
Artificial Intelligence, Computational Logic

PROBLEM SOLVING AND SEARCH
IN ARTIFICIAL INTELLIGENCE

Lecture 6 ASP II ∗slides adapted from Torsten Schaub [Gebser et al.(2012)]

Sarah Gaggl

Dresden, 13th and 27th May 2016

Agenda
1 Introduction
2 Uninformed Search versus Informed Search (Best First Search, A*

Search, Heuristics)
3 Local Search, Stochastic Hill Climbing, Simulated Annealing
4 Tabu Search
5 Answer-set Programming (ASP)
6 Constraint Satisfaction (CSP)
7 Structural Decomposition Techniques (Tree/Hypertree Decompositions)
8 Evolutionary Algorithms/ Genetic Algorithms

TU Dresden, 13th and 27th May 2016 PSSAI slide 2 of 200

Overview ASP II

• Modeling
1 Basic Modeling
2 Methodology

• Language
3 Motivation
4 Core language
5 Extended language

• Language Extensions
6 Two kinds of negation
7 Disjunctive logic programs

• Computational Aspects
9 Complexity

TU Dresden, 13th and 27th May 2016 PSSAI slide 3 of 200

Modeling: Overview

1 Basic Modeling

2 Methodology

TU Dresden, 13th and 27th May 2016 PSSAI slide 4 of 200

Outline

1 Basic Modeling

2 Methodology

TU Dresden, 13th and 27th May 2016 PSSAI slide 5 of 200

Modeling and Interpreting

Problem

Logic Program

Solution

Stable Models

?
-

6

Modeling Interpreting

Solving

TU Dresden, 13th and 27th May 2016 PSSAI slide 6 of 200

Modeling
• For solving a problem class C for a problem instance I,

encode
1 the problem instance I as a set PI of facts and
2 the problem class C as a set PC of rules

such that the solutions to C for I can be (polynomially) extracted
from the stable models of PI ∪ PC

• PI is (still) called problem instance
• PC is often called the problem encoding

• An encoding PC is uniform, if it can be used to solve all its
problem instances
That is, PC encodes the solutions to C for any set PI of facts

TU Dresden, 13th and 27th May 2016 PSSAI slide 7 of 200

Outline

1 Basic Modeling

2 Methodology

TU Dresden, 13th and 27th May 2016 PSSAI slide 8 of 200

Basic methodology

Methodology
Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell
Logic program = Data + Generator + Tester (+ Optimizer)

TU Dresden, 13th and 27th May 2016 PSSAI slide 9 of 200

Basic methodology

Methodology
Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell
Logic program = Data + Generator + Tester (+ Optimizer)

TU Dresden, 13th and 27th May 2016 PSSAI slide 10 of 200

Outline

1 Basic Modeling

2 Methodology
Satisfiability
Queens
Traveling Salesperson

TU Dresden, 13th and 27th May 2016 PSSAI slide 11 of 200

Satisfiability testing

• Problem Instance: A propositional formula φ in CNF
• Problem Class: Is there an assignment of propositional variables to true

and false such that a given formula φ is true

• Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

• Logic Program:

Generator Tester Stable models
{ a, b } ← ← not a, b

← a, not b
X1 = {a, b}
X2 = {}

TU Dresden, 13th and 27th May 2016 PSSAI slide 12 of 200

Satisfiability testing

• Problem Instance: A propositional formula φ in CNF
• Problem Class: Is there an assignment of propositional variables to true

and false such that a given formula φ is true

• Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

• Logic Program:

Generator Tester Stable models
{ a, b } ← ← not a, b

← a, not b
X1 = {a, b}
X2 = {}

TU Dresden, 13th and 27th May 2016 PSSAI slide 13 of 200

Satisfiability testing

• Problem Instance: A propositional formula φ in CNF
• Problem Class: Is there an assignment of propositional variables to true

and false such that a given formula φ is true

• Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

• Logic Program:

Generator Tester Stable models
{ a, b } ← ← not a, b

← a, not b
X1 = {a, b}
X2 = {}

TU Dresden, 13th and 27th May 2016 PSSAI slide 14 of 200

Satisfiability testing

• Problem Instance: A propositional formula φ in CNF
• Problem Class: Is there an assignment of propositional variables to true

and false such that a given formula φ is true

• Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

• Logic Program:

Generator Tester Stable models
{ a, b } ← ← not a, b

← a, not b
X1 = {a, b}
X2 = {}

TU Dresden, 13th and 27th May 2016 PSSAI slide 15 of 200

Satisfiability testing

• Problem Instance: A propositional formula φ in CNF
• Problem Class: Is there an assignment of propositional variables to true

and false such that a given formula φ is true

• Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

• Logic Program:

Generator Tester Stable models
{ a, b } ← ← not a, b

← a, not b
X1 = {a, b}
X2 = {}

TU Dresden, 13th and 27th May 2016 PSSAI slide 16 of 200

Outline

1 Basic Modeling

2 Methodology
Satisfiability
Queens
Traveling Salesperson

TU Dresden, 13th and 27th May 2016 PSSAI slide 17 of 200

The n-Queens Problem

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5

• Place n queens on an n× n
chess board

• Queens must not attack one
another

Q Q Q

Q Q

TU Dresden, 13th and 27th May 2016 PSSAI slide 18 of 200

Defining the Field

queens.lp

row(1..n).
col(1..n).

• Create file queens.lp

• Define the field
– n rows
– n columns

TU Dresden, 13th and 27th May 2016 PSSAI slide 19 of 200

Defining the Field

Running . . .

$ gringo queens.lp --const n=5 | clasp
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5)
SATISFIABLE

Models : 1
Time : 0.000

Prepare : 0.000
Prepro. : 0.000
Solving : 0.000

TU Dresden, 13th and 27th May 2016 PSSAI slide 20 of 200

Placing some Queens

queens.lp

row(1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.

• Guess a solution candidate

by placing some queens on the board

TU Dresden, 13th and 27th May 2016 PSSAI slide 21 of 200

Placing some Queens

Running . . .

$ gringo queens.lp --const n=5 | clasp 3
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5)
Answer: 2
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) queen(1,1)
Answer: 3
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) queen(2,1)
SATISFIABLE

Models : 3+
...

TU Dresden, 13th and 27th May 2016 PSSAI slide 22 of 200

Placing some Queens: Answer 1

Answer 1

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5

TU Dresden, 13th and 27th May 2016 PSSAI slide 23 of 200

Placing some Queens: Answer 2

Answer 2

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 L0Z0Z

1 2 3 4 5

TU Dresden, 13th and 27th May 2016 PSSAI slide 24 of 200

Placing some Queens: Answer 3

Answer 3

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 QZ0Z0
1 Z0Z0Z

1 2 3 4 5

TU Dresden, 13th and 27th May 2016 PSSAI slide 25 of 200

Placing n Queens

queens.lp

row(1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
:- not n { queen(I,J) } n.

• Place exactly n queens on the board

TU Dresden, 13th and 27th May 2016 PSSAI slide 26 of 200

Placing n Queens

Running . . .

$ gringo queens.lp --const n=5 | clasp 2
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(5,1) queen(4,1) queen(3,1) \
queen(2,1) queen(1,1)
Answer: 2
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(1,2) queen(4,1) queen(3,1) \
queen(2,1) queen(1,1)
...

TU Dresden, 13th and 27th May 2016 PSSAI slide 27 of 200

Placing n Queens: Answer 1

Answer 1

5 L0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 L0Z0Z

1 2 3 4 5

TU Dresden, 13th and 27th May 2016 PSSAI slide 28 of 200

Placing n Queens: Answer 2

Answer 2

5 Z0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 LQZ0Z

1 2 3 4 5

TU Dresden, 13th and 27th May 2016 PSSAI slide 29 of 200

Horizontal and Vertical Attack

queens.lp

row(1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
:- not n { queen(I,J) } n.
:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

• Forbid horizontal attacks

• Forbid vertical attacks

TU Dresden, 13th and 27th May 2016 PSSAI slide 30 of 200

Horizontal and Vertical Attack

queens.lp

row(1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
:- not n { queen(I,J) } n.
:- queen(I,J), queen(I,J’), J != J’.
:- queen(I,J), queen(I’,J), I != I’.

• Forbid horizontal attacks
• Forbid vertical attacks

TU Dresden, 13th and 27th May 2016 PSSAI slide 31 of 200

Horizontal and Vertical Attack

Running . . .

$ gringo queens.lp --const n=5 | clasp
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(5,5) queen(4,4) queen(3,3) \
queen(2,2) queen(1,1)
...

TU Dresden, 13th and 27th May 2016 PSSAI slide 32 of 200

Horizontal and Vertical Attack: Answer 1

Answer 1

5 Z0Z0L
4 0Z0L0
3 Z0L0Z
2 0L0Z0
1 L0Z0Z

1 2 3 4 5

TU Dresden, 13th and 27th May 2016 PSSAI slide 33 of 200

Diagonal Attack

queens.lp

row(1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
:- not n { queen(I,J) } n.
:- queen(I,J), queen(I,J’), J != J’.
:- queen(I,J), queen(I’,J), I != I’.
:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I-J == I’-J’.
:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I+J == I’+J’.

