Prof. Dr. Sebastian Rudolph

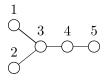
Formal Concept Analysis Exercise Sheet 9, Winter Semester 2016/17

Exercise 1 (repetition)

Discuss with your neighbor the following concepts

- closure system and closure operator
- frequent concept intent
- minimal generator
- implication in a formal context $\mathbb{K} = (G, M, I)$
- closed, complete and non-redundant set of implications
- stem base

Further, describe the TITANIC algorithmus in three short sentences.


Exercise 2 (pseudo-closed sets)

In the lecture the concept of *pseudo intents* was introduced. The following definition generalizes this concept in the context of closure systems:

Definition (pseudo-closed set). Let C be a closure system on (the finite set) M. A subset $P \subseteq M$ is pseudo-closed, iff

- (i) P is not closed (i.e., $P \notin C$), and
- (ii) for every proper pseudo-closed subset $Q \subset P$, its closure $\varphi(Q)$ is contained in P (i.e., $Q \subset P \land Q$ is pseudo-closed $\Longrightarrow \varphi(Q) \subseteq P$).

We are now regarding for the set of nodes $M := \{1, 2, \dots, 5\}$ and the following tree T

the system $\mathcal{T} \subseteq \mathfrak{P}(M)$ of sets of nodes, which span a subtree of T, respectively (e.g., $\{1,3,4\} \in \mathcal{T}$ but $\{1,2,5\} \notin \mathcal{T}$).

- a) Specify the set \mathcal{T} .
- **b)** Verify that \mathcal{T} is a closure system on M.
- c) List six different pseudo-closed sets for \mathcal{T} .

Exercise 3 (computing the stem base with NEXT CLOSURE)

Determine the stem base for this context using the NEXT CLOSURE algorithm. Use the following table as help:

	Mobil (1)	Telefon (2)	Fax (3)	Fax m. NAdapter (4)
Sinus 44 (a)		×		
Nokia 6110 (b)	×	×		
T-Fax 301 (c)			×	×
T-Fax 360 PC (d)			×	

A	i	A+i	$\mathcal{L}^{\bullet}(A+i)$	$A <_i \mathcal{L}^{\bullet}(A+i)$?	$(\mathcal{L}^{\bullet}(A+i))''$	\mathcal{L}	intents