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Abstract. Formal concept analysis has grown from a new branch of the mathematical field of lattice
theory to a widely recognized tool in Computer Science and elsewhere. In order to fully benefit from
this theory, we believe that it can be enriched with notions such as approximation by computation or
representability. The latter are commonly studied in denotational semantics and domain theory and
captured most prominently by the notion of algebraicity, e.g. of lattices. In this paper, we explore
the notion of algebraicity in formal concept analysis from a category-theoretical perspective. To this
end, we build on the notion of approximable concept with a suitable category and show that the latter
is equivalent to the category of algebraic lattices. At the same time, the paper provides a relatively
comprehensive account of the representation theory of algebraic lattices in the framework of Stone
duality, relating well-known structures such as Scott information systems with further formalisms
from logic, topology, domains and lattice theory.
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1. Introduction

Algebraic lattices conveniently represent computationally relevant properties. As partial orders they al-
low for the expression of amounts of information content. Distinguished elements—called compact or
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finite—stand for computationally representable information. Every element or information item not di-
rectly representable can be approximated by representable, i.e. compact, items. So algebraic lattices can
be identified as computationally relevant structures, and as such have found applications in Computer
Science, most prominently in the theory of denotational semantics, domain theory (see, e.g. [2]), but
recently also in aspects regarding knowledge representation and reasoning (see e.g. [20, 33, 11]).

As can be expected from rich mathematical structures such as algebraic lattices, a multitude of possi-
ble characterizations have been established, ranging from the classical correspondence between algebraic
lattices and their semilattices of compacts [10], over logical characterizations such as Scott information
systems [21], to topological investigations via the Scott topology [14, 1]. Following Abramsky’s pro-
gramme of domain theory in logical form, each of these representations is associated with either the
spacial or the localic side of Stone duality: the former includes syntactical, logical, and axiomatic for-
malisms, while the latter typically incorporates semantical, observational, and denotational aspects. The
equivalence of both worlds leads to rather pleasant results of soundness and completeness of correspond-
ing proof systems and model theories.

We add to this collection a representation of algebraic lattices based on the framework of formal
concept analysis (FCA, [9]). Originally, FCA was conceived as an alternative formulation of the theory
of complete lattices, motivated by philosophical considerations [28]. In the meantime, FCA has grown
from a new branch of lattice theory to a widely recognized tool in Computer Science (see, e.g., [27]).
Prominent applications concern areas such as Data- and Textmining, Knowledge Representation and
Reasoning, Semantic Web, Computational Linguistics. FCA starts from formal contexts, syntactical de-
scriptions of object-attribute relations, and lifts them to closure operators and complete lattices. While
this suggests a logical viewpoint based on the given (deductive) closure, the derived logical entailment
lacks the important property of compactness: some conclusions can only be drawn from infinite sets of
premises [31]. This motivates a deviation from the classical definition of closures in FCA to ensure Scott
continuity of the derived closure operators (the so called algebraic ones), thus recovering compactness
and switching to complete lattices that are algebraic. We achieve this by introducing the (complete al-
gebraic) lattice of approximable concepts [34], obtained from given object-attribute relations analogous
to the classical construction used in FCA, but at the same time conforming to the insights concerning
computationally relevant structures as studied in domain theory.

The strong interest in algebraic lattices indeed stems only in part from the appealing way in which
these structures capture the possibility of approximating infinite computation by finite elements. The
full strength of the theory only becomes apparent when Scott continuous functions are employed as
morphisms of a category Alg of algebraic lattices. The interplay between the lattices and these morphisms
is highly satisfactory: the set of all Scott continuous functions between two algebraic lattices can again be
viewed as an algebraic lattice, and Alg is in fact cartesian closed. Consequently, we augment the above
characterizations of algebraic lattices by suitable notions of morphisms, inducing in each case a category
that is equivalent to Alg. We thus obtain a cartesian closed category of formal contexts corresponding to
the new notion of approximable concepts.

At the same time, this article gives a relatively comprehensive account of the numerous representa-
tions of algebraic lattices by offering a fresh, unified, and largely self-contained treatment of the theory.
The new approach via FCA provides additional insights into the nature of the well-known formalisms.
In particular, we give a direct proof of the cartesian closedness of the new category of formal contexts,
hence obtaining novel categorical product and function space constructions based on formal contexts.
Particularly, the formulation of function space enhances our understanding of approximable mappings,
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the class of morphisms Scott conceived for his information systems [21]. Indeed, these relations turn out
to be immediate descriptions of sets of step functions, sufficient to capture all Scott continuous functions
between the corresponding algebraic lattices.