• Forbid diagonal attacks

TU Dresden, 13th and 27th May 2016 PSSAI slide 34 of 200

Diagonal Attack

Running . . .

$ gringo queens.lp --const n=5 | clasp
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(4,5) queen(1,4) queen(3,3) queen(5,2) queen(2,1)
SATISFIABLE

Models : 1+
Time : 0.000

Prepare : 0.000
Prepro. : 0.000
Solving : 0.000

TU Dresden, 13th and 27th May 2016 PSSAI slide 35 of 200

Diagonal Attack: Answer 1

Answer 1

5 ZQZ0Z
4 0Z0ZQ
3 Z0L0Z
2 QZ0Z0
1 Z0ZQZ

1 2 3 4 5

TU Dresden, 13th and 27th May 2016 PSSAI slide 36 of 200

Optimizing

queens-opt.lp

1 { queen(I,1..n) } 1 :- I = 1..n.
1 { queen(1..n,J) } 1 :- J = 1..n.
:- 2 { queen(D-J,J) }, D = 2..2*n.
:- 2 { queen(D+J,J) }, D = 1-n..n-1.

• Encoding can be optimized
• Much faster to solve

TU Dresden, 13th and 27th May 2016 PSSAI slide 37 of 200

And sometimes it rocks
$ clingo -c n=5000 queens-opt-diag.lp -config=jumpy -q -stats=3
clingo version 4.1.0
Solving...
SATISFIABLE

Models : 1+
Time : 3758.143s (Solving: 1905.22s 1st Model: 1896.20s Unsat: 0.00s)
CPU Time : 3758.320s

Choices : 288594554
Conflicts : 3442 (Analyzed: 3442)
Restarts : 17 (Average: 202.47 Last: 3442)
Model-Level : 7594728.0
Problems : 1 (Average Length: 0.00 Splits: 0)
Lemmas : 3442 (Deleted: 0)

Binary : 0 (Ratio: 0.00%)
Ternary : 0 (Ratio: 0.00%)
Conflict : 3442 (Average Length: 229056.5 Ratio: 100.00%)
Loop : 0 (Average Length: 0.0 Ratio: 0.00%)
Other : 0 (Average Length: 0.0 Ratio: 0.00%)

Atoms : 75084857 (Original: 75069989 Auxiliary: 14868)
Rules : 100129956 (1: 50059992/100090100 2: 39990/29856 3: 10000/10000)
Bodies : 25090103
Equivalences : 125029999 (Atom=Atom: 50009999 Body=Body: 0 Other: 75020000)
Tight : Yes
Variables : 25024868 (Eliminated: 11781 Frozen: 25000000)
Constraints : 66664 (Binary: 35.6% Ternary: 0.0% Other: 64.4%)

Backjumps : 3442 (Average: 681.19 Max: 169512 Sum: 2344658)
Executed : 3442 (Average: 681.19 Max: 169512 Sum: 2344658 Ratio: 100.00%)
Bounded : 0 (Average: 0.00 Max: 0 Sum: 0 Ratio: 0.00%)

TU Dresden, 13th and 27th May 2016 PSSAI slide 38 of 200

Outline

1 Basic Modeling

2 Methodology
Satisfiability
Queens
Traveling Salesperson

TU Dresden, 13th and 27th May 2016 PSSAI slide 39 of 200

Traveling Salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

cost(1,2,2). cost(1,3,3). cost(1,4,1).
cost(2,4,2). cost(2,5,2). cost(2,6,4).
cost(3,1,3). cost(3,4,2). cost(3,5,2).
cost(4,1,1). cost(4,2,2).
cost(5,3,2). cost(5,4,2). cost(5,6,1).
cost(6,2,4). cost(6,3,3). cost(6,5,1).

TU Dresden, 13th and 27th May 2016 PSSAI slide 40 of 200

Traveling Salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

cost(1,2,2). cost(1,3,3). cost(1,4,1).
cost(2,4,2). cost(2,5,2). cost(2,6,4).
cost(3,1,3). cost(3,4,2). cost(3,5,2).
cost(4,1,1). cost(4,2,2).
cost(5,3,2). cost(5,4,2). cost(5,6,1).
cost(6,2,4). cost(6,3,3). cost(6,5,1).

TU Dresden, 13th and 27th May 2016 PSSAI slide 41 of 200

Traveling Salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

cost(1,2,2). cost(1,3,3). cost(1,4,1).
cost(2,4,2). cost(2,5,2). cost(2,6,4).
cost(3,1,3). cost(3,4,2). cost(3,5,2).
cost(4,1,1). cost(4,2,2).
cost(5,3,2). cost(5,4,2). cost(5,6,1).
cost(6,2,4). cost(6,3,3). cost(6,5,1).

TU Dresden, 13th and 27th May 2016 PSSAI slide 42 of 200

Traveling Salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

cost(1,2,2). cost(1,3,3). cost(1,4,1).
cost(2,4,2). cost(2,5,2). cost(2,6,4).
cost(3,1,3). cost(3,4,2). cost(3,5,2).
cost(4,1,1). cost(4,2,2).
cost(5,3,2). cost(5,4,2). cost(5,6,1).
cost(6,2,4). cost(6,3,3). cost(6,5,1).

edge(X,Y) :- cost(X,Y,_).

TU Dresden, 13th and 27th May 2016 PSSAI slide 43 of 200

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

TU Dresden, 13th and 27th May 2016 PSSAI slide 44 of 200

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

TU Dresden, 13th and 27th May 2016 PSSAI slide 45 of 200

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

TU Dresden, 13th and 27th May 2016 PSSAI slide 46 of 200

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

TU Dresden, 13th and 27th May 2016 PSSAI slide 47 of 200

Language: Overview

3 Motivation

4 Core language

5 Extended language

TU Dresden, 13th and 27th May 2016 PSSAI slide 48 of 200

Outline

3 Motivation

4 Core language

5 Extended language

TU Dresden, 13th and 27th May 2016 PSSAI slide 49 of 200

Basic language extensions

• The expressiveness of a language can be enhanced by introducing
new constructs

• To this end, we must address the following issues:
– What is the syntax of the new language construct?
– What is the semantics of the new language construct?
– How to implement the new language construct?

• A way of providing semantics is to furnish a translation removing the new
constructs, eg. classical negation

• This translation might also be used for implementing the language
extension

TU Dresden, 13th and 27th May 2016 PSSAI slide 50 of 200

Basic language extensions

• The expressiveness of a language can be enhanced by introducing
new constructs

• To this end, we must address the following issues:
– What is the syntax of the new language construct?
– What is the semantics of the new language construct?
– How to implement the new language construct?

• A way of providing semantics is to furnish a translation removing the new
constructs, eg. classical negation

• This translation might also be used for implementing the language
extension

TU Dresden, 13th and 27th May 2016 PSSAI slide 51 of 200

Basic language extensions

• The expressiveness of a language can be enhanced by introducing
new constructs

• To this end, we must address the following issues:
– What is the syntax of the new language construct?
– What is the semantics of the new language construct?
– How to implement the new language construct?

• A way of providing semantics is to furnish a translation removing the new
constructs, eg. classical negation

• This translation might also be used for implementing the language
extension

TU Dresden, 13th and 27th May 2016 PSSAI slide 52 of 200

Outline

3 Motivation

4 Core language

5 Extended language

TU Dresden, 13th and 27th May 2016 PSSAI slide 53 of 200

Outline

3 Motivation

4 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

5 Extended language
Conditional literal
Optimization statement

TU Dresden, 13th and 27th May 2016 PSSAI slide 54 of 200

Integrity constraint
• Idea Eliminate unwanted solution candidates
• Syntax An integrity constraint is of the form

← a1, . . . , am, not am+1, . . . , not an

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n

• Example :- edge(3,7), color(3,red), color(7,red).

• Embedding The above integrity constraint can be turned into the normal
rule

x← a1, . . . , am, not am+1, . . . , not an, not x

where x is a new symbol, that is, x 6∈ A.
• Another example P = {a← not b, b← not a}

versus P′ = P ∪ {← a} and P′′ = P ∪ {← not a}

TU Dresden, 13th and 27th May 2016 PSSAI slide 55 of 200

Integrity constraint
• Idea Eliminate unwanted solution candidates
• Syntax An integrity constraint is of the form

← a1, . . . , am, not am+1, . . . , not an

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n

• Example :- edge(3,7), color(3,red), color(7,red).

• Embedding The above integrity constraint can be turned into the normal
rule

x← a1, . . . , am, not am+1, . . . , not an, not x

where x is a new symbol, that is, x 6∈ A.

• Another example P = {a← not b, b← not a}
versus P′ = P ∪ {← a} and P′′ = P ∪ {← not a}

TU Dresden, 13th and 27th May 2016 PSSAI slide 56 of 200

Integrity constraint
• Idea Eliminate unwanted solution candidates
• Syntax An integrity constraint is of the form

← a1, . . . , am, not am+1, . . . , not an

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n

• Example :- edge(3,7), color(3,red), color(7,red).

