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2 Uninformed Search versus Informed Search (Best First Search, A*

Search, Heuristics)
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Overview ASP II

• Modeling
1 Basic Modeling
2 Methodology

• Language
3 Motivation
4 Core language
5 Extended language

• Language Extensions
6 Two kinds of negation
7 Disjunctive logic programs

• Computational Aspects
9 Complexity
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Modeling: Overview

1 Basic Modeling

2 Methodology
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Outline

1 Basic Modeling

2 Methodology
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Modeling and Interpreting

Problem

Logic Program

Solution

Stable Models

?
-

6

Modeling Interpreting

Solving
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Modeling
• For solving a problem class C for a problem instance I,

encode
1 the problem instance I as a set PI of facts and
2 the problem class C as a set PC of rules

such that the solutions to C for I can be (polynomially) extracted
from the stable models of PI ∪ PC

• PI is (still) called problem instance
• PC is often called the problem encoding

• An encoding PC is uniform, if it can be used to solve all its
problem instances
That is, PC encodes the solutions to C for any set PI of facts
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Outline

1 Basic Modeling

2 Methodology
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Basic methodology

Methodology
Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell
Logic program = Data + Generator + Tester ( + Optimizer)
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Outline

1 Basic Modeling

2 Methodology
Satisfiability
Queens
Traveling Salesperson

TU Dresden, 13th and 27th May 2016 PSSAI slide 11 of 200



Satisfiability testing

• Problem Instance: A propositional formula φ in CNF
• Problem Class: Is there an assignment of propositional variables to true

and false such that a given formula φ is true

• Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

• Logic Program:

Generator Tester Stable models
{ a, b } ← ← not a, b

← a, not b
X1 = {a, b}
X2 = {}
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Outline

1 Basic Modeling

2 Methodology
Satisfiability
Queens
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The n-Queens Problem

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5

• Place n queens on an n× n
chess board

• Queens must not attack one
another

Q Q Q

Q Q
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Defining the Field

queens.lp

row(1..n).
col(1..n).

• Create file queens.lp

• Define the field
– n rows
– n columns
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Defining the Field

Running . . .

$ gringo queens.lp --const n=5 | clasp
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5)
SATISFIABLE

Models : 1
Time : 0.000

Prepare : 0.000
Prepro. : 0.000
Solving : 0.000
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Placing some Queens

queens.lp

row(1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.

• Guess a solution candidate

by placing some queens on the board
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Placing some Queens

Running . . .

$ gringo queens.lp --const n=5 | clasp 3
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5)
Answer: 2
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) queen(1,1)
Answer: 3
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) queen(2,1)
SATISFIABLE

Models : 3+
...
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Placing some Queens: Answer 1

Answer 1

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5
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Placing some Queens: Answer 2

Answer 2

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 L0Z0Z

1 2 3 4 5
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Placing some Queens: Answer 3

Answer 3

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 QZ0Z0
1 Z0Z0Z

1 2 3 4 5
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Placing n Queens

queens.lp

row(1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
:- not n { queen(I,J) } n.

• Place exactly n queens on the board
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Placing n Queens

Running . . .

$ gringo queens.lp --const n=5 | clasp 2
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(5,1) queen(4,1) queen(3,1) \
queen(2,1) queen(1,1)
Answer: 2
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(1,2) queen(4,1) queen(3,1) \
queen(2,1) queen(1,1)
...
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Placing n Queens: Answer 1

Answer 1

5 L0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 L0Z0Z

1 2 3 4 5
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Placing n Queens: Answer 2

Answer 2

5 Z0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 LQZ0Z

1 2 3 4 5
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Horizontal and Vertical Attack

queens.lp

row(1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
:- not n { queen(I,J) } n.
:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

• Forbid horizontal attacks

• Forbid vertical attacks
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Horizontal and Vertical Attack

Running . . .

