let $x_1 \leq x_2$ and $y \in L$. Then $(x_1, y) \leq_i (x_2, y)$ and $A(x_1, y) \leq_i A(x_2, y)$, thus $A_1(x_1, y) \leq A_1(x_2, y)$.

Stable Operator: Preparation

Proposition

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) . For every pair $(x, y) \in L^2$, the following operators are \leq -monotone:

 $A_1(\cdot, y): L \to L, \quad z \mapsto A_1(z, y) \quad \text{and} \quad A_2(x, \cdot): L \to L, \quad z \mapsto A_2(x, z)$

Proof.

1. Let $x_1 \leq x_2$ and $y \in L$. Then $(x_1, y) \leq_i (x_2, y)$ and $A(x_1, y) \leq_i A(x_2, y)$, thus $A_1(x_1, y) \leq A_1(x_2, y)$. 2. Let $x \in L$ and $y_1 \leq y_2$.

Stable Operator: Preparation

Proposition

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) . For every pair $(x, y) \in L^2$, the following operators are \leq -monotone:

 $A_1(\cdot, y): L \to L, \quad z \mapsto A_1(z, y) \quad \text{and} \quad A_2(x, \cdot): L \to L, \quad z \mapsto A_2(x, z)$

Proof.

- 1. Let $x_1 \leq x_2$ and $y \in L$. Then $(x_1, y) \leq_i (x_2, y)$ and $A(x_1, y) \leq_i A(x_2, y)$, thus $A_1(x_1, y) \leq A_1(x_2, y)$.
- 2. Let $x \in L$ and $y_1 \leq y_2$. Then $(x, y_2) \leq_i (x, y_1)$ and $A(x, y_2) \leq_i A(x, y_1)$, thus $A_2(x, y_1) \leq A_2(x, y_2)$.
- $A_1(\cdot, y)$ has a \leq -least fixpoint, denoted lfp $(A_1(\cdot, y))$;
- $A_2(x, \cdot)$ has a \leq -least fixpoint, denoted lfp $(A_2(x, \cdot))$.

Stable Operator: Definition

Definition

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) . The **stable approximator** for A is given by $A^{st} : L^2 \to L^2$ with

 $\begin{array}{ll} A_1^{\mathsf{st}}:L^2 \to L, & (x,y) \mapsto \mathsf{lfp}(A_1(\cdot,y)) \\ A_2^{\mathsf{st}}:L^2 \to L, & (x,y) \mapsto \mathsf{lfp}(A_2(x,\cdot)) \end{array}$

- A_1^{st} : improve lower bound for all fixpoints of O at or below upper bound;
- A_2^{st} : obtain tightmost new upper bound (eliminate non-minimal fixpoints).

Proposition

Let (x, y) be a postfixpoint of approximator A. Then

 $a \in [\bot, y]$ implies $A_1(a, y) \in [\bot, y]$ and $b \in [x, \top]$ implies $A_2(x, b) \in [x, \top]$.

In particular, $lfp(A_1(\cdot, y)) \leq y$ and $x \leq lfp(A_2(x, \cdot))$.

Theorem

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) .

1. A^{st} is \leq_i -monotone.

2. If (x, y) is a consistent postfixpoint of A, then $A^{st}(x, y)$ is consistent.

Proof.

1. Let $(u, v) \leq_i (x, y)$.

Theorem

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) .

- 1. A^{st} is \leq_i -monotone.
- 2. If (x, y) is a consistent postfixpoint of A, then $A^{st}(x, y)$ is consistent.

Proof.

1. Let $(u, v) \leq_i (x, y)$. Now $y \leq v$ implies $A_1(z, v) \leq A_1(z, y)$ for all $z \in L$ since A is \leq_i -monotone.

Theorem

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) .

- 1. A^{st} is \leq_i -monotone.
- 2. If (x, y) is a consistent postfixpoint of A, then $A^{st}(x, y)$ is consistent.

Proof.

1. Let $(u, v) \leq_i (x, y)$. Now $y \leq v$ implies $A_1(z, v) \leq A_1(z, y)$ for all $z \in L$ since Ais \leq_i -monotone. In particular, for $z^* = lfp(A_1(\cdot, y))$, $A_1(z^*, v) \leq A_1(z^*, y) = z^*$ whence z^* is a prefixpoint of $A_1(\cdot, v)$.

