
A Formal Theory of Justifications

Marc Denecker1 and Gerhard Brewka2 and Hannes Strass2

1Department of Computer Science, K.U. Leuven, 3001 Heverlee, Belgium
2Computer Science Institute, Leipzig University, Leipzig, Germany

Abstract. We develop an abstract theory of justifications suitable for describing
the semantics of a range of logics in knowledge representation, computational
and mathematical logic. A theory or program in one of these logics induces a se-
mantical structure called a justification frame. Such a justification frame defines
a class of justifications each of which embodies a potential reason why its facts
are true. By defining various evaluation functions for these justifications, a range
of different semantics are obtained. By allowing nesting of justification frames,
various language constructs can be integrated in a seamless way. The theory pro-
vides elegant and compact formalisations of existing and new semantics in logics
of various areas, showing unexpected commonalities and interrelations, and cre-
ating opportunities for new expressive knowledge representation formalisms.

1 Introduction
In this paper we introduce a new semantical framework suitable for describing seman-
tics of a broad class of existing and new (nonmonotonic) logics. These logics are from
the area of knowledge representation, nonmonotonic reasoning and mathematical logic.
The purpose of the framework is four-fold: (1) By providing a unified semantical ac-
count of different semantical principles, it highlights the differences between different
semantics within the same formalism (e.g., various semantics of logic programs) and (2)
it highlights common semantical principles of different formalisms (e.g. logic programs
vs. argumentation frameworks); (3) for existing formalisms it gives rise to new seman-
tics nobody has thought of before; (4) last but not least it provides ways for seamless
integration of various expressive language constructs in a single logic.

As for (4), it is a fundamental goal of the field of knowledge representation to build
expressive languages, that is, ones that provide a range of different language constructs.
It is well-known that (certainly for nonmonotonic logics) extending a logic with new
language constructs can be very difficult. An illustration is the saga of extending logic
and answer set programming with aggregates [1, 2], a topic on which many effort-years,
several PhD theses and countless papers have been devoted. Clearly, it would be of great
value to have a clean, modular way to compose (nonmonotonic) logics from existing
language constructs. A powerful such principle is presented here, in the form of nesting.

The framework we present is based on so-called justification frames. They specify
a class of defined and parameter facts and include a set of semantic rules x ← S
(x a defined fact, S a set of facts) that provide potential reasons for defined facts x.
Justifications J are graphs obtained by concatenation of such reasons. In the context
of an interpretation A, a justification J may justify a fact x or not, depending on the

branches below x in J . The value of these branches in A is specified by a mapping from
sequences of facts to {t , f }, called a branch evaluation. A justification system consists
of a justification frame together with a branch evaluation. A supported interpretation of
such a system is one in which true facts x are those with a justification J in which all
branches from x evaluate to t . A very useful feature of the framework is the nesting of
justification systems. This yields a powerful way for meaning-preserving integration of
different language constructs by nesting the justification system of one construct in that
of another.

Several semantical frameworks of a seemingly similar kind already exist. In partic-
ular, our framework is a (substantial) extension of a justification framework for logic
programming proposed in [3]. Another framework that comes to mind is approximation
fixpoint theory (AFT) developed by Denecker, Marek and Truszczyński [4]. We believe
that the framework presented here has some clear advantages over AFT:

– AFT is a more abstract algebraical operator-based approach, whereas the justifica-
tion framework rests on a logical notion: a justification as a reason for a fact to
hold. The advantage of AFT’s abstract approach is that it is applicable to a broader
range of logics, (e.g., logic programming, AEL, default logic). The advantage of
the logical approach here is that it is much more intuitive.

– (Direct) application of AFT induces non-standard ultimate variants of stable and
well-founded semantics [5], whereas the justification framework formalizes stan-
dard versions.

– The justification framework identifies a single source of difference in various se-
mantics, namely the way infinite branches are evaluated in justification graphs.

– The nesting of justification systems is a new technique for seamless integration of
complex language constructs (e.g., aggregates, rule sets) in one logic. Nesting is a
feature derived from µ-calculus [6] and nested fixpoint logics [7]. This feature is
not supported by AFT nor in any other semantic frameworks that we know of.

– Last but not least, justifications are used in the implementation of practical systems
such as clasp [8] and IDP [9].

As a consequence, to the best of our knowledge, no other framework (including AFT) is
currently capable of formalizing and integrating the logics treated in this paper. These
logics are from mathematical logic and formal methods, knowledge representation and
nonmonotonic reasoning, and include logic programs and answer set programs under
various semantics [10], abstract argumentation [11], inductive definitions, co-inductive
logic programming [12] and nested inductive/coinductive definitions [13].