$ gringo queens.lp --const n=5 | clasp
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(5,5) queen(4,4) queen(3,3) \
queen(2,2) queen(1,1)
...
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Horizontal and Vertical Attack: Answer 1

Answer 1

5 Z0Z0L
4 0Z0L0
3 Z0L0Z
2 0L0Z0
1 L0Z0Z

1 2 3 4 5
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Diagonal Attack

queens.lp

row(1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
:- not n { queen(I,J) } n.
:- queen(I,J), queen(I,J’), J != J’.
:- queen(I,J), queen(I’,J), I != I’.
:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I-J == I’-J’.
:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I+J == I’+J’.

• Forbid diagonal attacks
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Diagonal Attack

Running . . .

$ gringo queens.lp --const n=5 | clasp
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(4,5) queen(1,4) queen(3,3) queen(5,2) queen(2,1)
SATISFIABLE

Models : 1+
Time : 0.000

Prepare : 0.000
Prepro. : 0.000
Solving : 0.000
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Diagonal Attack: Answer 1

Answer 1

5 ZQZ0Z
4 0Z0ZQ
3 Z0L0Z
2 QZ0Z0
1 Z0ZQZ

1 2 3 4 5
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Optimizing

queens-opt.lp

1 { queen(I,1..n) } 1 :- I = 1..n.
1 { queen(1..n,J) } 1 :- J = 1..n.
:- 2 { queen(D-J,J) }, D = 2..2*n.
:- 2 { queen(D+J,J) }, D = 1-n..n-1.

• Encoding can be optimized
• Much faster to solve
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And sometimes it rocks
$ clingo -c n=5000 queens-opt-diag.lp -config=jumpy -q -stats=3
clingo version 4.1.0
Solving...
SATISFIABLE

Models : 1+
Time : 3758.143s (Solving: 1905.22s 1st Model: 1896.20s Unsat: 0.00s)
CPU Time : 3758.320s

Choices : 288594554
Conflicts : 3442 (Analyzed: 3442)
Restarts : 17 (Average: 202.47 Last: 3442)
Model-Level : 7594728.0
Problems : 1 (Average Length: 0.00 Splits: 0)
Lemmas : 3442 (Deleted: 0)

Binary : 0 (Ratio: 0.00%)
Ternary : 0 (Ratio: 0.00%)
Conflict : 3442 (Average Length: 229056.5 Ratio: 100.00%)
Loop : 0 (Average Length: 0.0 Ratio: 0.00%)
Other : 0 (Average Length: 0.0 Ratio: 0.00%)

Atoms : 75084857 (Original: 75069989 Auxiliary: 14868)
Rules : 100129956 (1: 50059992/100090100 2: 39990/29856 3: 10000/10000)
Bodies : 25090103
Equivalences : 125029999 (Atom=Atom: 50009999 Body=Body: 0 Other: 75020000)
Tight : Yes
Variables : 25024868 (Eliminated: 11781 Frozen: 25000000)
Constraints : 66664 (Binary: 35.6% Ternary: 0.0% Other: 64.4%)

Backjumps : 3442 (Average: 681.19 Max: 169512 Sum: 2344658)
Executed : 3442 (Average: 681.19 Max: 169512 Sum: 2344658 Ratio: 100.00%)
Bounded : 0 (Average: 0.00 Max: 0 Sum: 0 Ratio: 0.00%)
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Outline

1 Basic Modeling

2 Methodology
Satisfiability
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Traveling Salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

cost(1,2,2). cost(1,3,3). cost(1,4,1).
cost(2,4,2). cost(2,5,2). cost(2,6,4).
cost(3,1,3). cost(3,4,2). cost(3,5,2).
cost(4,1,1). cost(4,2,2).
cost(5,3,2). cost(5,4,2). cost(5,6,1).
cost(6,2,4). cost(6,3,3). cost(6,5,1).
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Traveling Salesperson

node(1..6).
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edge(X,Y) :- cost(X,Y,_).
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Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.
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Language: Overview

3 Motivation

4 Core language

5 Extended language
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Outline

3 Motivation

4 Core language

5 Extended language
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Basic language extensions

• The expressiveness of a language can be enhanced by introducing
new constructs

• To this end, we must address the following issues:
– What is the syntax of the new language construct?
– What is the semantics of the new language construct?
– How to implement the new language construct?