• Embedding The above integrity constraint can be turned into the normal
rule

x← a1, . . . , am, not am+1, . . . , not an, not x

where x is a new symbol, that is, x 6∈ A.
• Another example P = {a← not b, b← not a}

versus P′ = P ∪ {← a} and P′′ = P ∪ {← not a}

TU Dresden, 13th and 27th May 2016 PSSAI slide 57 of 200

Outline

3 Motivation

4 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

5 Extended language
Conditional literal
Optimization statement

TU Dresden, 13th and 27th May 2016 PSSAI slide 58 of 200

Choice rule
• Idea Choices over subsets
• Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an, not an+1, . . . , not ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

• Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

• Example
{ buy(pizza); buy(wine); buy(corn) } :- at(grocery).

• Another Example P = {{a} ← b, b←} has two stable models: {b}
and {a, b}

TU Dresden, 13th and 27th May 2016 PSSAI slide 59 of 200

Choice rule
• Idea Choices over subsets
• Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an, not an+1, . . . , not ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

• Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

• Example
{ buy(pizza); buy(wine); buy(corn) } :- at(grocery).

• Another Example P = {{a} ← b, b←} has two stable models: {b}
and {a, b}

TU Dresden, 13th and 27th May 2016 PSSAI slide 60 of 200

Choice rule
• Idea Choices over subsets
• Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an, not an+1, . . . , not ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

• Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

• Example
{ buy(pizza); buy(wine); buy(corn) } :- at(grocery).

• Another Example P = {{a} ← b, b←} has two stable models: {b}
and {a, b}

TU Dresden, 13th and 27th May 2016 PSSAI slide 61 of 200

Choice rule
• Idea Choices over subsets
• Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an, not an+1, . . . , not ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

• Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

• Example
{ buy(pizza); buy(wine); buy(corn) } :- at(grocery).

• Another Example P = {{a} ← b, b←} has two stable models: {b}
and {a, b}

TU Dresden, 13th and 27th May 2016 PSSAI slide 62 of 200

Embedding in normal rules
• A choice rule of form

{a1, . . . , am} ← am+1, . . . , an, not an+1, . . . , not ao

can be translated into 2m + 1 normal rules

b ← am+1, . . . , an, not an+1, . . . , not ao

a1 ← b, not a′1 . . . am ← b, not a′m
a′1 ← not a1 . . . a′m ← not am

by introducing new atoms b, a′1, . . . , a′m.

TU Dresden, 13th and 27th May 2016 PSSAI slide 63 of 200

Embedding in normal rules
• A choice rule of form

{a1, . . . , am} ← am+1, . . . , an, not an+1, . . . , not ao

can be translated into 2m + 1 normal rules

b ← am+1, . . . , an, not an+1, . . . , not ao

a1 ← b, not a′1 . . . am ← b, not a′m
a′1 ← not a1 . . . a′m ← not am

by introducing new atoms b, a′1, . . . , a′m.

TU Dresden, 13th and 27th May 2016 PSSAI slide 64 of 200

Embedding in normal rules
• A choice rule of form

{a1, . . . , am} ← am+1, . . . , an, not an+1, . . . , not ao

can be translated into 2m + 1 normal rules

b ← am+1, . . . , an, not an+1, . . . , not ao

a1 ← b, not a′1 . . . am ← b, not a′m
a′1 ← not a1 . . . a′m ← not am

by introducing new atoms b, a′1, . . . , a′m.

TU Dresden, 13th and 27th May 2016 PSSAI slide 65 of 200

Outline

3 Motivation

4 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

5 Extended language
Conditional literal
Optimization statement

TU Dresden, 13th and 27th May 2016 PSSAI slide 66 of 200

Cardinality rule
• Idea Control (lower) cardinality of subsets
• Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer.

• Informal meaning The head atom belongs to the stable model,
if at least l elements of the body are included in the stable model

• Note l acts as a lower bound on the body

• Example
pass(c42) :- 2 { pass(a1); pass(a2); pass(a3) }.

• Another Example P = {a← 1{b, c}, b←} has stable model {a, b}

TU Dresden, 13th and 27th May 2016 PSSAI slide 67 of 200

Cardinality rule
• Idea Control (lower) cardinality of subsets
• Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer.

• Informal meaning The head atom belongs to the stable model,
if at least l elements of the body are included in the stable model

• Note l acts as a lower bound on the body

• Example
pass(c42) :- 2 { pass(a1); pass(a2); pass(a3) }.

• Another Example P = {a← 1{b, c}, b←} has stable model {a, b}

TU Dresden, 13th and 27th May 2016 PSSAI slide 68 of 200

Cardinality rule
• Idea Control (lower) cardinality of subsets
• Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer.

• Informal meaning The head atom belongs to the stable model,
if at least l elements of the body are included in the stable model

• Note l acts as a lower bound on the body

• Example
pass(c42) :- 2 { pass(a1); pass(a2); pass(a3) }.

• Another Example P = {a← 1{b, c}, b←} has stable model {a, b}

TU Dresden, 13th and 27th May 2016 PSSAI slide 69 of 200

Cardinality rule
• Idea Control (lower) cardinality of subsets
• Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer.

• Informal meaning The head atom belongs to the stable model,
if at least l elements of the body are included in the stable model

• Note l acts as a lower bound on the body

• Example
pass(c42) :- 2 { pass(a1); pass(a2); pass(a3) }.

• Another Example P = {a← 1{b, c}, b←} has stable model {a, b}

TU Dresden, 13th and 27th May 2016 PSSAI slide 70 of 200

Embedding in normal rules
• Replace each cardinality rule

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

by a0 ← ctr(1, l)

where atom ctr(i, j) represents the fact that at least j of the literals having
an equal or greater index than i, are in a stable model

• The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i, k+1) ← ctr(i + 1, k), ai
ctr(i, k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j, k+1) ← ctr(j + 1, k), not aj
ctr(j, k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

TU Dresden, 13th and 27th May 2016 PSSAI slide 71 of 200

Embedding in normal rules
• Replace each cardinality rule

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

by a0 ← ctr(1, l)

where atom ctr(i, j) represents the fact that at least j of the literals having
an equal or greater index than i, are in a stable model

• The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i, k+1) ← ctr(i + 1, k), ai
ctr(i, k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j, k+1) ← ctr(j + 1, k), not aj
ctr(j, k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

TU Dresden, 13th and 27th May 2016 PSSAI slide 72 of 200

Embedding in normal rules
• Replace each cardinality rule

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

by a0 ← ctr(1, l)

where atom ctr(i, j) represents the fact that at least j of the literals having
an equal or greater index than i, are in a stable model

• The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i, k+1) ← ctr(i + 1, k), ai
ctr(i, k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j, k+1) ← ctr(j + 1, k), not aj
ctr(j, k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

TU Dresden, 13th and 27th May 2016 PSSAI slide 73 of 200

Embedding in normal rules
• Replace each cardinality rule

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

by a0 ← ctr(1, l)

where atom ctr(i, j) represents the fact that at least j of the literals having
an equal or greater index than i, are in a stable model

• The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i, k+1) ← ctr(i + 1, k), ai
ctr(i, k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j, k+1) ← ctr(j + 1, k), not aj
ctr(j, k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

TU Dresden, 13th and 27th May 2016 PSSAI slide 74 of 200

Embedding in normal rules
• Replace each cardinality rule

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

by a0 ← ctr(1, l)

where atom ctr(i, j) represents the fact that at least j of the literals having
an equal or greater index than i, are in a stable model

• The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i, k+1) ← ctr(i + 1, k), ai
ctr(i, k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j, k+1) ← ctr(j + 1, k), not aj
ctr(j, k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

TU Dresden, 13th and 27th May 2016 PSSAI slide 75 of 200

Embedding in normal rules
• Replace each cardinality rule

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

by a0 ← ctr(1, l)

where atom ctr(i, j) represents the fact that at least j of the literals having
an equal or greater index than i, are in a stable model

• The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i, k+1) ← ctr(i + 1, k), ai
ctr(i, k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j, k+1) ← ctr(j + 1, k), not aj
ctr(j, k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

TU Dresden, 13th and 27th May 2016 PSSAI slide 76 of 200

Embedding in normal rules
• Replace each cardinality rule

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

by a0 ← ctr(1, l)

where atom ctr(i, j) represents the fact that at least j of the literals having
an equal or greater index than i, are in a stable model

• The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i, k+1) ← ctr(i + 1, k), ai
ctr(i, k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j, k+1) ← ctr(j + 1, k), not aj
ctr(j, k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

TU Dresden, 13th and 27th May 2016 PSSAI slide 77 of 200

An example
• Program {a←, c← 1 {a, b}} has the stable model {a, c}

• Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}

TU Dresden, 13th and 27th May 2016 PSSAI slide 78 of 200

An example
• Program {a←, c← 1 {a, b}} has the stable model {a, c}
• Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}

TU Dresden, 13th and 27th May 2016 PSSAI slide 79 of 200

An example
• Program {a←, c← 1 {a, b}} has the stable model {a, c}
• Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}

TU Dresden, 13th and 27th May 2016 PSSAI slide 80 of 200

An example
• Program {a←, c← 1 {a, b}} has the stable model {a, c}
• Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}

TU Dresden, 13th and 27th May 2016 PSSAI slide 81 of 200

An example
• Program {a←, c← 1 {a, b}} has the stable model {a, c}
• Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}