2 Justification Frames
Let F be a set and ∼: F → F an involution, that is, a bijection that is its own in-
verse (hence for all x ∈ F , ∼∼x = x). We assume F has a partition {Fp,Fn} such
that ∼Fp = Fn (and vice versa). We call elements of F facts, of Fp positive facts,
and of Fn negative facts. We call ∼x the complement of x. The operator ∼ is called
the complementation operator. A good intuiton for the complementation operator is as
(classical) negation. We frequently call F a fact space.

As will become clear, it can be useful to have facts t , u, i ∈ Fp and their comple-
ments ∼t ,∼u,∼i ∈ Fn. We call them logical facts. For convenience, we denote ∼t

as f . They are interpreted facts. They stand respectively for true, unknown (positive),
inconsistent (positive), false, unknown (negative) and inconsistent (negative).

Definition 1. An interpretation A is a subset ofF such that t , i ,∼i ∈ A and f , u,∼u 6∈
A when present in F . The set of interpretations is denoted I. An interpretation A is
consistent if for every non-logical fact x ∈ F , A contains at most one of x and ∼x. A
is anti-consistent if for every non-logical fact x ∈ F , A contains at least one of x and
∼x. A is exact if consistent and anti-consistent.

Interpretations as defined above can be viewed as 4-valued interpretations, consis-
tent interpretations correspond to 3-valued interpretations, exact interpretations to stan-
dard 2-valued interpretations. In particular, x is true in A if x ∈ A and ∼x 6∈ A; false
if x 6∈ A and ∼x ∈ A; unknown if x,∼x 6∈ A and inconsistent if x,∼x ∈ A. Thus,
interpretations assign each of t , f , u, i its standard truth value (if present in F).

Example 1. Let F be the set of literals of a propositional vocabulary Σ. The positive
facts are the atoms (i.e., Fp = Σ), the negative facts are the negative literals (classical
negation) (i.e., Fn = {¬p | p ∈ Σ}. The complementation operator ∼ is the obvious
one. For a, b, c, d ∈ Σ, the set A = {a,¬a, b,¬c} is a 4-valued interpretation where a
is inconsistent, b is true, c is false and d is unknown.

Using the vocabulary of facts and their negations, we can formulate rules that can
be used to justify the truth of facts.

Definition 2. A justification frame JF is a structure (F ,Fd, R) such that:

– Fd ⊆ F is closed under ∼, that is, ∼Fd = Fd;
– t , f , u,∼u, i ,∼i 6∈ Fd;
– R ⊆ Fd × 2F .

We view a tuple (x, S) ∈ R as a rule and present rules as x← S. We call S a case of
x in JF if (x, S) ∈ R. The set of cases of x in JF is denoted JF(x). We define the
set of parameter facts of JF as F \ Fd and denote it as Fo; we also sometimes write
x← S ∈ JF and mean (x, S) ∈ R.

A justification frame contains a set of rules. The interpretation varies. We may view Fd
as a set of facts defined by their rules, while Fo is a set of parameter symbols. Or we
might view Fd as endogenous facts in a causal system, while Fo are exogenous facts.
The idea is that the endogenous facts are governed by causal relationships described
by the rules, while exogenous facts are governed by the external environment (e.g., a
human agent or external system). More interpretations are possible.

It is possible that for some x ∈ Fd, there are no rules with x in the head (JF(x) = ∅).
Then x is never “justified”. It is also possible that x ← ∅ ∈ R, then x is always “justi-
fied”. The role of the parameters is illustrated below.

Example 2. We construct a justification frame for defining the transitive closure of a
graph. Consider a set V of nodes and define Fo = {E(a, b),∼E(a, b) | a, b ∈ V }.
Each exact interpretation of Fo determines a graph G = (V,E). Set the defined facts
to Fd = {Path(a, b),∼Path(a, b) | a, b ∈ V } and all facts to F = Fd ∪ Fo. The

intended interpretation of fact Path(a, b) is that there is a path from a to b in graph G.
The rules R correspond to those of the monotone inductive definition that Path is the
transitive closure of E:

R = {Path(a, b)← {E(a, b)},Path(a, b)← {Path(a, c),Path(c, b)} | a, b, c ∈ V }

Later we will see how to derive the rules for negative facts ∼Path(a, b) and how to
determine the interpretation for the defined facts given an arbitrary interpretation of the
parameter facts. Note that the rules define Path for each choice of edges E but do not
constrain G in any way. It is in this respect that E(a, b) literals are called parameters.

We next associate an operator on interpretations with each justification frame. This
operator is – in essence – like (Fittings 4-valued version of) the immediate consequence
operator TP for logic programs [14, 15]. It takes as input an interpretation and returns
an interpretation containing exactly those defined facts that are justified by the input.

Definition 3. We define the derivation operator of JF as the mapping TJF : IF → IFd

that maps an interpretation A of F to an interpretation TJF (A) of Fd such that for
each x ∈ Fd, we set x ∈ TJF (A) iff there exists x← S ∈ JF such that S ⊆ A.