• A way of providing semantics is to furnish a translation removing the new
constructs, eg. classical negation

• This translation might also be used for implementing the language
extension
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Outline

3 Motivation

4 Core language

5 Extended language
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Outline

3 Motivation

4 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

5 Extended language
Conditional literal
Optimization statement

TU Dresden, 13th and 27th May 2016 PSSAI slide 54 of 200



Integrity constraint
• Idea Eliminate unwanted solution candidates
• Syntax An integrity constraint is of the form

← a1, . . . , am, not am+1, . . . , not an

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n

• Example :- edge(3,7), color(3,red), color(7,red).

• Embedding The above integrity constraint can be turned into the normal
rule

x← a1, . . . , am, not am+1, . . . , not an, not x

where x is a new symbol, that is, x 6∈ A.
• Another example P = {a← not b, b← not a}

versus P′ = P ∪ {← a} and P′′ = P ∪ {← not a}
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Outline

3 Motivation

4 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

5 Extended language
Conditional literal
Optimization statement
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Choice rule
• Idea Choices over subsets
• Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an, not an+1, . . . , not ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

• Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

• Example
{ buy(pizza); buy(wine); buy(corn) } :- at(grocery).

• Another Example P = {{a} ← b, b←} has two stable models: {b}
and {a, b}
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where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

• Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

• Example
{ buy(pizza); buy(wine); buy(corn) } :- at(grocery).

• Another Example P = {{a} ← b, b←} has two stable models: {b}
and {a, b}
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Embedding in normal rules
• A choice rule of form

{a1, . . . , am} ← am+1, . . . , an, not an+1, . . . , not ao

can be translated into 2m + 1 normal rules

b ← am+1, . . . , an, not an+1, . . . , not ao

a1 ← b, not a′1 . . . am ← b, not a′m
a′1 ← not a1 . . . a′m ← not am

by introducing new atoms b, a′1, . . . , a′m.
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Outline

3 Motivation

4 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

5 Extended language
Conditional literal
Optimization statement
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Cardinality rule
• Idea Control (lower) cardinality of subsets
• Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer.

• Informal meaning The head atom belongs to the stable model,
if at least l elements of the body are included in the stable model

• Note l acts as a lower bound on the body

• Example
pass(c42) :- 2 { pass(a1); pass(a2); pass(a3) }.

• Another Example P = {a← 1{b, c}, b←} has stable model {a, b}
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Embedding in normal rules
• Replace each cardinality rule

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

by a0 ← ctr(1, l)

where atom ctr(i, j) represents the fact that at least j of the literals having
an equal or greater index than i, are in a stable model

• The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i, k+1) ← ctr(i + 1, k), ai
ctr(i, k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j, k+1) ← ctr(j + 1, k), not aj
ctr(j, k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←
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An example
• Program {a←, c← 1 {a, b}} has the stable model {a, c}

• Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}
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. . . and vice versa
• A normal rule

a0 ← a1, . . . , am, not am+1, . . . , not an

can be represented by the cardinality rule

a0 ← n {a1, . . . , am, not am+1, . . . , not an}
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Cardinality rules with upper bounds
• A rule of the form

a0 ← l { a1, . . . , am, not am+1, . . . , not an } u (1)

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

stands for

a0 ← b, not c
b ← l { a1, . . . , am, not am+1, . . . , not an }
c ← u+1 { a1, . . . , am, not am+1, . . . , not an }

where b and c are new symbols

• Note The single constraint in the body of the cardinality rule (1) is referred
to as a cardinality constraint
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Cardinality constraints
• Syntax A cardinality constraint is of the form

l { a1, . . . , am, not am+1, . . . , not an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

