DATABASE THEORY

Lecture 4: Complexity of FO Query Answering

David Carral

Knowledge-Based Systems

TU Dresden, 23rd Apr 2019

An Algorithm for Evaluating FO Queries

function $\operatorname{Eval}(\varphi, I)$
switch (φ)
case $p\left(c_{1}, \ldots, c_{n}\right)$: return $\left\langle c_{1}, \ldots, c_{n}\right\rangle \in p^{I}$
case $\neg \psi$: return $\neg \operatorname{Eval}(\psi, I)$
case $\psi_{1} \wedge \psi_{2}$: return $\operatorname{Eval}\left(\psi_{1}, \mathcal{I}\right) \wedge \operatorname{Eval}\left(\psi_{2}, \mathcal{I}\right)$
case $\exists x . \psi$:
for $c \in \Delta^{I}$ \{
if $\operatorname{Eval}(\psi[x \mapsto c], I)$ then return true
\}
return false \}

How to Measure Query Answering Complexity

Query answering as decision problem
\leadsto consider Boolean queries
Various notions of complexity:

- Combined complexity (complexity w.r.t. size of query and database instance)
- Data complexity (worst case complexity for any fixed query)
- Query complexity (worst case complexity for any fixed database instance)

Various common complexity classes:

$$
\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSpace} \subseteq \text { ExpTime }
$$

FO Algorithm Worst-Case Runtime

Let m be the size of φ, and let $n=|I|$ (total table sizes)

FO Algorithm Worst-Case Runtime

Let m be the size of φ, and let $n=|I|$ (total table sizes)

- How many recursive calls of Eval are there?
\leadsto one per subexpression: at most m
- Maximum depth of recursion?
\leadsto bounded by total number of calls: at most m
- Maximum number of iterations of for loop? $\leadsto\left|\Delta^{I}\right| \leq n$ per recursion level
\leadsto at most n^{m} iterations
- Checking $\left\langle c_{1}, \ldots, c_{n}\right\rangle \in p^{I}$ can be done in linear time w.r.t. n

Runtime in $m \cdot n^{m} \cdot n=m \cdot n^{m+1}$

FO Algorithm Worst-Case Memory Usage

We can get better complexity bounds by looking at memory
Let m be the size of φ, and let $n=|I|$ (total table sizes)

- For each (recursive) call, store pointer to current subexpression of $\varphi: \log m$
- For each variable in φ (at most m), store current constant assignment (as a pointer): $m \cdot \log n$
- Checking $\left\langle c_{1}, \ldots, c_{n}\right\rangle \in p^{I}$ can be done in logarithmic space w.r.t. n

Memory in $m \log m+m \log n+\log n=m \log m+(m+1) \log n$

Time Complexity of FO Algorithm

Let m be the size of φ, and let $n=|I|$ (total table sizes)
Runtime in $m \cdot n^{m+1}$

Time complexity of FO query evaluation

- Combined complexity: in ExpTime
- Data complexity (m is constant): in P
- Query complexity (n is constant): in ExpTime

Space Complexity of FO Algorithm

Let m be the size of φ, and let $n=|I|$ (total table sizes)
Memory in $m \log m+(m+1) \log n$

Space complexity of FO query evaluation

- Combined complexity: in PSpace
- Data complexity (m is constant): in L
- Query complexity (n is constant): in PSpace

FO Combined Complexity

The algorithm shows that FO query evaluation is in PSpace.
Is this the best we can get?
Hardness proof: reduce a known PSpace-hard problem to FO query evaluation

David Carral, 23rd Apr 2019 Database Theory

PSpace-hardness for DI Queries

The previous reduction from QBF may lead to a query that is not domain independent
Example: QBF $\exists p . \neg p$ leads to FO query $\exists x . \neg \operatorname{true}(x)$

FO Combined Complexity

The algorithm shows that FO query evaluation is in PSpace.
Is this the best we can get?
Hardness proof: reduce a known PSpace-hard problem to FO query evaluation \leadsto QBF satisfiability

Let $\bigcirc_{1} X_{1} . \bigcirc_{2} X_{2} \ldots \bigcirc_{n} X_{n} . \varphi\left[X_{1}, \ldots, X_{n}\right]$ be a QBF (with $\bigcirc_{i} \in\{\forall, \exists\}$)

- Database instance I with $\Delta^{I}=\{0,1\}$
- One table with one row: true(1)
- Transform input QBF into Boolean FO query

$$
\bigcirc_{1} x_{1} . \bigcirc_{2} x_{2} \cdots \bigcirc_{n} x_{n} . \varphi\left[X_{1} \mapsto \operatorname{true}\left(x_{1}\right), \ldots, X_{n} \mapsto \operatorname{true}\left(x_{n}\right)\right]
$$

It is easy to check that this yields the required reduction

PSpace-hardness for DI Queries

The previous reduction from QBF may lead to a query that is not domain independent
Example: QBF $\exists p . \neg p$ leads to FO query $\exists x . \neg \operatorname{true}(x)$
Better approach:

- Consider QBF $\bigcirc_{1} X_{1} . \bigcirc_{2} X_{2} \cdots \bigcirc_{n} X_{n} . \varphi\left[X_{1}, \ldots, X_{n}\right]$ with φ in negation normal form: negations only occur directly before variables X_{i} (still PSpace-complete: exercise)
- Database instance \mathcal{I} with $\Delta^{I}=\{0,1\}$
- Two tables with one row each: true(1) and false(0)
- Transform input QBF into Boolean FO query

$$
\bigcirc_{1} x_{1} \cdot \bigcirc_{2} x_{2} \cdots \bigcirc_{n} x_{n} \cdot \varphi^{\prime}
$$

where φ^{\prime} is obtained by replacing each negated variable $\neg X_{i}$ with false $\left(x_{i}\right)$ and each non-negated variable X_{i} with true $\left(x_{i}\right)$

Summing up, we obtain

Theorem 4.1: The evaluation of FO queries is PSpace-complete with respect to combined complexity.

Combined Complexity of FO Query Answering

Summing up, we obtain:

Theorem 4.1: The evaluation of FO queries is PSpace-complete with respect to combined complexity.

We have actually shown something stronger:

Theorem 4.2: The evaluation of FO queries is PSpace-complete with respect to query complexity.

Summary and Outlook

The evaluation of FO queries is

- PSpace-complete for combined complexity
- PSpace-complete for query complexity

Open questions:

- What is the data complexity of FO queries?
- Are there query languages with lower complexities? (next lecture)
- Which other computing problems are interesting?