The framework below will be geared towards systems where each case of fact x
provides a sufficient condition for x while the set of cases of x represent a necessary
condition for x in the sense that if x is true, then at least one case must apply. Stated
more concisely, the framework is geared towards fixpoints of the operator. However,
this is still quite vague (an operator may have many sorts of fixpoints) and will be
refined later (when we define various “branch evaluations”). This operator can be used
to define when two given justification frames are equivalent.

Definition 4. Two justification frames JF ,JF ′ are equivalent (denoted JF ≡ JF ′)
if and only if TJF = TJF ′ .

We call a rule x← S redundant in R if there is a more general rule x← S′ ∈ R such
that S′ (S. Redundant rules may always be deleted from the rule set of a justifica-
tion frame, as long as the more general rule stays. Formally, let JF = 〈F ,Fd, R〉 and
Re ⊆ R be a set of rules each of which is redundant in R \ Re . Then it is easy to see
that JF ′ = 〈F ,Fd, R \ Re〉 is equivalent to JF . However, it is not always possible to
remove all redundant rules from a justification frame.

Example 3. Take the (infinite) justification frameJF withF = {p,∼p, qi,∼qi | i ∈ N},
Fd = {p,∼p} and R = {p← {qn, qn+1, . . . } | n ∈ N}}. Every rule of R is redundant
in R. Deleting all of them leads to a justification frame that is not equivalent to JF .

We will only be concerned with justification frames where every defined fact has at
least one rule, and rule bodies are not empty. We call them proper justification frames.

Definition 5. A justification frame JF is proper if for all x ∈ Fd, we have JF(x) 6= ∅
and x← ∅ 6∈ JF .

Each justification frame can be translated to an equivalent proper one. For each JF ,
we define its proper justification frame as JF ′ with identical sets of parameter facts and
defined facts and the following rules (for x ∈ Fd):

– all rules x← S ∈ JF such that S 6= ∅;
– rule x← {t} if x← ∅ ∈ JF ;
– rule x← {f } if x ∈ Fd and JF(x) = ∅.

Proposition 1. JF ≡ JF ′, that is, TJF and TJF ′ are identical on all interpretations.

We will – for readability – sometimes present justification frames that are not proper
and take them to mean their equivalent proper justification frames.

3 Justifications and Branch Evaluations
Next, we define the central concept of the paper, a justification for a given justification
frame. This will be our first step in defining the semantics of justification frames.

Definition 6. Let JF = 〈F ,Fd, R〉 be a justification frame. A JF-justification J is a
subset of R containing at most one rule x ← S for each x ∈ Fd. J is called complete
if for each x ∈ Fd there is some x← S in J . If x← S ∈ J , we denote J(x) = S. If J
is not complete we call it partial.

Alternatively, a justification J can be seen as a partial function from Fd to 2F such that
x ← J(x) ∈ R if J is defined in x ∈ Fd. If some x ∈ Fd has no rules x ← S (i.e., if
JF(x) = ∅), then no complete justification exists for JF .

Proper justification systems JF have the interesting property that complete justifi-
cations exist and that justifications J are equivalent to a special class of directed graphs
G on domain F such that if a fact x has children in G, then x ∈ Fd and the set S of its
children is a case of x in JF (that is, x ← S is a rule of JF). It is easy to see that if
JF is proper, there is a one-to-one correspondence between justifications J and such
graphs G. Indeed, given J , we derive G = {(x, y) | y ∈ J(x)}; vice versa, given G, J
is defined in x if x has children, and then J(x) = {y | (x, y) ∈ G}. Notice that this cor-
respondence is not one-to-one in case JF is not proper. For example, if x← ∅ ∈ JF ,
then if x has no children in G, it is unclear whether J is undefined in x or whether
J(x) = ∅. By Proposition 1, we may impose (w.l.o.g.) the condition that justification
frames are proper. In examples we will represent and treat justifications as graphs.

Proposition 2. For any proper JF , a complete justification corresponds to a graph
whose leaves areFo and for each non-leaf x with children S exists a rule x← S in JF .

A complete justification J contains for each fact x ∈ Fd a potential reason (or a
justification, or argument, or cause, etc.) for x to be true: this reason is expressed in
the subtree of J below x. Of course, not every such reason is good. It can be flawed
for external reasons (e.g., it is based on a parameter fact y that is false in the world) or
because of intrinsic reasons (e.g., there is a cyclic argument). In the framework defined
here, the support given by J to x in an interpretation A is determined by evaluating the
branches below x in J . With each branch B we can associate a unique fact, denoted
B(B), so that B evaluates positively in A iff B(B) ∈ A. Thus, J justifies x iff B(B) ∈
A, for all branches leaving x. Below, we formalize these concepts.

Definition 7. An Fd-branch B (briefly, a branch) of JF for x0 ∈ Fd is an infinite
sequence x0 → x1 → . . . such that xi ∈ Fd or a finite sequence x0 → . . .→ xn such
that xi ∈ Fd for i < n and xn ∈ Fo. An infinite branch (compactly, an ∞-branch)
is positive (negative) if it has a tail of positive (negative) facts. It is mixed if neither
positive nor negative. A branch evaluation B is a mapping from branches to facts.