• Informal meaning A cardinality constraint is satisfied by a stable model X,
if the number of its contained literals satisfied by X is between l and u
(inclusive)

• In other words, if

l ≤ | ({a1, . . . , am} ∩ X) ∪ ({am+1, . . . , an} \ X) | ≤ u
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Cardinality constraints as heads
• A rule of the form

l {a1, . . . , am, not am+1, . . . , not an} u← an+1, . . . , ao, not ao+1, . . . , not ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers

stands for

b ← an+1, . . . , ao, not ao+1, . . . , not ap
{a1, . . . , am} ← b

c ← l {a1, . . . , am, not am+1, . . . , not an} u
← b, not c

where b and c are new symbols

• Example 1{ color(v42,red); color(v42,green); color(v42,blue) }1.
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Weight rule
• Syntax A weight rule is the form

a0 ← l { w1 : a1, . . . , wm : am, wm+1 : not am+1, . . . , wn : not an }

where 0 ≤ m ≤ n and each ai is an atom;
l and wi are integers for 1 ≤ i ≤ n

• A weighted literal wi : `i associates each literal `i with a weight wi

• Note A cardinality rule is a weight rule where wi = 1 for 0 ≤ i ≤ n
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Weight constraints
• Syntax A weight constraint is of the form

l { w1 : a1, . . . , wm : am, wm+1 : not am+1, . . . , wn : not an } u

where 0 ≤ m ≤ n and each ai is an atom;
l, u and wi are integers for 1 ≤ i ≤ n

• Meaning A weight constraint is satisfied by a stable model X, if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

• Note (Cardinality and) weight constraints amount to constraints on (count
and) sum aggregate functions

• Example
10 { 4:course(db); 6:course(ai); 8:course(project); 3:course(xml) } 20
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l { w1 : a1, . . . , wm : am, wm+1 : not am+1, . . . , wn : not an } u

where 0 ≤ m ≤ n and each ai is an atom;
l, u and wi are integers for 1 ≤ i ≤ n

• Meaning A weight constraint is satisfied by a stable model X, if

l ≤
(∑
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Conditional literals
• Syntax A conditional literal is of the form

` : `1, . . . , `n

where ` and `i are literals for 0 ≤ i ≤ n

• Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}

• Note The expansion of conditional literals is context dependent
• Example Given ‘ p(1..3). q(2).’

r(X):p(X),notq(X) :- r(X):p(X),notq(X); 1{r(X):p(X),notq(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1), r(3) }.
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Optimization statement
• Idea Express (multiple) cost functions subject to minimization

and/or maximization
• Syntax A minimize statement is of the form

minimize { w1@p1 : `1, . . . , wn@pn : `n }.

where each `i is a literal; and wi and pi are integers for 1 ≤ i ≤ n

Priority levels, pi, allow for representing lexicographically ordered
minimization objectives

• Meaning A minimize statement is a directive that instructs the ASP solver
to compute optimal stable models by minimizing a weighted sum of
elements
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Optimization statement
• A maximize statement of the form

maximize { w1@p1 : `1, . . . , wn@pn : `n }

stands for minimize { −w1@p1 : `1, . . . ,−wn@pn : `n }

• Example When configuring a computer, we may want to maximize hard
disk capacity, while minimizing price

#maximize { 250@1:hd(1), 500@1:hd(2), 750@1:hd(3), 1000@1:hd(4) }.
#minimize { 30@2:hd(1), 40@2:hd(2), 60@2:hd(3), 80@2:hd(4) }.