Our discussion will also expose the connections between algebraic lattices and the conjunctive frag-
ment of propositional logic—an approach that appears to be rather intuitive from the viewpoint of Com-
puter Science and also brings to bear on the results from [12, 11]. As encompassed in [1], this is achieved
through the Lindenbaum algebras of these logics. Our profit, besides finding a simple access to Scott in-
formation systems, is an alternative view on approximable mappings as multilingual sequent calculi, as
considered in [15] for more expressive logics.

The structure of this paper is as follows. In the next Section 2 the most fundamental definitions from
order theory, topology, and category theory are recalled. Section 3 starts the discussion of algebraic lat-
tices from a domain theoretic perspective, with special emphasis on the role of the semilattice of compact
elements. Thereafter, Section 4 introduces appropriate notions of morphisms for such semilattices, which
are shown to be equivalent to Scott continuous functions between the corresponding algebraic lattices.
Section 5 then introduces a category of formal contexts equivalent to the algebraic lattices and Scott con-
tinuous functions, and gives an explicit proof of the cartesian closure of this new category. Building on
the prototypical categorical equivalences established earlier, Section 6 introduces further representation
theorems from logic and topology, which are then connected using Stone duality. Finally, Section 7 gives
pointers to further literature and hints at possible extensions of given results.

A very preliminary report on some of the results in this paper has appeared as [13]. The notion
of approximable concept has first been proposed in [34], but without exploring its category-theoretical
content.

2. Preliminaries and Notation

We first give some basic definitions of order theory at least to fix notations. Our main reference will be
[10]. A more gentle first introduction is given in [6].

A partially ordered set (poset) is a set P with a reflexive, symmetric, transitive relation ≤ ⊆ P × P.
If (P,≤) is a poset, then its dual is the poset (P,≥). We denote posets by their carrier set as long as the
partial order is clear from the context.

Definition 2.1. A poset L is a lattice if every two elements of L have a supremum and an infimum. These
meets and joins of binary sets will be written in infix notation:

∨
{x, y} = x ∨ y and

∧
{x, y} = x ∧ y. L is

distributive if, for all x, y, z ∈ L, one finds x ∧ (y ∨ z) = (x ∨ y) ∧ (x ∨ z).
An element x ∈ L is called

• meet-irreducible if y ∧ z = x implies y = x or z = x,

• meet-prime if y ∧ z ≤ x implies y ≤ x or z ≤ x.

Join-irreducible and join-prime elements are defined dually.

In a distributive lattice, the meet-irreducibles are exactly the meet-primes, and this will be the only
case considered in this paper.
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Definition 2.2. Consider a poset L. A non-empty subset D ⊆ L is directed if, for any x, y ∈ D, there is
some element z ∈ D such that x ≤ z and y ≤ z. If every directed subset D ⊆ L has a least upper bound
(supremum, join)

∨
D in L, then L is a directed complete partial order (dcpo).

L is a complete lattice if every subset S ⊆ L has a least upper bound
∨

S and a greatest lower bound
(infimum, meet)

∧
S . For a set X, 2X denotes the powerset lattice, i.e. the complete lattice of all subsets

of X under inclusion.

We recall that a poset that has all infima also has all suprema, and vice versa, so that one of these
conditions is in fact sufficient. Furthermore we want to talk about functions between partially ordered
sets.

Definition 2.3. Consider posets P and Q, and a function f : P → Q. Then f is monotone if it preserves
the order of P, i.e. x ≤ y in P implies f (x) ≤ f (y) in Q. Moreover, f preserves (directed) suprema if,
for any (directed) S ⊆ P such that

∨
S exists, one finds that

∨
f (S ) =

∨
{ f (s) | s ∈ S } exists and that

f (
∨

S ) =
∨

f (S ). Preservation of infima is defined dually. A function that preserves directed suprema is
also called Scott continuous. An order-isomorphism is a bijective monotone function that has a monotone
inverse.

Note that preservation of directed suprema (infima) always entails monotonicity, since every pair of
elements x ≤ y induces a directed set {x, y} for which preservation of suprema (infima) implies f (x) ≤
f (y) as required.

We also need a little general topology. Our view on topology largely agrees with [25].

Definition 2.4. Let X be a set and let τ ⊆ 2X be a system of subsets of X. (X, τ) is a topological space if τ
contains X and the empty set, and is closed under arbitrary unions and finite intersections. The members
of such a system τ are called open sets and the complete lattice (τ,⊆) is called the open set lattice. The
complements of open sets are the closed sets. If confusion is unlikely, we will denote topological spaces
by their sets of points. For a topological space X, we also use Ω(X) to denote its open set lattice.

A subset B of τ is a base of τ if every open set is equal to the union of all members of B it contains.

The appropriate mappings between topological spaces are continuous functions.