A branch contains at least two facts. In a mixed∞-branch, each tail contains infinitely
many positive and negative facts.

Definition 8. A branch of a complete justification J from defined fact x0 is a maximally
long path x0 → x1 → . . . in J . (Hence, xi+1 ∈ J(xi) for all i ≥ 0.)

It is obvious that a branch of a complete J from x is a branch in the sense of
Definition 7. (This property holds for proper justification frames but not in general).

Example 4. We define four branch evaluations that later will be shown to induce well-
known logic programming semantics. For every branch B = x0 → x1 → . . . , we de-
fine Bsp(B) = x1. (The subscript refers to “supported” semantics.) Next, we define
three more branch evaluations all of which map B to its leaf xn if B is a finite branch
x0 → . . .→ xn. If B is an∞-branch, we have:

– (Kripke-Kleene) BKK (B) = u if x0 ∈ Fp and BKK (B) = ∼u if x0 ∈ Fn.
– (stable) Bst(B) = t if B consists of negative facts only; Bst(B) = f if B consists

of positive facts only; otherwise, Bst(B) = xi if xi is the first fact inB with another
sign than x0.

– (well-founded) Bwf (B) = t if B is a negative ∞-branch; Bwf (B) = f if B is a
positive∞-branch; Bwf (B) = u if B is mixed and x0 ∈ Fp; Bwf (B) = ∼u if B
is mixed and x0 ∈ Fn.

The names suggest a connection to different semantics of logic programs. This will be
explored below.

Definition 9. Given some branch evaluation B, we say that x ∈ Fd is supported by J
in A (under B) if for all branches B = x→ . . . in J , we find B(B) ∈ A. We say that x
is supported by JF in A (under B) if there exists a complete justification J of JF such
that x is supported by J in A. We denote the set of supported facts by SBJF (A).

Using the specific branch evaluation Bsp allows to express the derivation operator
associated to a justification frame.

Proposition 3. For Bsp we have SBsp

JF (A) = TJF (A).

This property does not hold for other branch evaluations. Each combination of justifica-
tion frameJF and branch evaluation B induces an operator SBJF (·) from interpretations
of F to interpretations of Fd.

Proposition 4. If JF ,JF ′ are equivalent (i.e., they induce the same operator) then for
each branch evaluation B, the operators SBJF (·) and SBJF ′(·) are identical.

The meaning of a justification frame is not only specified by the set of its rules
but also by the selected branch evaluation. The same set of rules may have a different
meaning for a different branch evaluation. This is captured in the next definition, another
central concept of the paper: a justification system is a justification frame extended with
a branch evaluation.

Definition 10. A justification system is a structure 〈F ,Fd, R,B〉 with 〈F ,Fd, R〉 a
justification frame and B a branch evaluation on that frame.

Again, we can associate an operator with a justification system just like we did for
justification frames. We only have to additionally take into account the specific branch
evaluation at hand.

Definition 11. LetJS = 〈F ,Fd, R,B〉 be a justification system and letJF = 〈F ,Fd, R〉
be its included justification frame. WithJS we associate the operator SBJF (·) : IF → IFd

and denote the mapping of an interpretation A under this operator as JS(A). The jus-
tified interpretations of a justification system JS are the fixpoints of SBJF (·).

The operator SBJF (·) : IF → IFd
can only be iterated if its domain and co-domain

are identical, that is, if Fo = ∅. There is a simple way to fix this: each operator O from
IF to IFd

has a canonical extensionO′ : IF → IF defined asO′(A) = O(A)∪(A∩Fo).
The extended operator copies the interpretation of the parameters and can be iterated.

4 Reconstructions
This section shows how several established knowledge representation formalisms can
be reconstructed within our theory of justifications. Often, formalisms make implicit
semantic assumptions – e.g. in logic programs any atom without a rule is considered to
be false. The next definitions show how our theory makes such assumptions explicit.

Take a justification frame JF = 〈F ,Fd, R〉 and a fact x ∈ Fd. We can view the
body of a rule x← S ∈ R as a logical conjunction of literals, δS =

∧
y∈S y. The set of

all cases for x then can be thought of as a (possibly infinite) disjunction of such conjunc-
tions, γx =

∨
x←S∈R δS . In a sense, γx characterizes the truth value of x in any given

interpretation. Intuitively, our definition of complement closure below aims to construct
the rules that are needed to characterize the negation of x, the fact ∼x. To obtain these
rules we use the negation of γx, that is, ¬γx = ¬

∨
x←S∈R δS ≡

∧
x←S∈R ¬δS . To get

actual rules according to the definition of a justification system, we consider the DNF
of ¬γx, that is, all possible ways of making all possible cases for x inapplicable.