The priority levels indicate that (minimizing) price is more important than
(maximizing) capacity
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Language Extensions: Overview

6 Two kinds of negation

7 Disjunctive logic programs
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Motivation

• Classical versus default negation

– Symbol ¬ and not

– Idea
• ¬a ≈ ¬a ∈ X
• not a ≈ a /∈ X

– Example
• cross← ¬train
• cross← not train

TU Dresden, 13th and 27th May 2016 PSSAI slide 119 of 200



Motivation

• Classical versus default negation

– Symbol ¬ and not

– Idea
• ¬a ≈ ¬a ∈ X
• not a ≈ a /∈ X

– Example
• cross← ¬train
• cross← not train

TU Dresden, 13th and 27th May 2016 PSSAI slide 120 of 200



Motivation

• Classical versus default negation

– Symbol ¬ and not

– Idea
• ¬a ≈ ¬a ∈ X
• not a ≈ a /∈ X

– Example
• cross← ¬train
• cross← not train

TU Dresden, 13th and 27th May 2016 PSSAI slide 121 of 200



Classical negation
• We consider logic programs in negation normal form

– That is, classical negation is applied to atoms only

• Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that A∩A = ∅
• Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

• A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬
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An example
• The program

P = {a← not b, b← not a} ∪ {c← b, ¬c← b}

induces

P¬ =



a ← a,¬a a ← b,¬b a ← c,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c

b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c,¬c

c ← a,¬a c ← b,¬b c ← c,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c,¬c


• The stable models of P are given by the ones of P ∪ P¬, viz {a}
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Properties

• The only inconsistent stable “model” is X = A ∪A

• Note Strictly speaking, an inconsistent set like A ∪A is not a model
• For a logic program P over A ∪A, exactly one of the following two cases

applies:
1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P
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Train spotting

• P1 = {cross← not train}

– stable model: {cross}

• P2 = {cross← ¬train}

– stable model: ∅

• P3 = {cross← ¬train, ¬train←}

– stable model: {cross,¬train}

• P4 = {cross← ¬train, ¬train←, ¬cross←}

– stable model: {cross,¬cross, train,¬train} inconsistent as A ∪ Ā

• P5 = {cross← ¬train, ¬train← not train}

– stable model: {cross,¬train}

• P6 = {cross← ¬train, ¬train← not train, ¬cross←}

– no stable model
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Default negation in rule heads
• We consider logic programs with default negation in rule heads

• Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that A ∩ Ã = ∅
• Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= not a}
∪ {← body(r) ∪ {not ã} | r ∈ P and head(r) = not a}
∪ {ã← not a | r ∈ P and head(r) = not a}

• A set X of atoms is a stable model of a program P (with default negation in
rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã
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∪ {← body(r) ∪ {not ã} | r ∈ P and head(r) = not a}
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Outline

6 Two kinds of negation

7 Disjunctive logic programs
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Disjunctive logic programs
• A disjunctive rule, r, is of the form

a1 ; . . . ; am ← am+1, . . . , an, not an+1, . . . , not ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

• A disjunctive logic program is a finite set of disjunctive rules

• Notation

head(r) = {a1, . . . , am}
body(r) = {am+1, . . . , an, not an+1, . . . , not ao}

body(r)+ = {am+1, . . . , an}
body(r)− = {an+1, . . . , ao}

atom(P) =
⋃

r∈P

(
head(r) ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

• A program is called positive if body(r)− = ∅ for all its rules
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Stable models
• Positive programs

– A set X of atoms is closed under a positive program P iff
for any r ∈ P, head(r) ∩ X 6= ∅ whenever body(r)+ ⊆ X

• X corresponds to a model of P (seen as a formula)
– The set of all ⊆-minimal sets of atoms being closed under a

positive program P is denoted by min⊆(P)

• min⊆(P) corresponds to the ⊆-minimal models of P (ditto)

• Disjunctive programs

– The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

– A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX)
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A “positive” example

P =

{
a ←
b ; c ← a

}

• The sets {a, b}, {a, c}, and {a, b, c} are closed under P

• We have min⊆(P) = {{a, b}, {a, c}}
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Graph coloring (reloaded)