Definition 2.5. Consider topological spaces X and Y , and a function f : X → Y . Then f is continuous if
its inverse image preserves open sets, i.e. for every open set O ⊆ Y , the set f −1(O) = {x ∈ X | f (x) ∈ O} is
open in X. If f is bijective and both f and f −1 are continuous then f is a homeomorphism. The topological
spaces X and Y are said to be homeomorphic if a homeomorphism between them exists.

Finally, a minimum amount of category theory is utilized in this paper, in order to present relation-
ships of the different concepts to their full extent. Our terminology follows [3]. Other good references
include [18], and the more easy-paced introductions [16] and [19]. A category C consists of

1. a class |C| of objects of the category,

2. for all A, B ∈ |C|, a set C(A, B) of morphisms from A to B,

3. for all A, B,C ∈ |C|, a composition operation
◦ : C(B,C) × C(A, B)→ C(A,C),
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4. for all A ∈ |C|, an identity morphism idA ∈ C(A, A),

such that for all f ∈ C(A, B), g ∈ C(B,C), h ∈ C(C,D), the associativity axiom h◦(g◦ f ) = (h◦g)◦ f , and
the identity axioms idB ◦ f = f and g◦ idB = g are satisfied. As usual, we write f : A→ B for morphisms
f ∈ C(A, B). The opposite Cop of a category C is defined by setting |Cop| = |C| and Cop(A, B) = C(B, A).
A morphism f : A → A′ is an isomorphism, if it has an inverse, i.e. if there is a (necessarily unique)
morphism g : A′ → A with g ◦ f = idA and f ◦ g = idA′ .

A functor F from a category A to a category B consists of

1. a mapping |A| → |B| of objects, where the image of an object A ∈ |A| is denoted by FA,

2. for all A, A′ ∈ |A|, a mapping A(A, A′)→ B(FA,FA′), where the image of a morphism f ∈ A(A, A′)
is denoted by F f ,

such that for all A, B,C ∈ |A| and all f ∈ A(A, B) and g ∈ A(B,C) we have F( f ◦ g) = F f ◦ Fg and
F idA = idFA.

The third basic ingredient of category theory are natural transformations. Given two functors F,G :
A → B, a family of morphisms η = (ηA : FA → GA)A∈|A| is a natural transformation from F to G, if, for
all morphisms f : A→ A′ of A, one has that ηA′ ◦F f = G f ◦ ηA. This situation is denoted by η : A⇒ B.
A natural transformation (ηA)A∈|A| is a natural isomorphism if all of its members are isomorphisms.

More specific notions will be introduced as they are needed.

3. Algebraic lattices

In this section we introduce algebraic lattices and review their most well-known characterizations in
terms of the sub-poset of compact elements and closure systems of Scott continuous closure operators.
The material basically follows [10], to which we refer for the details of the proofs which we omit to
avoid replication. We start with a basic definition.

Definition 3.1. Consider a dcpo P. An element c ∈ P is compact if, for every directed set D ⊆ P we
have that c ≤

∨
D implies c ≤ d for some d ∈ D. The set of all compact elements of P is denoted by

K(P). We usually consider K(P) to be a sub-poset of P.

We note the following

Proposition 3.1. Let L be a complete lattice with compact elements a, b ∈ K(L) and least element ⊥.
Then a ∨ b and ⊥ are compact.

Proposition 3.1 contains important information about the structure of the sub-poset of compact ele-
ments of a complete lattice. The following definition makes the properties of K(L) precise.

Definition 3.2. A poset S is a join-semilattice, if any two elements a, b in S have a least upper bound
a ∨ b. Dually, in a meet-semilattice any two elements have a greatest lower bound.

We conclude that the poset K(L) of compact elements of a complete lattice is a join-semilattice
with least element under the order of L. However, for a full characterization we shall also be interested
in the opposite direction, i.e. given a join-semilattice, we would like to construct a complete lattice.
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The right tool for this endeavor is that of ideal completion, introduced next. Given a set X we define
↓X = {y | there is x ∈ X such that y ≤ x} and ↑X = {y | there is x ∈ X such that x ≤ y}; a set is called an
upper (respectively, lower) set if X = ↑X (respectively, X = ↓X). Upper and lower sets of singleton sets
{x} are denoted by ↑x and ↓x, respectively.

Definition 3.3. Consider a partially ordered set P. A subset I ⊆ P is an ideal if it is a directed lower set.
The ideal completion Idl(P) is the collection of all ideals of P partially ordered via subset inclusion.

Note that lower sets ↓x are always ideals—the principle ideals generated by the element x. On the
other hand, the empty set is not an ideal, since directed sets need to be non-empty. We see below that
the ideal completion of any join-semilattice with least element is a complete lattice. However, not all
complete lattices arise in this way. The next definition provides the appropriate characterization.