Theorem

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) .

- 1. A^{st} is \leq_i -monotone.
- 2. If (x, y) is a consistent postfixpoint of A, then $A^{st}(x, y)$ is consistent.

Proof.

1. Let $(u, v) \leq_i (x, y)$. Now $y \leq v$ implies $A_1(z, v) \leq A_1(z, y)$ for all $z \in L$ since A is \leq_i -monotone. In particular, for $z^* = lfp(A_1(\cdot, y))$, $A_1(z^*, v) \leq A_1(z^*, y) = z^*$ whence z^* is a prefixpoint of $A_1(\cdot, v)$. Thus $lfp(A_1(\cdot, v)) \leq z^* = lfp(A_1(\cdot, y))$.

Theorem

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) .

- 1. A^{st} is \leq_i -monotone.
- 2. If (x, y) is a consistent postfixpoint of A, then $A^{st}(x, y)$ is consistent.

Proof.

1. Let $(u, v) \leq_i (x, y)$. Now $y \leq v$ implies $A_1(z, v) \leq A_1(z, y)$ for all $z \in L$ since Ais \leq_i -monotone. In particular, for $z^* = lfp(A_1(\cdot, y))$, $A_1(z^*, v) \leq A_1(z^*, y) = z^*$ whence z^* is a prefixpoint of $A_1(\cdot, v)$. Thus $lfp(A_1(\cdot, v)) \leq z^* = lfp(A_1(\cdot, y))$. In combination, $A_1^{st}(u, v) = lfp(A_1(\cdot, v)) \leq lfp(A_1(\cdot, y)) = A_1^{st}(x, y)$.

Theorem

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) .

- 1. A^{st} is \leq_i -monotone.
- 2. If (x, y) is a consistent postfixpoint of A, then $A^{st}(x, y)$ is consistent.

Proof.

1. Let $(u, v) \leq_i (x, y)$. Now $y \leq v$ implies $A_1(z, v) \leq A_1(z, y)$ for all $z \in L$ since Ais \leq_i -monotone. In particular, for $z^* = lfp(A_1(\cdot, y))$, $A_1(z^*, v) \leq A_1(z^*, y) = z^*$ whence z^* is a prefixpoint of $A_1(\cdot, v)$. Thus $lfp(A_1(\cdot, v)) \leq z^* = lfp(A_1(\cdot, y))$. In combination, $A_1^{st}(u, v) = lfp(A_1(\cdot, v)) \leq lfp(A_1(\cdot, y)) = A_1^{st}(x, y)$. A_2^{st} : dual.

Theorem

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) .

- 1. A^{st} is \leq_i -monotone.
- 2. If (x, y) is a consistent postfixpoint of A, then $A^{st}(x, y)$ is consistent.

Proof.

- 1. Let $(u, v) \leq_i (x, y)$. Now $y \leq v$ implies $A_1(z, v) \leq A_1(z, y)$ for all $z \in L$ since Ais \leq_i -monotone. In particular, for $z^* = lfp(A_1(\cdot, y))$, $A_1(z^*, v) \leq A_1(z^*, y) = z^*$ whence z^* is a prefixpoint of $A_1(\cdot, v)$. Thus $lfp(A_1(\cdot, v)) \leq z^* = lfp(A_1(\cdot, y))$. In combination, $A_1^{st}(u, v) = lfp(A_1(\cdot, v)) \leq lfp(A_1(\cdot, y)) = A_1^{st}(x, y)$. A_2^{st} : dual.
- 2. Let $x \leq y$ with $(x, y) \leq_i A(x, y)$. For every $z \in L$ with $x \leq z \leq y$, we have $A_1^{st}(x, y) \leq A_1^{st}(z, z) = \mathsf{lfp}(A_1(\cdot, z)) \leq z \leq \mathsf{lfp}(A_2(z, \cdot)) = A_2^{st}(z, z) \leq A_2^{st}(x, y)$.