Definition 12. A selection function for x ∈ Fd is a function S from the set JF(x) of
cases of x to F such that S(S) ∈ S for each S ∈ JF(x). A complement selection of
x ∈ Fd in JF is a set {∼S(S) | S ∈ JF(x)} for some selection function S for x.

The complement selections of x correspond to the disjuncts in the DNF of ¬γx. Each
selects at least one element from each case of x and adds the negations of all selected
elements in one set. It can be seen that if all elements of this set are true, then the bodies
of all rules of x are false. Vice versa, if the bodies of all rules of x are false then all
elements of at least one complement selection are true.

Definition 13. Let JF = 〈F ,Fd, R〉 be a justification frame such that either one of:
(1) x← S ∈ R implies that x ∈ Fp (there are no rules for negative facts); or (2)
x← S ∈ R implies that x ∈ Fn (there are no rules for positive facts). The comple-
ment closure of JF is the justification frame 〈F ,Fd, R ∪Rc〉 where Rc consists of all
rules ∼x← S with x ∈ Fd and S a complement selection of x in JF .

Example 5 (Continuation of Example 2). The complement closure of the justification
frame for transitive closure contains all possible rules of the form ∼Path(a, b)← S,
where S is any subset of F that contains at least ∼E(a, b) and for every c ∈ V either
the literal ∼Path(a, c) or the literal ∼Path(c, b).

We now look at how existing semantics of existing formalisms can be reconstructed
using justification systems.
Argumentation Our first reconstruction shows how Dung-style argumentation frame-
works (AFs) [11] give rise to justification frames. Argumentation frameworks are a
simple, popular formalism for representing arguments and attacks between these ar-
guments. More precisely, an AF is a pair F = (A,X) where A is a set of (atomic)
arguments and X ⊆ A×A is a binary relation (“attack”) on arguments. Intuitively, if
(a, b) ∈ X , then argument a attacks argument b.

Definition 14. Given an AF F = (A,X), the justification frame associated with F is
JFF = (F ,Fd, R) such that F = Fd = A ∪ ∼A andR = {∼a← {b} | (b, a) ∈ X}.

Thus in the resulting fact space F there is a fact a for each argument a ∈ A, and a
fact ∼a for the opposite of each argument a ∈ A. All of these facts are (going to be)
defined. The rules of JFF for negative ∼a ∈ F encode the meaning of “attack”: an
argument a is rejected (that is, its opposite ∼a is true) if one of its attackers b is ac-
cepted (b is true). The complement closure JFcF will additionally contain the rules
Rc = {a← {∼b | (b, a) ∈ X} | a ∈ A}. Intuitively, these derived rules express that for
an argument a to be accepted, all its attackers b must be rejected (that is, their oppo-
sites ∼b must be true). Using one and the same branch evaluation, namely Bsp , we can
show that justification systems allow us to reconstruct the major semantics of abstract
argumentation frameworks.

Proposition 5. Let F = (A,X) be an argumentation framework and JFcF be the com-
plement closure of its associated justification frame JFF . A consistent interpretation A

– is an exact fixpoint of TJFc
F

iff it is stable for F ;
– is a fixpoint of TJFc

F
iff it is complete for F ;

– is a ⊆-maximal fixpoint of TJFc
F

iff it is preferred for F ;
– is the ⊆-least fixpoint of TJFc

F
iff it is grounded for F ;

– satisfies A ⊆ TJFc
F
(A) iff it is admissible for F .

Proof (sketch). Consistent interpretations A can be seen as three-valued interpretations
on the set A. It can be shown that TJFF

is (isomorphic to) the three-valued character-
istic operator of the AF F . The claims then follow from Propositions 4.4 to 4.9 in [16].

�

Four out of five of these types of fact sets correspond to specific sorts of fixpoints of
TJFc

F
. Thus an argument (or its opposite) belongs to such a set iff it is justified by one

of its cases. The exceptions are the admissible sets, which are only postfixpoints: facts
in an admissible set have to be justified by it but not all facts justified by such a set must
belong to the set. Although we technically use sets, these semantics are three-valued
and thus closer to the notion of a labelling than to that of a set-based extension.
Logic programming Justification frames differ from propositional logic programs in
two ways: (a) the presence of a set Fo of parameter literals (whose interpretation is not
defined by the rules), and (b) the presence of rules with negation in the head (which via
complement closure can be derived from those for positive literals).1

Definition 15. Let Π be a (propositional) logic program over atoms Σ. The justifica-
tion frame associated with Π is the structure JFΠ = (F ,Fd, Π) where Fd is the set
of all literals over Σ, and F \ Fd = Fo is the set of logical facts.

We assume without loss of generality that JFΠ is proper, i.e. it contains at least one
rule per non-logical fact (possibly p← {f }) and rule bodies are non-empty. While the
above definition is about propositional logic programs, the approach easily generalizes
to the predicate case by simply instantiating the rules using first-order interpretations.
We now establish the connection between branch evaluations and various semantics of
logic programs. Since Π contains only rules for atoms, we apply complement closure.