TU Dresden, 13th and 27th May 2016 PSSAI slide 82 of 200

An example
• Program {a←, c← 1 {a, b}} has the stable model {a, c}
• Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}

TU Dresden, 13th and 27th May 2016 PSSAI slide 83 of 200

An example
• Program {a←, c← 1 {a, b}} has the stable model {a, c}
• Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}

TU Dresden, 13th and 27th May 2016 PSSAI slide 84 of 200

. . . and vice versa
• A normal rule

a0 ← a1, . . . , am, not am+1, . . . , not an

can be represented by the cardinality rule

a0 ← n {a1, . . . , am, not am+1, . . . , not an}

TU Dresden, 13th and 27th May 2016 PSSAI slide 85 of 200

Cardinality rules with upper bounds
• A rule of the form

a0 ← l { a1, . . . , am, not am+1, . . . , not an } u (1)

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

stands for

a0 ← b, not c
b ← l { a1, . . . , am, not am+1, . . . , not an }
c ← u+1 { a1, . . . , am, not am+1, . . . , not an }

where b and c are new symbols

• Note The single constraint in the body of the cardinality rule (1) is referred
to as a cardinality constraint

TU Dresden, 13th and 27th May 2016 PSSAI slide 86 of 200

Cardinality rules with upper bounds
• A rule of the form

a0 ← l { a1, . . . , am, not am+1, . . . , not an } u (1)

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

stands for

a0 ← b, not c
b ← l { a1, . . . , am, not am+1, . . . , not an }
c ← u+1 { a1, . . . , am, not am+1, . . . , not an }

where b and c are new symbols

• Note The single constraint in the body of the cardinality rule (1) is referred
to as a cardinality constraint

TU Dresden, 13th and 27th May 2016 PSSAI slide 87 of 200

Cardinality rules with upper bounds
• A rule of the form

a0 ← l { a1, . . . , am, not am+1, . . . , not an } u (1)

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

stands for

a0 ← b, not c
b ← l { a1, . . . , am, not am+1, . . . , not an }
c ← u+1 { a1, . . . , am, not am+1, . . . , not an }

where b and c are new symbols

• Note The single constraint in the body of the cardinality rule (1) is referred
to as a cardinality constraint

TU Dresden, 13th and 27th May 2016 PSSAI slide 88 of 200

Cardinality constraints
• Syntax A cardinality constraint is of the form

l { a1, . . . , am, not am+1, . . . , not an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

• Informal meaning A cardinality constraint is satisfied by a stable model X,
if the number of its contained literals satisfied by X is between l and u
(inclusive)

• In other words, if

l ≤ | ({a1, . . . , am} ∩ X) ∪ ({am+1, . . . , an} \ X) | ≤ u

TU Dresden, 13th and 27th May 2016 PSSAI slide 89 of 200

Cardinality constraints
• Syntax A cardinality constraint is of the form

l { a1, . . . , am, not am+1, . . . , not an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

• Informal meaning A cardinality constraint is satisfied by a stable model X,
if the number of its contained literals satisfied by X is between l and u
(inclusive)

• In other words, if

l ≤ | ({a1, . . . , am} ∩ X) ∪ ({am+1, . . . , an} \ X) | ≤ u

TU Dresden, 13th and 27th May 2016 PSSAI slide 90 of 200

Cardinality constraints
• Syntax A cardinality constraint is of the form

l { a1, . . . , am, not am+1, . . . , not an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

• Informal meaning A cardinality constraint is satisfied by a stable model X,
if the number of its contained literals satisfied by X is between l and u
(inclusive)

• In other words, if

l ≤ | ({a1, . . . , am} ∩ X) ∪ ({am+1, . . . , an} \ X) | ≤ u

TU Dresden, 13th and 27th May 2016 PSSAI slide 91 of 200

Cardinality constraints as heads
• A rule of the form

l {a1, . . . , am, not am+1, . . . , not an} u← an+1, . . . , ao, not ao+1, . . . , not ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers

stands for

b ← an+1, . . . , ao, not ao+1, . . . , not ap
{a1, . . . , am} ← b

c ← l {a1, . . . , am, not am+1, . . . , not an} u
← b, not c

where b and c are new symbols

• Example 1{ color(v42,red); color(v42,green); color(v42,blue) }1.

TU Dresden, 13th and 27th May 2016 PSSAI slide 92 of 200

Cardinality constraints as heads
• A rule of the form

l {a1, . . . , am, not am+1, . . . , not an} u← an+1, . . . , ao, not ao+1, . . . , not ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers

stands for

b ← an+1, . . . , ao, not ao+1, . . . , not ap
{a1, . . . , am} ← b

c ← l {a1, . . . , am, not am+1, . . . , not an} u
← b, not c

where b and c are new symbols

• Example 1{ color(v42,red); color(v42,green); color(v42,blue) }1.

TU Dresden, 13th and 27th May 2016 PSSAI slide 93 of 200

Cardinality constraints as heads
• A rule of the form

l {a1, . . . , am, not am+1, . . . , not an} u← an+1, . . . , ao, not ao+1, . . . , not ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers

stands for

b ← an+1, . . . , ao, not ao+1, . . . , not ap
{a1, . . . , am} ← b

c ← l {a1, . . . , am, not am+1, . . . , not an} u
← b, not c

where b and c are new symbols

• Example 1{ color(v42,red); color(v42,green); color(v42,blue) }1.

TU Dresden, 13th and 27th May 2016 PSSAI slide 94 of 200

Outline

3 Motivation

4 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

5 Extended language
Conditional literal
Optimization statement

TU Dresden, 13th and 27th May 2016 PSSAI slide 95 of 200

Weight rule
• Syntax A weight rule is the form

a0 ← l { w1 : a1, . . . , wm : am, wm+1 : not am+1, . . . , wn : not an }

where 0 ≤ m ≤ n and each ai is an atom;
l and wi are integers for 1 ≤ i ≤ n

• A weighted literal wi : `i associates each literal `i with a weight wi

• Note A cardinality rule is a weight rule where wi = 1 for 0 ≤ i ≤ n

TU Dresden, 13th and 27th May 2016 PSSAI slide 96 of 200

Weight rule
• Syntax A weight rule is the form

a0 ← l { w1 : a1, . . . , wm : am, wm+1 : not am+1, . . . , wn : not an }

where 0 ≤ m ≤ n and each ai is an atom;
l and wi are integers for 1 ≤ i ≤ n

• A weighted literal wi : `i associates each literal `i with a weight wi

• Note A cardinality rule is a weight rule where wi = 1 for 0 ≤ i ≤ n

TU Dresden, 13th and 27th May 2016 PSSAI slide 97 of 200

Weight constraints
• Syntax A weight constraint is of the form

l { w1 : a1, . . . , wm : am, wm+1 : not am+1, . . . , wn : not an } u

where 0 ≤ m ≤ n and each ai is an atom;
l, u and wi are integers for 1 ≤ i ≤ n

• Meaning A weight constraint is satisfied by a stable model X, if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

• Note (Cardinality and) weight constraints amount to constraints on (count
and) sum aggregate functions

• Example
10 { 4:course(db); 6:course(ai); 8:course(project); 3:course(xml) } 20

TU Dresden, 13th and 27th May 2016 PSSAI slide 98 of 200

Weight constraints
• Syntax A weight constraint is of the form

l { w1 : a1, . . . , wm : am, wm+1 : not am+1, . . . , wn : not an } u

where 0 ≤ m ≤ n and each ai is an atom;
l, u and wi are integers for 1 ≤ i ≤ n

• Meaning A weight constraint is satisfied by a stable model X, if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

• Note (Cardinality and) weight constraints amount to constraints on (count
and) sum aggregate functions

• Example
10 { 4:course(db); 6:course(ai); 8:course(project); 3:course(xml) } 20

TU Dresden, 13th and 27th May 2016 PSSAI slide 99 of 200

Weight constraints
• Syntax A weight constraint is of the form

l { w1 : a1, . . . , wm : am, wm+1 : not am+1, . . . , wn : not an } u

where 0 ≤ m ≤ n and each ai is an atom;
l, u and wi are integers for 1 ≤ i ≤ n

• Meaning A weight constraint is satisfied by a stable model X, if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

• Note (Cardinality and) weight constraints amount to constraints on (count
and) sum aggregate functions

• Example
10 { 4:course(db); 6:course(ai); 8:course(project); 3:course(xml) } 20

TU Dresden, 13th and 27th May 2016 PSSAI slide 100 of 200

Weight constraints
• Syntax A weight constraint is of the form

l { w1 : a1, . . . , wm : am, wm+1 : not am+1, . . . , wn : not an } u

where 0 ≤ m ≤ n and each ai is an atom;
l, u and wi are integers for 1 ≤ i ≤ n

• Meaning A weight constraint is satisfied by a stable model X, if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

• Note (Cardinality and) weight constraints amount to constraints on (count
and) sum aggregate functions

• Example
10 { 4:course(db); 6:course(ai); 8:course(project); 3:course(xml) } 20

TU Dresden, 13th and 27th May 2016 PSSAI slide 101 of 200

Outline

3 Motivation

4 Core language

5 Extended language

TU Dresden, 13th and 27th May 2016 PSSAI slide 102 of 200

Outline

3 Motivation

4 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

5 Extended language
Conditional literal
Optimization statement

TU Dresden, 13th and 27th May 2016 PSSAI slide 103 of 200

Conditional literals
• Syntax A conditional literal is of the form

` : `1, . . . , `n

where ` and `i are literals for 0 ≤ i ≤ n

• Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}

• Note The expansion of conditional literals is context dependent
• Example Given ‘ p(1..3). q(2).’

r(X):p(X),notq(X) :- r(X):p(X),notq(X); 1{r(X):p(X),notq(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1), r(3) }.

