
DATABASE THEORY

Lecture 4: Complexity of FO Query Answering

David Carral

Knowledge-Based Systems

TU Dresden, 23rd Apr 2019

How to Measure Query Answering Complexity

Query answering as decision problem
{ consider Boolean queries

Various notions of complexity:

• Combined complexity (complexity w.r.t. size of query and database instance)

• Data complexity (worst case complexity for any fixed query)

• Query complexity (worst case complexity for any fixed database instance)

Various common complexity classes:

L ✓ NL ✓ P ✓ NP ✓ PSpace ✓ ExpTime

David Carral, 23rd Apr 2019 Database Theory slide 2 of 11

An Algorithm for Evaluating FO Queries

function Eval(',I)

01 switch (') {
02 case p(c1, . . . , cn) : return hc1, . . . , cni 2 pI

03 case ¬ : return ¬Eval(,I)

04 case 1 ^ 2 : return Eval(1,I) ^ Eval(2,I)

05 case 9x. :

06 for c 2 �I {
07 if Eval([x 7! c],I) then return true

08 }
09 return false

10 }

David Carral, 23rd Apr 2019 Database Theory slide 3 of 11

FO Algorithm Worst-Case Runtime

Let m be the size of ', and let n = |I| (total table sizes)

• How many recursive calls of Eval are there?
{ one per subexpression: at most m

• Maximum depth of recursion?
{ bounded by total number of calls: at most m

• Maximum number of iterations of for loop?
{ |�I|  n per recursion level
{ at most nm iterations

• Checking hc1, . . . , cni 2 pI can be done in linear time w.r.t. n

Runtime in m · nm · n = m · nm+1

David Carral, 23rd Apr 2019 Database Theory slide 4 of 11

FO Algorithm Worst-Case Runtime

Let m be the size of ', and let n = |I| (total table sizes)

• How many recursive calls of Eval are there?
{ one per subexpression: at most m

• Maximum depth of recursion?
{ bounded by total number of calls: at most m

• Maximum number of iterations of for loop?
{ |�I|  n per recursion level
{ at most nm iterations

• Checking hc1, . . . , cni 2 pI can be done in linear time w.r.t. n

Runtime in m · nm · n = m · nm+1

David Carral, 23rd Apr 2019 Database Theory slide 4 of 11

Time Complexity of FO Algorithm

Let m be the size of ', and let n = |I| (total table sizes)

Runtime in m · nm+1

Time complexity of FO query evaluation

• Combined complexity: in ExpTime

• Data complexity (m is constant): in P

• Query complexity (n is constant): in ExpTime

David Carral, 23rd Apr 2019 Database Theory slide 5 of 11

FO Algorithm Worst-Case Memory Usage

We can get better complexity bounds by looking at memory

Let m be the size of ', and let n = |I| (total table sizes)

• For each (recursive) call, store pointer to current subexpression of ': log m

• For each variable in ' (at most m), store current constant assignment (as a
pointer): m · log n

• Checking hc1, . . . , cni 2 pI can be done in logarithmic space w.r.t. n

Memory in m log m + m log n + log n = m log m + (m + 1) log n

David Carral, 23rd Apr 2019 Database Theory slide 6 of 11

Space Complexity of FO Algorithm

Let m be the size of ', and let n = |I| (total table sizes)

Memory in m log m + (m + 1) log n

Space complexity of FO query evaluation

• Combined complexity: in PSpace

• Data complexity (m is constant): in L

• Query complexity (n is constant): in PSpace

David Carral, 23rd Apr 2019 Database Theory slide 7 of 11

FO Combined Complexity

The algorithm shows that FO query evaluation is in PSpace.
Is this the best we can get?

Hardness proof: reduce a known PSpace-hard problem to FO query evaluation

{ QBF satisfiability

Let Q1X1. Q2X2. · · · QnXn.'[X1, . . . , Xn] be a QBF (with Qi 2 {8,9})
• Database instance I with �I = {0, 1}
• One table with one row: true(1)
• Transform input QBF into Boolean FO query

Q1x1. Q2x2. · · · Qnxn.'[X1 7! true(x1), . . . , Xn 7! true(xn)]

It is easy to check that this yields the required reduction. ⇤

David Carral, 23rd Apr 2019 Database Theory slide 8 of 11

FO Combined Complexity

The algorithm shows that FO query evaluation is in PSpace.
Is this the best we can get?

Hardness proof: reduce a known PSpace-hard problem to FO query evaluation
{ QBF satisfiability

Let Q1X1. Q2X2. · · · QnXn.'[X1, . . . , Xn] be a QBF (with Qi 2 {8,9})
• Database instance I with �I = {0, 1}
• One table with one row: true(1)
• Transform input QBF into Boolean FO query

Q1x1. Q2x2. · · · Qnxn.'[X1 7! true(x1), . . . , Xn 7! true(xn)]

It is easy to check that this yields the required reduction. ⇤

David Carral, 23rd Apr 2019 Database Theory slide 8 of 11

PSpace-hardness for DI Queries

The previous reduction from QBF may lead to a query that is not domain independent

Example: QBF 9p.¬p leads to FO query 9x.¬true(x)

Better approach:

• Consider QBF Q1X1. Q2X2. · · · QnXn.'[X1, . . . , Xn] with ' in negation normal form:
negations only occur directly before variables Xi (still PSpace-complete: exercise)

• Database instance I with �I = {0, 1}
• Two tables with one row each: true(1) and false(0)
• Transform input QBF into Boolean FO query

Q1x1. Q2x2. · · · Qnxn.'0

where '0 is obtained by replacing each negated variable ¬Xi with false(xi) and
each non-negated variable Xi with true(xi).

David Carral, 23rd Apr 2019 Database Theory slide 9 of 11

PSpace-hardness for DI Queries

The previous reduction from QBF may lead to a query that is not domain independent

Example: QBF 9p.¬p leads to FO query 9x.¬true(x)

Better approach:

• Consider QBF Q1X1. Q2X2. · · · QnXn.'[X1, . . . , Xn] with ' in negation normal form:
negations only occur directly before variables Xi (still PSpace-complete: exercise)

• Database instance I with �I = {0, 1}
• Two tables with one row each: true(1) and false(0)
• Transform input QBF into Boolean FO query

Q1x1. Q2x2. · · · Qnxn.'0

where '0 is obtained by replacing each negated variable ¬Xi with false(xi) and
each non-negated variable Xi with true(xi).

David Carral, 23rd Apr 2019 Database Theory slide 9 of 11

Combined Complexity of FO Query Answering

Summing up, we obtain:

Theorem 4.1: The evaluation of FO queries is PSpace-complete with respect to
combined complexity.

We have actually shown something stronger:

Theorem 4.2: The evaluation of FO queries is PSpace-complete with respect to
query complexity.

David Carral, 23rd Apr 2019 Database Theory slide 10 of 11

Combined Complexity of FO Query Answering

Summing up, we obtain:

Theorem 4.1: The evaluation of FO queries is PSpace-complete with respect to
combined complexity.

We have actually shown something stronger:

Theorem 4.2: The evaluation of FO queries is PSpace-complete with respect to
query complexity.

David Carral, 23rd Apr 2019 Database Theory slide 10 of 11

Summary and Outlook

The evaluation of FO queries is

• PSpace-complete for combined complexity

• PSpace-complete for query complexity

Open questions:

• What is the data complexity of FO queries?

• Are there query languages with lower complexities? (next lecture)

• Which other computing problems are interesting?

David Carral, 23rd Apr 2019 Database Theory slide 11 of 11