Theorem 1. Let Π be a logic program and JF be the complement closure of JFΠ .
– An exact interpretation A is an exact fixpoint of SBsp

JF (·) iff A is a supported model
of Π .

– An interpretation A is a fixpoint of SBKK

JF (·) iff A is the Kripke Kleene model of Π .
– An interpretation A is an exact fixpoint of SBst

JF (·) iff A is a stable model of Π .
– An interpretation A is a fixpoint of SBwf

JF (·) iff A is the well-founded model of Π .

For some branch evaluations B, the value of SBJF (A) depends entirely on the value
of parameter facts in A. This is the case if the branch evaluation maps every branch to
a parameter fact.

Definition 16. A branch evaluation B is parametric if for every branch B, B(B) is a
parameter fact.

Proposition 6. If B is parametric, then for every parameter interpretation Ap ⊆ Fo,
A = SBJF (Ap) is the unique fixpoint of SBJF (·) such that A ∩ Fo = Ap.

The branch evaluations BKK and Bwf are parametric. They are used in logic pro-
gramming semantics that have a unique model. Bsp and Bst are not parametric, and
thus, supported and stable semantics admit for any number of models.2

1 Negation in the head of (extended) answer set programs is different from the negation studied
here, and the justification semantics defined below is not directly suitable to compute answer
sets of programs with explicit negation. We focus on systems where the rules for facts and
their negations are complementary, hence negation is classical. In contrast, rules of ASP for
negative literals are independent of those for positive literals.

2 By dropping the constraint that Fo consists of logical facts only, we obtain extensions of all
main semantics for a parameterized variant of logic programming.

Example 6. Consider the branch evaluation Bcowf (B) defined like Bwf except that pos-
itive ∞-branches are evaluted to t and negative ones to f . The semantics induced by
Bcowf is a sort of well-founded semantics that “prefers” maximal models. This induces
a coinductive semantics as in, for example, µ-calculus [6] and coinductive logic pro-
gramming [12]. For an illustration, consider the set D of finite and infinite lists over
{A,B} and JF = 〈F ,Fd, R〉 where Fd = {P (s) | s ∈ D} and F the extension of Fd
with logical facts and, using Prolog notation [H|T] for lists with head H and tail T , the
rule setR =

{
P ([A,B|s])← {P (s)} | s ∈ D

}
. After taking the complement closure,

an interpretation A is a fixpoint of SBcowf

JF (·) iff A = {P ([A,B,A,B,A,B, . . .])}. Had
we used Bwf (“preferring” minimal models), the fixpoint would have been ∅.

5 Nested Justification Systems
Modularity and composition are key properties of knowledge representation languages.
We compose (parametric) justification systems by nesting them. It is important to note
that nesting as presented in this section is restricted to parametric justification systems
for reasons that will become clear soon.

Definition 17. Let F be a set of facts. A nested justification system on F is a tuple
JS = 〈F ,Fdg,Fdl, R,B, {JS1, . . . ,JSk}〉 where:

– 〈F ,Fdl, R,B〉 is a parametric justification system.
– Each JSi is a nested justification system on fact space F i = (F \Fdg)∪F idg with

(globally) defined facts F idg .
– Fdg is the disjoint union of Fdl and F1

dg, . . . ,Fkdg .

A nested justification system is a tree-like definition that defines the set Fdg of globally
defined facts. This set is partitioned into k+1 subsets. One subset, Fdl, consists of facts
that are locally defined in the root of the tree by R. The rest of the facts are defined in
one of the k nested subdefinitions JSi of JS . The branch evaluation of JS is defined
for branches of locally defined facts only. The parameters of subdefinitions JSi are
those of JS augmented with the locally defined facts. In particular, for each JSi, facts
defined in siblings JSj with j 6= i are not to appear as parameters of JSi. In leaves of
the tree, we have k = 0 and Fdg = Fdl.

The semantics of nested justification systems is based on two notions: compression
and unfolding. We start explaining the latter. Let R1 be a set of rules defining facts
Fd1 ⊆ F , R a second set of rules in fact space F . The unfolding of R1 on Fd1 in R,
denoted UNF(Fd1,R1)(R), is the set of rules that can be obtained from any x← S ∈ R
by replacing each fact y ∈ S defined in R1, in an arbitrary way, by the body facts of a
rule y ← S′ ∈ R1. E.g., suppose R contains rule a← {g, b} and R1 contains the rules
b← {c, d}, b← {f } for b. Then unfolding R1 on {b} in R replaces that rule of R by
two rules, a← {g, c, d} and a← {g, f }. Compression turns a nested definition into an
(equivalent) unnested one.