TU Dresden, 13th and 27th May 2016 PSSAI slide 104 of 200

Conditional literals
• Syntax A conditional literal is of the form

` : `1, . . . , `n

where ` and `i are literals for 0 ≤ i ≤ n

• Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}

• Note The expansion of conditional literals is context dependent

• Example Given ‘ p(1..3). q(2).’

r(X):p(X),notq(X) :- r(X):p(X),notq(X); 1{r(X):p(X),notq(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1), r(3) }.

TU Dresden, 13th and 27th May 2016 PSSAI slide 105 of 200

Conditional literals
• Syntax A conditional literal is of the form

` : `1, . . . , `n

where ` and `i are literals for 0 ≤ i ≤ n

• Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}

• Note The expansion of conditional literals is context dependent
• Example Given ‘ p(1..3). q(2).’

r(X):p(X),notq(X) :- r(X):p(X),notq(X); 1{r(X):p(X),notq(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1), r(3) }.

TU Dresden, 13th and 27th May 2016 PSSAI slide 106 of 200

Conditional literals
• Syntax A conditional literal is of the form

` : `1, . . . , `n

where ` and `i are literals for 0 ≤ i ≤ n

• Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}

• Note The expansion of conditional literals is context dependent
• Example Given ‘ p(1..3). q(2).’

r(X):p(X),notq(X) :- r(X):p(X),notq(X); 1{r(X):p(X),notq(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1), r(3) }.

TU Dresden, 13th and 27th May 2016 PSSAI slide 107 of 200

Conditional literals
• Syntax A conditional literal is of the form

` : `1, . . . , `n

where ` and `i are literals for 0 ≤ i ≤ n

• Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}

• Note The expansion of conditional literals is context dependent
• Example Given ‘ p(1..3). q(2).’

r(X):p(X),notq(X) :- r(X):p(X),notq(X); 1{r(X):p(X),notq(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1), r(3) }.

TU Dresden, 13th and 27th May 2016 PSSAI slide 108 of 200

Conditional literals
• Syntax A conditional literal is of the form

` : `1, . . . , `n

where ` and `i are literals for 0 ≤ i ≤ n

• Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}

• Note The expansion of conditional literals is context dependent
• Example Given ‘ p(1..3). q(2).’

r(X):p(X),notq(X) :- r(X):p(X),notq(X); 1{r(X):p(X),notq(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1), r(3) }.

TU Dresden, 13th and 27th May 2016 PSSAI slide 109 of 200

Conditional literals
• Syntax A conditional literal is of the form

` : `1, . . . , `n

where ` and `i are literals for 0 ≤ i ≤ n

• Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}

• Note The expansion of conditional literals is context dependent
• Example Given ‘ p(1..3). q(2).’

r(X):p(X),notq(X) :- r(X):p(X),notq(X); 1{r(X):p(X),notq(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1), r(3) }.

TU Dresden, 13th and 27th May 2016 PSSAI slide 110 of 200

Outline

3 Motivation

4 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

5 Extended language
Conditional literal
Optimization statement

TU Dresden, 13th and 27th May 2016 PSSAI slide 111 of 200

Optimization statement
• Idea Express (multiple) cost functions subject to minimization

and/or maximization
• Syntax A minimize statement is of the form

minimize { w1@p1 : `1, . . . , wn@pn : `n }.

where each `i is a literal; and wi and pi are integers for 1 ≤ i ≤ n

Priority levels, pi, allow for representing lexicographically ordered
minimization objectives

• Meaning A minimize statement is a directive that instructs the ASP solver
to compute optimal stable models by minimizing a weighted sum of
elements

TU Dresden, 13th and 27th May 2016 PSSAI slide 112 of 200

Optimization statement
• Idea Express (multiple) cost functions subject to minimization

and/or maximization
• Syntax A minimize statement is of the form

minimize { w1@p1 : `1, . . . , wn@pn : `n }.

where each `i is a literal; and wi and pi are integers for 1 ≤ i ≤ n

Priority levels, pi, allow for representing lexicographically ordered
minimization objectives

• Meaning A minimize statement is a directive that instructs the ASP solver
to compute optimal stable models by minimizing a weighted sum of
elements

TU Dresden, 13th and 27th May 2016 PSSAI slide 113 of 200

Optimization statement
• Idea Express (multiple) cost functions subject to minimization

and/or maximization
• Syntax A minimize statement is of the form

minimize { w1@p1 : `1, . . . , wn@pn : `n }.

where each `i is a literal; and wi and pi are integers for 1 ≤ i ≤ n

Priority levels, pi, allow for representing lexicographically ordered
minimization objectives

• Meaning A minimize statement is a directive that instructs the ASP solver
to compute optimal stable models by minimizing a weighted sum of
elements

TU Dresden, 13th and 27th May 2016 PSSAI slide 114 of 200

Optimization statement
• A maximize statement of the form

maximize { w1@p1 : `1, . . . , wn@pn : `n }

stands for minimize { −w1@p1 : `1, . . . ,−wn@pn : `n }

• Example When configuring a computer, we may want to maximize hard
disk capacity, while minimizing price

#maximize { 250@1:hd(1), 500@1:hd(2), 750@1:hd(3), 1000@1:hd(4) }.
#minimize { 30@2:hd(1), 40@2:hd(2), 60@2:hd(3), 80@2:hd(4) }.

The priority levels indicate that (minimizing) price is more important than
(maximizing) capacity

TU Dresden, 13th and 27th May 2016 PSSAI slide 115 of 200

Optimization statement
• A maximize statement of the form

maximize { w1@p1 : `1, . . . , wn@pn : `n }

stands for minimize { −w1@p1 : `1, . . . ,−wn@pn : `n }

• Example When configuring a computer, we may want to maximize hard
disk capacity, while minimizing price

#maximize { 250@1:hd(1), 500@1:hd(2), 750@1:hd(3), 1000@1:hd(4) }.
#minimize { 30@2:hd(1), 40@2:hd(2), 60@2:hd(3), 80@2:hd(4) }.

The priority levels indicate that (minimizing) price is more important than
(maximizing) capacity

TU Dresden, 13th and 27th May 2016 PSSAI slide 116 of 200

Language Extensions: Overview

6 Two kinds of negation

7 Disjunctive logic programs

TU Dresden, 13th and 27th May 2016 PSSAI slide 117 of 200

Outline

6 Two kinds of negation

7 Disjunctive logic programs

TU Dresden, 13th and 27th May 2016 PSSAI slide 118 of 200

Motivation

• Classical versus default negation

– Symbol ¬ and not

– Idea
• ¬a ≈ ¬a ∈ X
• not a ≈ a /∈ X

– Example
• cross← ¬train
• cross← not train

TU Dresden, 13th and 27th May 2016 PSSAI slide 119 of 200

Motivation

• Classical versus default negation

– Symbol ¬ and not

– Idea
• ¬a ≈ ¬a ∈ X
• not a ≈ a /∈ X

– Example
• cross← ¬train
• cross← not train

TU Dresden, 13th and 27th May 2016 PSSAI slide 120 of 200

Motivation

• Classical versus default negation

– Symbol ¬ and not

– Idea
• ¬a ≈ ¬a ∈ X
• not a ≈ a /∈ X

– Example
• cross← ¬train
• cross← not train

TU Dresden, 13th and 27th May 2016 PSSAI slide 121 of 200

Classical negation
• We consider logic programs in negation normal form

– That is, classical negation is applied to atoms only

• Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that A∩A = ∅
• Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

• A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

TU Dresden, 13th and 27th May 2016 PSSAI slide 122 of 200

Classical negation
• We consider logic programs in negation normal form

– That is, classical negation is applied to atoms only
• Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that A∩A = ∅

• Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

• A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

TU Dresden, 13th and 27th May 2016 PSSAI slide 123 of 200

Classical negation
• We consider logic programs in negation normal form

– That is, classical negation is applied to atoms only
• Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that A∩A = ∅
• Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

• A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

TU Dresden, 13th and 27th May 2016 PSSAI slide 124 of 200

Classical negation

• We consider logic programs in negation normal form
– That is, classical negation is applied to atoms only

• Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that A∩A = ∅
• Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

• A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

TU Dresden, 13th and 27th May 2016 PSSAI slide 125 of 200

An example
• The program

P = {a← not b, b← not a} ∪ {c← b, ¬c← b}

induces

P¬ =

a ← a,¬a a ← b,¬b a ← c,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c

b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c,¬c

c ← a,¬a c ← b,¬b c ← c,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c,¬c