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

color(X,r) ; color(X,b) ; color(X,g) :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).
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Graph coloring (reloaded)

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

col(r). col(b). col(g).

color(X,C) : col(C) :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).
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More Examples

• P1 = {a ; b ; c←}

– stable models {a}, {b}, and {c}

• P2 = {a ; b ; c← , ← a}

– stable models {b} and {c}

• P3 = {a ; b ; c← , ← a , b← c , c← b}

– stable model {b, c}

• P4 = {a ; b← c , b← not a, not c , a ; c← not b}

– stable models {a} and {b}
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Some properties

• A disjunctive logic program may have zero, one, or multiple stable models
• If X is a stable model of a disjunctive logic program P,

then X is a model of P (seen as a formula)
• If X and Y are stable models of a disjunctive logic program P,

then X 6⊂ Y

• If A ∈ X for some stable model X of a disjunctive logic program P, then
there is a rule r ∈ P such that
body(r)+ ⊆ X, body(r)− ∩ X = ∅, and head(r) ∩ X = {A}
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An example with variables

P =

{
a(1, 2) ←
b(X) ; c(Y) ← a(X, Y), not c(Y)

}

ground(P) =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1), not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)
b(2) ; c(1) ← a(2, 1), not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)


For every stable model X of P, we have

• a(1, 2) ∈ X and
• {a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅
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An example with variables

ground(P)

X

=


a(1, 2) ←
b(1) ; c(1) ← a(1, 1), not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)
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• Consider X = {a(1, 2), b(1)}
• We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
• X is a stable model of P because X ∈ min⊆(ground(P)X)
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An example with variables
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Default negation in rule heads
• Consider disjunctive rules of the form

a1 ; . . . ; am ; not am+1 ; . . . ; not an ← an+1, . . . , ao, not ao+1, . . . , not ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

• Given a program P over A, consider the program

P̃ = {head(r)+ ← body(r) ∪ {not ã | a ∈ head(r)−} | r ∈ P}
∪ {ã← not a | r ∈ P and a ∈ head(r)−}

• A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã
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Default negation in rule heads
• Consider disjunctive rules of the form

a1 ; . . . ; am ; not am+1 ; . . . ; not an ← an+1, . . . , ao, not ao+1, . . . , not ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p
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An example
• The program

P = {a ; not a←}

yields
P̃ = {a← not ã} ∪ {ã← not a}

• P̃ has two stable models, {a} and {ã}
• This induces the stable models {a} and ∅ of P
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Computational Aspects: Overview

8 Complexity
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Outline

8 Complexity
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Complexity

Let a be an atom and X be a set of atoms

• For a positive normal logic program P:
– Deciding whether X is the stable model of P is P-complete
– Deciding whether a is in the stable model of P is P-complete

• For a normal logic program P:
– Deciding whether X is a stable model of P is P-complete
– Deciding whether a is in a stable model of P is NP-complete

• For a normal logic program P with optimization statements:
– Deciding whether X is an optimal stable model of P is

co-NP-complete
– Deciding whether a is in an optimal stable model of P is

∆p
2-complete
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Complexity

Let a be an atom and X be a set of atoms

• For a positive disjunctive logic program P:
– Deciding whether X is a stable model of P is co-NP-complete
– Deciding whether a is in a stable model of P is NPNP-complete

• For a disjunctive logic program P:
– Deciding whether X is a stable model of P is co-NP-complete
– Deciding whether a is in a stable model of P is NPNP-complete

• For a disjunctive logic program P with optimization statements:
– Deciding whether X is an optimal stable model of P is

co-NPNP-complete
– Deciding whether a is in an optimal stable model of P is

∆p
3-complete

• For a propositional theory Φ:
– Deciding whether X is a stable model of Φ is co-NP-complete
– Deciding whether a is in a stable model of Φ is NPNP-complete
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• See also: http://potassco.sourceforge.net
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