Definition 18. Let JS = 〈F ,Fdg,Fdl, R,B, {JS1, . . . ,JSk}〉 be a justification sys-
tem. Its compression C(JS) is defined inductively: C(JS) = 〈F ,Fdg, Rc,B〉 where

Rc = Rs ∪UNF(Fdg\Fdl,Rs)(R)

with Rs = R1
c ∪ · · · ∪ Rkc and Ric is the set of rules x ← S such that x ∈ F idg and

S =
{
Bi(B)

∣∣ B is a branch of x in J
}

for some complete justification J of JSi.

Notice that in the base case k = 0, justification system JS and its compression
C(JS) are essentially the same. Now we see why all branch evaluations B used in dif-
ferent nodes must be parametric, and why definitions cannot use facts defined in nodes
not on the path from the root to the current node. Under these conditions, subdefinitions
JSi are translated in an equivalence preserving way in a set of flat rules x← S where
S contains only parameter facts and locally defined facts of JS. With the set Rs of all
these rules, we eliminate non-locally defined facts in bodies of the local definition R by
unfolding Rs on Fdg \ Fdl in R, thus producing rules that contain only parameter and
locally defined bodies of JS. For the resulting definition Rc, we use Bsp for branches
of facts ofFdg\Fdl and the locally given B for branches of locally defined facts. Hence,
the operator SBC(JS)(·) is well-defined and its fixpoints define the semantics of JS .

Example 7. We define a nested justification system with JS2 nested in JS1. Take the
list domain D as in Example 6, F1

dl = {P (s) | s ∈ D} and F2
dl = {Q(s) | s ∈ D},

B1 = Bcowf and B2 = Bwf and finally,

R1 =
{
P (s)← {Q(s)} | s ∈ D

}
R2 =

{
Q([A|s])← {P (s)} | s ∈ D

}
∪
{
Q([B|s])← {Q(s)} | s ∈ D

}
After taking the complement closure of JS1 and its compression, the rules defining
positive facts are, for each s ∈ D:

P ([B, . . . , B,A|s])← {P (s)} and Q([B, . . . , B,A|s])← {P (s)}

In the unique supported interpretation of the compression, both P and Q are the set of
all lists with infinitely many occurrences of A.

In our final example, we show how our justification framework can treat logic pro-
grams with aggregates in rule bodies. In particular, this illustrates the power of nesting.

Example 8. Consider a logic program rule with a weight constraint, that is,

p← i ≤ {l1, . . . , ln} ≤ j (1)

with 1 ≤ i ≤ j ≤ n, meaning that p is true if at least i and at most j literals from the
set L = {l1, . . . , ln} are true. An LP rule (1) is translated into the set of JF rules

Rp =
{
p← L+ ∪ ∼L−

∣∣ L+, L− ⊆ L and
∣∣L+

∣∣ = i and
∣∣L−∣∣ = n− j

}
Alternatively, we can use nested definitions. A weight-constraint rule (1) appears in the
top-level definition with qi≤{l1,...,ln}≤j a single new atom in the body. Such new atoms
are then defined by a nested definition qi≤{l1,...,ln}≤j ← L+ ∪ ∼L− with L+ and L−

as in Rp above. It is not difficult to see that the compression of the second approach
yields the first. This application further clarifies aggregates, nesting and compression.

6 Discussion
Justifications as mathematical semantical constructs have appeared in different ways in
different areas. In [17, 18], stable and answer set semantics are defined for programs us-
ing justifications similar to ours. Phrased in the terms of our paper, atoms x are justified
by sets S = {Bst(B) | B is a branch of x in J} for some complete justification J of the
program. Tree-shaped justifications were used in [3] to build a semantical framework
for (abductive) logic programming. [20] present an algebra of tree-shaped justifications
for atomic positive facts for logic programming. [21] propose justification graphs for
justifying the truth value of atoms in answer sets of logic programs. Our study dif-
fers on the technical level and generalizes these works in several dimensions, e.g. by
considering parameters, alternative branch evaluations (e.g. coinduction), nesting and
novel applications (e.g. to argumentation frameworks). Justifications as datastructures
are used in the ASP solver clasp [8] and in the FO(ID) model expander IDP3 [9]. Justi-
fications are underlying provenance systems in the context of databases [22].