• The stable models of P are given by the ones of P ∪ P¬, viz {a}

TU Dresden, 13th and 27th May 2016 PSSAI slide 126 of 200

An example
• The program

P = {a← not b, b← not a} ∪ {c← b, ¬c← b}

induces

P¬ =

a ← a,¬a a ← b,¬b a ← c,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c

b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c,¬c

c ← a,¬a c ← b,¬b c ← c,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c,¬c

• The stable models of P are given by the ones of P ∪ P¬, viz {a}

TU Dresden, 13th and 27th May 2016 PSSAI slide 127 of 200

An example
• The program

P = {a← not b, b← not a} ∪ {c← b, ¬c← b}

induces

P¬ =

a ← a,¬a a ← b,¬b a ← c,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c

b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c,¬c

c ← a,¬a c ← b,¬b c ← c,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c,¬c

• The stable models of P are given by the ones of P ∪ P¬, viz {a}

TU Dresden, 13th and 27th May 2016 PSSAI slide 128 of 200

Properties

• The only inconsistent stable “model” is X = A ∪A

• Note Strictly speaking, an inconsistent set like A ∪A is not a model
• For a logic program P over A ∪A, exactly one of the following two cases

applies:
1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P

TU Dresden, 13th and 27th May 2016 PSSAI slide 129 of 200

Properties

• The only inconsistent stable “model” is X = A ∪A
• Note Strictly speaking, an inconsistent set like A ∪A is not a model

• For a logic program P over A ∪A, exactly one of the following two cases
applies:

1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P

TU Dresden, 13th and 27th May 2016 PSSAI slide 130 of 200

Properties

• The only inconsistent stable “model” is X = A ∪A
• Note Strictly speaking, an inconsistent set like A ∪A is not a model
• For a logic program P over A ∪A, exactly one of the following two cases

applies:
1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P

TU Dresden, 13th and 27th May 2016 PSSAI slide 131 of 200

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden, 13th and 27th May 2016 PSSAI slide 132 of 200

Train spotting

• P1 = {cross← not train}
– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden, 13th and 27th May 2016 PSSAI slide 133 of 200

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden, 13th and 27th May 2016 PSSAI slide 134 of 200

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}
– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden, 13th and 27th May 2016 PSSAI slide 135 of 200

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden, 13th and 27th May 2016 PSSAI slide 136 of 200

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}
– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden, 13th and 27th May 2016 PSSAI slide 137 of 200

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden, 13th and 27th May 2016 PSSAI slide 138 of 200

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}
– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden, 13th and 27th May 2016 PSSAI slide 139 of 200

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden, 13th and 27th May 2016 PSSAI slide 140 of 200

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}
– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden, 13th and 27th May 2016 PSSAI slide 141 of 200

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model

TU Dresden, 13th and 27th May 2016 PSSAI slide 142 of 200

Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}
– no stable model

TU Dresden, 13th and 27th May 2016 PSSAI slide 143 of 200

Train spotting

• P1 = {cross← not train}
– stable model: {cross}

• P2 = {cross← ¬train}
– stable model: ∅

• P3 = {cross← ¬train, ¬train←}
– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}
– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}
– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}
– no stable model

TU Dresden, 13th and 27th May 2016 PSSAI slide 144 of 200

Default negation in rule heads
• We consider logic programs with default negation in rule heads

• Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that A ∩ Ã = ∅
• Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= not a}
∪ {← body(r) ∪ {not ã} | r ∈ P and head(r) = not a}
∪ {ã← not a | r ∈ P and head(r) = not a}

• A set X of atoms is a stable model of a program P (with default negation in
rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

TU Dresden, 13th and 27th May 2016 PSSAI slide 145 of 200

Default negation in rule heads
• We consider logic programs with default negation in rule heads

• Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that A ∩ Ã = ∅

• Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= not a}
∪ {← body(r) ∪ {not ã} | r ∈ P and head(r) = not a}
∪ {ã← not a | r ∈ P and head(r) = not a}

• A set X of atoms is a stable model of a program P (with default negation in
rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

TU Dresden, 13th and 27th May 2016 PSSAI slide 146 of 200

Default negation in rule heads
• We consider logic programs with default negation in rule heads

• Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that A ∩ Ã = ∅
• Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= not a}
∪ {← body(r) ∪ {not ã} | r ∈ P and head(r) = not a}
∪ {ã← not a | r ∈ P and head(r) = not a}

• A set X of atoms is a stable model of a program P (with default negation in
rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

TU Dresden, 13th and 27th May 2016 PSSAI slide 147 of 200

Default negation in rule heads

• We consider logic programs with default negation in rule heads

• Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that A ∩ Ã = ∅
• Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= not a}
∪ {← body(r) ∪ {not ã} | r ∈ P and head(r) = not a}
∪ {ã← not a | r ∈ P and head(r) = not a}

• A set X of atoms is a stable model of a program P (with default negation in
rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

TU Dresden, 13th and 27th May 2016 PSSAI slide 148 of 200

Outline

6 Two kinds of negation

7 Disjunctive logic programs

TU Dresden, 13th and 27th May 2016 PSSAI slide 149 of 200

Disjunctive logic programs
• A disjunctive rule, r, is of the form

a1 ; . . . ; am ← am+1, . . . , an, not an+1, . . . , not ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

• A disjunctive logic program is a finite set of disjunctive rules

• Notation

head(r) = {a1, . . . , am}
body(r) = {am+1, . . . , an, not an+1, . . . , not ao}

body(r)+ = {am+1, . . . , an}
body(r)− = {an+1, . . . , ao}

atom(P) =
⋃

r∈P

(
head(r) ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

• A program is called positive if body(r)− = ∅ for all its rules

TU Dresden, 13th and 27th May 2016 PSSAI slide 150 of 200

Disjunctive logic programs
• A disjunctive rule, r, is of the form

a1 ; . . . ; am ← am+1, . . . , an, not an+1, . . . , not ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

• A disjunctive logic program is a finite set of disjunctive rules
• Notation

head(r) = {a1, . . . , am}
body(r) = {am+1, . . . , an, not an+1, . . . , not ao}

body(r)+ = {am+1, . . . , an}
body(r)− = {an+1, . . . , ao}

atom(P) =
⋃

r∈P

(
head(r) ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

• A program is called positive if body(r)− = ∅ for all its rules

TU Dresden, 13th and 27th May 2016 PSSAI slide 151 of 200

Disjunctive logic programs
• A disjunctive rule, r, is of the form

a1 ; . . . ; am ← am+1, . . . , an, not an+1, . . . , not ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

• A disjunctive logic program is a finite set of disjunctive rules
• Notation

head(r) = {a1, . . . , am}
body(r) = {am+1, . . . , an, not an+1, . . . , not ao}

body(r)+ = {am+1, . . . , an}
body(r)− = {an+1, . . . , ao}

atom(P) =
⋃

r∈P

(
head(r) ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

• A program is called positive if body(r)− = ∅ for all its rules

TU Dresden, 13th and 27th May 2016 PSSAI slide 152 of 200

Stable models
• Positive programs

– A set X of atoms is closed under a positive program P iff
for any r ∈ P, head(r) ∩ X 6= ∅ whenever body(r)+ ⊆ X

• X corresponds to a model of P (seen as a formula)
– The set of all ⊆-minimal sets of atoms being closed under a

positive program P is denoted by min⊆(P)

• min⊆(P) corresponds to the ⊆-minimal models of P (ditto)

• Disjunctive programs

– The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

– A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX)

TU Dresden, 13th and 27th May 2016 PSSAI slide 153 of 200

Stable models
• Positive programs

– A set X of atoms is closed under a positive program P iff
for any r ∈ P, head(r) ∩ X 6= ∅ whenever body(r)+ ⊆ X

• X corresponds to a model of P (seen as a formula)
– The set of all ⊆-minimal sets of atoms being closed under a

positive program P is denoted by min⊆(P)

• min⊆(P) corresponds to the ⊆-minimal models of P (ditto)
• Disjunctive programs

– The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

– A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX)

TU Dresden, 13th and 27th May 2016 PSSAI slide 154 of 200

Stable models
• Positive programs

– A set X of atoms is closed under a positive program P iff
for any r ∈ P, head(r) ∩ X 6= ∅ whenever body(r)+ ⊆ X

• X corresponds to a model of P (seen as a formula)
– The set of all ⊆-minimal sets of atoms being closed under a

positive program P is denoted by min⊆(P)

• min⊆(P) corresponds to the ⊆-minimal models of P (ditto)
• Disjunctive programs

– The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

– A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX)

TU Dresden, 13th and 27th May 2016 PSSAI slide 155 of 200

A “positive” example

P =

{
a ←
b ; c ← a

}

• The sets {a, b}, {a, c}, and {a, b, c} are closed under P

• We have min⊆(P) = {{a, b}, {a, c}}

TU Dresden, 13th and 27th May 2016 PSSAI slide 156 of 200

A “positive” example

P =

{
a ←
b ; c ← a

}

• The sets {a, b}, {a, c}, and {a, b, c} are closed under P

• We have min⊆(P) = {{a, b}, {a, c}}

TU Dresden, 13th and 27th May 2016 PSSAI slide 157 of 200

A “positive” example

P =

{
a ←
b ; c ← a

}

• The sets {a, b}, {a, c}, and {a, b, c} are closed under P

• We have min⊆(P) = {{a, b}, {a, c}}

TU Dresden, 13th and 27th May 2016 PSSAI slide 158 of 200

Graph coloring (reloaded)

