Science of Computational Logic

Sebastian Rudolph, Tobias Philipp
International Masters Programme in Computational Logic — winter semester 2014/2015
02.02.2015

Problem 9.1

Consider the program

$$
P=\{\neg p \leftarrow \sim p\}
$$

- Compute $\left.P\right|_{0},\left.P\right|_{\{p\}},\left.P\right|_{\{p p\}}$
- Present all answer sets of P.

Problem 9.2

Consider the program

$$
P=\{p \leftarrow \sim q, p \leftarrow \sim \neg p, q \leftarrow p \wedge \sim q, p \leftarrow, q \leftarrow\}
$$

- Compute all answer sets of P.
- What happens if we delete $q \leftarrow$ from P ?

Problem 9.3

Proof that answer set programming is non-monotonic.

Problem 9.4

Write a answer set program that corresponds to the following specification:
X can fly, if X is a bird, nothing abnormal is the case, and we can safely assume that X can fly. One abnormal situation is that X is a penguin.

Problem 9.5

Proof that the program presented in slide 46 has an answer set if and only if the graph G has a Hamiltonian cycle.

Problem 9.6

Write a an answer set program P such that all its answer sets correspond to a solution of a Sudoku puzzle.