 $P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\}$

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

 $P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\}$

 ${}_{P}\mathcal{T}^{\mathsf{st}}(\emptyset, \{a, b, c\}) = (\mathsf{lfp}({}_{P}\mathcal{T}_{1}(\cdot, \{a, b, c\})), \mathsf{lfp}({}_{P}\mathcal{T}_{2}(\emptyset, \cdot)))$

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

$$P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\}$$

 ${}_{P}\mathcal{T}^{\mathsf{st}}(\emptyset, \{a, b, c\}) = (\mathsf{lfp}({}_{P}\mathcal{T}_{1}(\cdot, \{a, b, c\})), \mathsf{lfp}({}_{P}\mathcal{T}_{2}(\emptyset, \cdot)))$

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

 $P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\} \qquad P\mathcal{T}^{\mathsf{st}}(\{a\}, \{a, b\}) = (\mathsf{lfp}(P\mathcal{T}_1(\cdot, \{a, b\})), \mathsf{lfp}(P\mathcal{T}_2(\{a\}, \cdot)))$

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

 $P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\} \qquad P_T$

 $_{P}\mathcal{T}^{st}(\{a\},\{a,b\}) = (\mathsf{lfp}(_{P}\mathcal{T}_{1}(\cdot,\{a,b\})),\mathsf{lfp}(_{P}\mathcal{T}_{2}(\{a\},\cdot)))$

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

 $P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\} \qquad P\mathcal{T}^{\mathsf{st}}(\{a\}, \{a, b\}) = (\{a, b\}, \mathsf{lfp}(P\mathcal{T}_2(\{a\}, \cdot)))$

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

$$P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\}$$

 $_{P}T^{\mathsf{st}}(\{a,b\},\{a,b\}) = (_{P}T(\{a,b\}), _{P}T(\{a,b\})) = (\{a,b\},\{a,b\})$

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

 $P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\}$

 $lfp(_{P}\mathcal{T}^{st}) = (\{a, b\}, \{a, b\})$: well-founded semantics of P_1

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

 $P_2 = \{a \leftarrow \sim b, b \leftarrow \sim a, c \leftarrow c\}$ If $p(_P \mathcal{T}^{st})$: well-founded semantics of P_2

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

 $P_2 = \{a \leftarrow \sim b, \quad b \leftarrow \sim a, \quad c \leftarrow c\}$

three-valued stable models of P_2

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Stable Semantics: Definition via Operators

Definition

Let (L, \leq) be a complete lattice, $O: L \to L$ be an operator. Let $A: L^2 \to L^2$ be an approximator of O in (L^2, \leq_i) . A pair $(x, y) \in L^2$ is

- a two-valued stable model of A iff x = y and $A^{st}(x, y) = (x, y)$;
- a three-valued stable model of A iff $x \leq y$ and $A^{st}(x, y) = (x, y)$;
- the **well-founded model of** *A* iff it is the least fixpoint of *A*st.

Names inspired by notions from logic programming.

Theorem

- 1. If $p(A) \leq_i$ If $p(A^{st})$;
- 2. $A^{st}(x, y) = (x, y)$ implies A(x, y) = (x, y);
- 3. if $A^{st}(x, x) = (x, x)$ then x is a \leq -minimal fixpoint of *O*;

Reprise: How to Find an Approximator?

Definition

Let $O: L \to L$ be an operator in a complete lattice (L, \leq) . Define the **ultimate approximator of** O as follows:

$$U_{O}: L^{2} \to L^{2}, \qquad (x, y) \mapsto \left(\bigwedge \{ O(z) \mid x \leqslant z \leqslant y \}, \bigvee \{ O(z) \mid x \leqslant z \leqslant y \} \right)$$

Intuition: Consider glb and lub of applying *O* pointwise to given interval.

Theorem

For every approximator A of O and consistent pair $(x, y) \in L^2$, we find

 $A(x,y) \leq_i U_O(x,y)$

Ultimate approximator is most precise approximator possible. Used e.g. for (PSP-)semantics of aggregates in logic programming.

Conclusion

Approximation Fixpoint Theory Computational Logic Group // Hannes Strass Dresden, 17th January 2022

Slide 42 of 43

Conclusion

Summary

- Operators in complete lattices can be used to define semantics of KR formalisms.
- Approximation fixpoint theory provides a general account of operator-based semantics.
- Stable approximator reconstructs well-founded and stable model semantics of logic programming.

Outlook

AFT can be used to show correspondence of ...

- ... extensions of default theories with stable models of logic programs;
- ... expansions of autoepistemic theories with supported models of LPs;
- ... semantics of argumentation frameworks with semantics of LPs.