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

color(X,r) ; color(X,b) ; color(X,g) :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

TU Dresden, 13th and 27th May 2016 PSSAI slide 159 of 200

Graph coloring (reloaded)

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

col(r). col(b). col(g).

color(X,C) : col(C) :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

TU Dresden, 13th and 27th May 2016 PSSAI slide 160 of 200

More Examples

• P1 = {a ; b ; c←}

– stable models {a}, {b}, and {c}

• P2 = {a ; b ; c← , ← a}

– stable models {b} and {c}

• P3 = {a ; b ; c← , ← a , b← c , c← b}

– stable model {b, c}

• P4 = {a ; b← c , b← not a, not c , a ; c← not b}

– stable models {a} and {b}

TU Dresden, 13th and 27th May 2016 PSSAI slide 161 of 200

More Examples

• P1 = {a ; b ; c←}
– stable models {a}, {b}, and {c}

• P2 = {a ; b ; c← , ← a}

– stable models {b} and {c}

• P3 = {a ; b ; c← , ← a , b← c , c← b}

– stable model {b, c}

• P4 = {a ; b← c , b← not a, not c , a ; c← not b}

– stable models {a} and {b}

TU Dresden, 13th and 27th May 2016 PSSAI slide 162 of 200

More Examples

• P1 = {a ; b ; c←}

– stable models {a}, {b}, and {c}

• P2 = {a ; b ; c← , ← a}

– stable models {b} and {c}

• P3 = {a ; b ; c← , ← a , b← c , c← b}

– stable model {b, c}

• P4 = {a ; b← c , b← not a, not c , a ; c← not b}

– stable models {a} and {b}

TU Dresden, 13th and 27th May 2016 PSSAI slide 163 of 200

More Examples

• P1 = {a ; b ; c←}

– stable models {a}, {b}, and {c}

• P2 = {a ; b ; c← , ← a}
– stable models {b} and {c}

• P3 = {a ; b ; c← , ← a , b← c , c← b}

– stable model {b, c}

• P4 = {a ; b← c , b← not a, not c , a ; c← not b}

– stable models {a} and {b}

TU Dresden, 13th and 27th May 2016 PSSAI slide 164 of 200

More Examples

• P1 = {a ; b ; c←}

– stable models {a}, {b}, and {c}

• P2 = {a ; b ; c← , ← a}

– stable models {b} and {c}

• P3 = {a ; b ; c← , ← a , b← c , c← b}

– stable model {b, c}

• P4 = {a ; b← c , b← not a, not c , a ; c← not b}

– stable models {a} and {b}

TU Dresden, 13th and 27th May 2016 PSSAI slide 165 of 200

More Examples

• P1 = {a ; b ; c←}

– stable models {a}, {b}, and {c}

• P2 = {a ; b ; c← , ← a}

– stable models {b} and {c}

• P3 = {a ; b ; c← , ← a , b← c , c← b}
– stable model {b, c}

• P4 = {a ; b← c , b← not a, not c , a ; c← not b}

– stable models {a} and {b}

TU Dresden, 13th and 27th May 2016 PSSAI slide 166 of 200

More Examples

• P1 = {a ; b ; c←}

– stable models {a}, {b}, and {c}

• P2 = {a ; b ; c← , ← a}

– stable models {b} and {c}

• P3 = {a ; b ; c← , ← a , b← c , c← b}

– stable model {b, c}

• P4 = {a ; b← c , b← not a, not c , a ; c← not b}

– stable models {a} and {b}

TU Dresden, 13th and 27th May 2016 PSSAI slide 167 of 200

More Examples

• P1 = {a ; b ; c←}

– stable models {a}, {b}, and {c}

• P2 = {a ; b ; c← , ← a}

– stable models {b} and {c}

• P3 = {a ; b ; c← , ← a , b← c , c← b}

– stable model {b, c}

• P4 = {a ; b← c , b← not a, not c , a ; c← not b}
– stable models {a} and {b}

TU Dresden, 13th and 27th May 2016 PSSAI slide 168 of 200

More Examples

• P1 = {a ; b ; c←}
– stable models {a}, {b}, and {c}

• P2 = {a ; b ; c← , ← a}
– stable models {b} and {c}

• P3 = {a ; b ; c← , ← a , b← c , c← b}
– stable model {b, c}

• P4 = {a ; b← c , b← not a, not c , a ; c← not b}
– stable models {a} and {b}

TU Dresden, 13th and 27th May 2016 PSSAI slide 169 of 200

Some properties

• A disjunctive logic program may have zero, one, or multiple stable models
• If X is a stable model of a disjunctive logic program P,

then X is a model of P (seen as a formula)
• If X and Y are stable models of a disjunctive logic program P,

then X 6⊂ Y

• If A ∈ X for some stable model X of a disjunctive logic program P, then
there is a rule r ∈ P such that
body(r)+ ⊆ X, body(r)− ∩ X = ∅, and head(r) ∩ X = {A}

TU Dresden, 13th and 27th May 2016 PSSAI slide 170 of 200

Some properties

• A disjunctive logic program may have zero, one, or multiple stable models
• If X is a stable model of a disjunctive logic program P,

then X is a model of P (seen as a formula)
• If X and Y are stable models of a disjunctive logic program P,

then X 6⊂ Y

• If A ∈ X for some stable model X of a disjunctive logic program P, then
there is a rule r ∈ P such that
body(r)+ ⊆ X, body(r)− ∩ X = ∅, and head(r) ∩ X = {A}

TU Dresden, 13th and 27th May 2016 PSSAI slide 171 of 200

An example with variables

P =

{
a(1, 2) ←
b(X) ; c(Y) ← a(X, Y), not c(Y)

}

ground(P) =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1), not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)
b(2) ; c(1) ← a(2, 1), not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)

For every stable model X of P, we have

• a(1, 2) ∈ X and
• {a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅

TU Dresden, 13th and 27th May 2016 PSSAI slide 172 of 200

An example with variables

P =

{
a(1, 2) ←
b(X) ; c(Y) ← a(X, Y), not c(Y)

}

ground(P) =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1), not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)
b(2) ; c(1) ← a(2, 1), not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)

For every stable model X of P, we have
• a(1, 2) ∈ X and
• {a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅

TU Dresden, 13th and 27th May 2016 PSSAI slide 173 of 200

An example with variables

P =

{
a(1, 2) ←
b(X) ; c(Y) ← a(X, Y), not c(Y)

}

ground(P) =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1), not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)
b(2) ; c(1) ← a(2, 1), not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)

For every stable model X of P, we have

• a(1, 2) ∈ X and
• {a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅

TU Dresden, 13th and 27th May 2016 PSSAI slide 174 of 200

An example with variables

ground(P)

X

=

a(1, 2) ←
b(1) ; c(1) ← a(1, 1), not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)
b(2) ; c(1) ← a(2, 1), not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)

• Consider X = {a(1, 2), b(1)}
• We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
• X is a stable model of P because X ∈ min⊆(ground(P)X)

TU Dresden, 13th and 27th May 2016 PSSAI slide 175 of 200

An example with variables

ground(P)

X

=

a(1, 2) ←
b(1) ; c(1) ← a(1, 1), not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)
b(2) ; c(1) ← a(2, 1), not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)

• Consider X = {a(1, 2), b(1)}

• We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
• X is a stable model of P because X ∈ min⊆(ground(P)X)

TU Dresden, 13th and 27th May 2016 PSSAI slide 176 of 200

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1)

, not c(1)

b(1) ; c(2) ← a(1, 2)

, not c(2)

b(2) ; c(1) ← a(2, 1)

, not c(1)

b(2) ; c(2) ← a(2, 2)

, not c(2)

• Consider X = {a(1, 2), b(1)}

• We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
• X is a stable model of P because X ∈ min⊆(ground(P)X)

TU Dresden, 13th and 27th May 2016 PSSAI slide 177 of 200

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1)

, not c(1)

b(1) ; c(2) ← a(1, 2)

, not c(2)

b(2) ; c(1) ← a(2, 1)

, not c(1)

b(2) ; c(2) ← a(2, 2)

, not c(2)

• Consider X = {a(1, 2), b(1)}
• We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }

• X is a stable model of P because X ∈ min⊆(ground(P)X)

TU Dresden, 13th and 27th May 2016 PSSAI slide 178 of 200

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1)

, not c(1)

b(1) ; c(2) ← a(1, 2)

, not c(2)

b(2) ; c(1) ← a(2, 1)

, not c(1)

b(2) ; c(2) ← a(2, 2)

, not c(2)

• Consider X = {a(1, 2), b(1)}
• We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
• X is a stable model of P because X ∈ min⊆(ground(P)X)

TU Dresden, 13th and 27th May 2016 PSSAI slide 179 of 200

An example with variables

ground(P)

X

=

a(1, 2) ←
b(1) ; c(1) ← a(1, 1), not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)
b(2) ; c(1) ← a(2, 1), not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)

• Consider X = {a(1, 2), c(2)}
• We get min⊆(ground(P)X) = { {a(1, 2)} }
• X is no stable model of P because X 6∈ min⊆(ground(P)X)