The justification framework defined above is of great amplitude and much uncharted
territory lies in front. It covers a remarkable amount of existing semantics in different
areas. Here we showed this for argumentation frameworks and logic programming. The
framework also induces new and more general versions of these formalisms. For exam-
ple it comprises nested logic programs with negation and feedback, a new formalism
that remains to be studied.3 Alternative branch evaluations can be introduced. For exam-
ple, some have argued that in the logic program {P ← ¬P}, P should be inconsistent
while in {P ← ¬Q,Q ← ¬P}, P and Q should be undefined [24]. A refinement
of Bwf that would distinguish between these cases would be the one that assigns i to
branches B with complementary facts x,∼x. This remains to be explored. The justi-
fication framework may be applicable to many other logics as well. We already men-
tioned coinductive logic programming [12] (as illustrated by Example 6); we expect the
framework to cover other mathematical and knowledge representation logics of nested
induction/coinduction such as µ-calculus [6], FO(LFP) with nesting [7] and FO(FD)
[13]. We believe that our justification theory can also be applied to assumption-based
argumentation [19] and abstract dialectical frameworks [25]. The approach is promis-
ing as well for logics of causality such as FO(C) [26]. All these connections still need
to be investigated. As mentioned in Section 1, we know of only one other approach
with a comparable coverage: Approximation Fixpoint Theory (AFT) [4]. While AFT is
defined in a different way (as an algebraical fixpoint theory of lattice operators), it was
used to characterize about the same semantics for the same logics and the question is
if there is a relationship between both frameworks. Such a relationship would further
broaden the application of our justification framework, for example to autoepistemic
logic and default logic.

References

1. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of logic pro-
grams with aggregates. TPLP (3) (2007) 301–353

3 This should not be confused with the nested logic programs of [23], where nesting refers to
the expressions inside a logic program rule, and not sets of rules being nested altogether.

2. Son, T.C., Pontelli, E.: A constructive semantic characterization of aggregates in answer set
programming. TPLP (3) (2007) 355–375

3. Denecker, M., De Schreye, D.: Justification semantics: A unifying framework for the seman-
tics of logic programs. In: LPNMR, MIT Press (1993) 365–379

4. Denecker, M., Marek, V., Truszczyński, M.: Approximations, stable operators, well-founded
fixpoints and applications in nonmonotonic reasoning. In: Logic-Based Artificial Intelli-
gence. Springer US (2000) 127–144

5. Denecker, M., Marek, V., Truszczyński, M.: Ultimate approximation and its application in
nonmonotonic knowledge representation systems. Information and Computation (1) (July
2004) 84–121

6. Kozen, D.: Results on the propositional µ-calculus. Theoretical Computer Science (1) (1983)
pp.333–354

7. Park, D.: Fixpoint induction and proofs of program properties. Machine Intelligence (1969)
59–78

8. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artificial Intelligence (2012) 52–89

9. Mariën, M., Wittocx, J., Denecker, M., Bruynooghe, M.: SAT(ID): Satisfiability of proposi-
tional logic extended with inductive definitions. In: SAT, Springer (2008) 211–224

10. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing (1991) 365–385

11. Dung, P.M.: On the Acceptability of Arguments and Its Fundamental Role in Nonmonotonic
Reasoning, Logic Programming and n-Person Games. Artificial Intelligence (1995) 321–358

12. Gupta, G., Bansal, A., Min, R., Simon, L., Mallya, A.: Coinductive logic programming and
its applications. In: ICLP, Springer (2007) 27–44

13. Hou, P., De Cat, B., Denecker, M.: FO(FD): Extending classical logic with rule-based fix-
point definitions. Theory and Practice of Logic Programming (4-6) (2010) 581–596

14. van Emden, M.H., Kowalski, R.A.: The Semantics of Predicate Logic as a Programming
Language. Journal of the ACM (4) (1976) 733–742

15. Fitting, M.: Fixpoint Semantics for Logic Programming: A Survey. Theoretical Computer
Science (1–2) (2002) 25–51

16. Strass, H.: Approximating operators and semantics for abstract dialectical frameworks. Ar-
tificial Intelligence (December 2013) 39–70

17. Fages, F.: A New Fixpoint Semantis for General Logic Programs Compared with the Well-
Founded and the Stable Model Semantics. In: ICLP, MIT Press (1990) 443

18. Schulz, C., Toni, F.: ABA-based answer set justification. Theory and Practice of Logic
Programming (4-5-Online-Supplement) (2013)

19. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic
approach to default reasoning. Artificial Intelligence (1997) 63–101

20. Cabalar, P., Fandinno, J., Fink, M.: Causal graph justifications of logic programs. Theory
and Practice of Logic Programming (4-5) (2014) 603–618

21. Pontelli, E., Son, T.C., Elkhatib, O.: Justifications for logic programs under answer set se-
mantics. Theory and Practice of Logic Programming (01) (2009) 1–56

22. Damásio, C.V., Analyti, A., Antoniou, G.: Justifications for logic programming. In: LPNMR.
Springer (2013) 530–542

23. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals of
Mathematics and Artificial Intelligence (3–4) (1999) 369–389

24. Hallnäs, L.: Partial inductive definitions. Theor. Comp. Sci. (1) (1991) 115–142
25. Brewka, G., Woltran, S.: Abstract Dialectical Frameworks. In: KR. (2010) 102–111
26. Bogaerts, B., Vennekens, J., Denecker, M., Van den Bussche, J.: FO(C): A knowledge rep-

resentation language of causality. TPLP (4-5-Online-Supplement) (2014) 60–69