TU Dresden, 13th and 27th May 2016 PSSAI slide 180 of 200

An example with variables

ground(P)

X

=

a(1, 2) ←
b(1) ; c(1) ← a(1, 1), not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)
b(2) ; c(1) ← a(2, 1), not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)

• Consider X = {a(1, 2), c(2)}

• We get min⊆(ground(P)X) = { {a(1, 2)} }
• X is no stable model of P because X 6∈ min⊆(ground(P)X)

TU Dresden, 13th and 27th May 2016 PSSAI slide 181 of 200

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1)

, not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)

b(2) ; c(1) ← a(2, 1)

, not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)

• Consider X = {a(1, 2), c(2)}

• We get min⊆(ground(P)X) = { {a(1, 2)} }
• X is no stable model of P because X 6∈ min⊆(ground(P)X)

TU Dresden, 13th and 27th May 2016 PSSAI slide 182 of 200

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1)

, not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)

b(2) ; c(1) ← a(2, 1)

, not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)

• Consider X = {a(1, 2), c(2)}
• We get min⊆(ground(P)X) = { {a(1, 2)} }

• X is no stable model of P because X 6∈ min⊆(ground(P)X)

TU Dresden, 13th and 27th May 2016 PSSAI slide 183 of 200

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1)

, not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)

b(2) ; c(1) ← a(2, 1)

, not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)

• Consider X = {a(1, 2), c(2)}
• We get min⊆(ground(P)X) = { {a(1, 2)} }
• X is no stable model of P because X 6∈ min⊆(ground(P)X)

TU Dresden, 13th and 27th May 2016 PSSAI slide 184 of 200

Default negation in rule heads
• Consider disjunctive rules of the form

a1 ; . . . ; am ; not am+1 ; . . . ; not an ← an+1, . . . , ao, not ao+1, . . . , not ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

• Given a program P over A, consider the program

P̃ = {head(r)+ ← body(r) ∪ {not ã | a ∈ head(r)−} | r ∈ P}
∪ {ã← not a | r ∈ P and a ∈ head(r)−}

• A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

TU Dresden, 13th and 27th May 2016 PSSAI slide 185 of 200

Default negation in rule heads
• Consider disjunctive rules of the form

a1 ; . . . ; am ; not am+1 ; . . . ; not an ← an+1, . . . , ao, not ao+1, . . . , not ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

• Given a program P over A, consider the program

P̃ = {head(r)+ ← body(r) ∪ {not ã | a ∈ head(r)−} | r ∈ P}
∪ {ã← not a | r ∈ P and a ∈ head(r)−}

• A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

TU Dresden, 13th and 27th May 2016 PSSAI slide 186 of 200

Default negation in rule heads
• Consider disjunctive rules of the form

a1 ; . . . ; am ; not am+1 ; . . . ; not an ← an+1, . . . , ao, not ao+1, . . . , not ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

• Given a program P over A, consider the program

P̃ = {head(r)+ ← body(r) ∪ {not ã | a ∈ head(r)−} | r ∈ P}
∪ {ã← not a | r ∈ P and a ∈ head(r)−}

• A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

TU Dresden, 13th and 27th May 2016 PSSAI slide 187 of 200

An example
• The program

P = {a ; not a←}

yields
P̃ = {a← not ã} ∪ {ã← not a}

• P̃ has two stable models, {a} and {ã}
• This induces the stable models {a} and ∅ of P

TU Dresden, 13th and 27th May 2016 PSSAI slide 188 of 200

An example
• The program

P = {a ; not a←}

yields
P̃ = {a← not ã} ∪ {ã← not a}

• P̃ has two stable models, {a} and {ã}
• This induces the stable models {a} and ∅ of P

TU Dresden, 13th and 27th May 2016 PSSAI slide 189 of 200

An example
• The program

P = {a ; not a←}

yields
P̃ = {a← not ã} ∪ {ã← not a}

• P̃ has two stable models, {a} and {ã}

• This induces the stable models {a} and ∅ of P

TU Dresden, 13th and 27th May 2016 PSSAI slide 190 of 200

An example
• The program

P = {a ; not a←}

yields
P̃ = {a← not ã} ∪ {ã← not a}

• P̃ has two stable models, {a} and {ã}
• This induces the stable models {a} and ∅ of P

TU Dresden, 13th and 27th May 2016 PSSAI slide 191 of 200

Computational Aspects: Overview

8 Complexity

TU Dresden, 13th and 27th May 2016 PSSAI slide 192 of 200

Outline

8 Complexity

TU Dresden, 13th and 27th May 2016 PSSAI slide 193 of 200

Complexity

Let a be an atom and X be a set of atoms

• For a positive normal logic program P:
– Deciding whether X is the stable model of P is P-complete
– Deciding whether a is in the stable model of P is P-complete

• For a normal logic program P:
– Deciding whether X is a stable model of P is P-complete
– Deciding whether a is in a stable model of P is NP-complete

• For a normal logic program P with optimization statements:
– Deciding whether X is an optimal stable model of P is

co-NP-complete
– Deciding whether a is in an optimal stable model of P is

∆p
2-complete

TU Dresden, 13th and 27th May 2016 PSSAI slide 194 of 200

Complexity

Let a be an atom and X be a set of atoms

• For a positive normal logic program P:
– Deciding whether X is the stable model of P is P-complete
– Deciding whether a is in the stable model of P is P-complete

• For a normal logic program P:
– Deciding whether X is a stable model of P is P-complete
– Deciding whether a is in a stable model of P is NP-complete

• For a normal logic program P with optimization statements:
– Deciding whether X is an optimal stable model of P is

co-NP-complete
– Deciding whether a is in an optimal stable model of P is

∆p
2-complete

TU Dresden, 13th and 27th May 2016 PSSAI slide 195 of 200

Complexity

Let a be an atom and X be a set of atoms

• For a positive normal logic program P:
– Deciding whether X is the stable model of P is P-complete
– Deciding whether a is in the stable model of P is P-complete

• For a normal logic program P:
– Deciding whether X is a stable model of P is P-complete
– Deciding whether a is in a stable model of P is NP-complete

• For a normal logic program P with optimization statements:
– Deciding whether X is an optimal stable model of P is

co-NP-complete
– Deciding whether a is in an optimal stable model of P is

∆p
2-complete

TU Dresden, 13th and 27th May 2016 PSSAI slide 196 of 200

Complexity

Let a be an atom and X be a set of atoms

• For a positive normal logic program P:
– Deciding whether X is the stable model of P is P-complete
– Deciding whether a is in the stable model of P is P-complete

• For a normal logic program P:
– Deciding whether X is a stable model of P is P-complete
– Deciding whether a is in a stable model of P is NP-complete

• For a normal logic program P with optimization statements:
– Deciding whether X is an optimal stable model of P is

co-NP-complete
– Deciding whether a is in an optimal stable model of P is

∆p
2-complete

TU Dresden, 13th and 27th May 2016 PSSAI slide 197 of 200

Complexity

Let a be an atom and X be a set of atoms

• For a positive disjunctive logic program P:
– Deciding whether X is a stable model of P is co-NP-complete
– Deciding whether a is in a stable model of P is NPNP-complete

• For a disjunctive logic program P:
– Deciding whether X is a stable model of P is co-NP-complete
– Deciding whether a is in a stable model of P is NPNP-complete

• For a disjunctive logic program P with optimization statements:
– Deciding whether X is an optimal stable model of P is

co-NPNP-complete
– Deciding whether a is in an optimal stable model of P is

∆p
3-complete

• For a propositional theory Φ:
– Deciding whether X is a stable model of Φ is co-NP-complete
– Deciding whether a is in a stable model of Φ is NPNP-complete

TU Dresden, 13th and 27th May 2016 PSSAI slide 198 of 200

Complexity

Let a be an atom and X be a set of atoms

• For a positive disjunctive logic program P:
– Deciding whether X is a stable model of P is co-NP-complete
– Deciding whether a is in a stable model of P is NPNP-complete

• For a disjunctive logic program P:
– Deciding whether X is a stable model of P is co-NP-complete
– Deciding whether a is in a stable model of P is NPNP-complete

• For a disjunctive logic program P with optimization statements:
– Deciding whether X is an optimal stable model of P is

co-NPNP-complete
– Deciding whether a is in an optimal stable model of P is

∆p
3-complete

• For a propositional theory Φ:
– Deciding whether X is a stable model of Φ is co-NP-complete
– Deciding whether a is in a stable model of Φ is NPNP-complete

TU Dresden, 13th and 27th May 2016 PSSAI slide 199 of 200

References

Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten
Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.
doi=10.2200/S00457ED1V01Y201211AIM019.

• See also: http://potassco.sourceforge.net

TU Dresden, 13th and 27th May 2016 PSSAI slide 200 of 200

http://potassco.sourceforge.net

	Modeling
	Basic Modeling
	Methodology
	Satisfiability
	Queens
	Traveling Salesperson

	Language
	Motivation
	Core language
	Integrity constraint
	Choice rule
	Cardinality rule
	Weight rule

	Extended language
	Conditional literal
	Optimization statement

	Language Extensions
	Two kinds of negation
	Disjunctive logic programs

	Computational Aspects
	Complexity