Definition 3.4. A complete lattice L is an algebraic lattice, if for every element x ∈ L, we have x =∨(
↓x ∩ K(L)

)
.

One can easily see from Proposition 3.1 that any set of the form ↓x ∩ K(L) is necessarily directed.
Now we are ready to state the important

Theorem 3.1. ([10] Proposition I-4.10)
Let L be an algebraic lattice and let S be a join-semilattice with least element.

1. K(L) is a join-semilattice with least element, where the order is induced by that given on L.

2. Idl(S ) is a an algebraic lattice, where meet is given by set-intersection.

3. S is order-isomorphic to K(Idl(S )) via the isomorphism f : S → K(Idl(S )) : a 7→ ↓a.

4. L is order-isomorphic to Idl(K(L)) via the isomorphism g : L→ Idl(K(L)) : x 7→ ↓x ∩ K(L).

This result demonstrates that we can represent any algebraic lattice—up to isomorphism—by an ap-
propriate semilattice and vice versa. We subsequently obtain a number of alternative characterizations
from this statement and its proof. A first observation is that Theorem 3.1 assures that every algebraic
lattice is isomorphic to a lattice of sets. More precisely, for an algebraic lattice L, we established an
isomorphism to a subset of the powerset of its compact elements 2K(L). Now one may ask how to char-
acterize those substructures of powersets which yield algebraic lattices. The tool for this purpose are
closure operators.

Definition 3.5. Consider a poset P and a function c : P → P. Then c is a closure operator if the
following hold for all elements x, y ∈ P

1. c(x) = c(c(x)) (c is idempotent)

2. x ≤ c(x) (c is inflationary)

3. x ≤ y implies c(x) ≤ c(y) (c is monotone)

A closure operator c is algebraic if it is moreover Scott continuous.
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An important result about this kind of operators is that they can be characterized completely by their
images, the closure systems. Explicitly, we have the following.

Proposition 3.2. ([10] Proposition O-3.13)
Let L be a complete lattice and let c be a closure operator on L. Then c preserves arbitrary infima.
Especially, its image c(L) = {c(x) | x ∈ L} is closed under arbitrary infima in L. Conversely, any subset
C of L that is closed under arbitrary infima in L induces a unique closure operator c with image C, given
by c : L→ L : x 7→

∧
{y ∈ C | x ≤ y}.

In Theorem 3.1(2) it was shown that the set of ideals is closed under arbitrary intersections. By the
above proposition this assures that Idl(S ) is a closure system on 2S , which can be uniquely characterized
by a closure operator. However, not every closure system is algebraic, such that a further restriction on
the class of closure operators is required. It turns out that Scott continuity (see Definition 2.3) is what is
needed to further extend the representation of algebraic lattices.

Theorem 3.2. ([10] Corollary I-4.14)
Any algebraic lattice L is isomorphic to the image of an algebraic (or Scott continuous) closure operator
on the powerset 2K(L). The operator is given by assigning to any set of compacts the least ideal which
contains this set. Conversely, the image of any such closure is an algebraic lattice, where the compacts
are exactly the images of finite sets of compacts.

This gives us a third characterization of algebraic lattices. One is tempted to develop a similar state-
ment for join-semilattices with least element. Indeed, any closure operator on the semilattice of finite
elements of a powerset can uniquely be extended to a Scott continuous closure on the powerset. How-
ever, it is not true that all join-semilattices are images of closure operators on the semilattice of finite
subsets of some set. This is easy to see by noting that any collection of finite sets can only have finite
descending chains, i.e. it satisfies the descending chain condition (see [6]). Yet there are join-semilattices
with least element that do not have this property, like for example the non-negative rational numbers in
their natural order. What we can say is the following.

Corollary 3.1. For any join-semilattice S with least element, there is a closure operator c : 2S → 2S ,
such that S is isomorphic to the image of the finite elements of 2S under c. Conversely, the finite-set
image of any closure operator on a powerset is a join-semilattice with least element.

Proof:
Note that any closure operator c on a powerset induces a unique Scott continuous closure c′ by setting
c′(X) =

⋃
{c(A) | A ⊆ X, A finite}, where c′ agrees with c on all finite sets. Then combine Theorems 3.1

and 3.2, especially the characterization of compact closed subsets. ut

The significance of this statement will become apparent in Section 5.

4. Approximable mappings

So far we only provided object-level correspondences between algebraic lattices and join-semilattices.
We supplement this with suitable morphisms which turn these relations into an equivalence of the re-
spective categories. On the side of algebraic lattices, one typically employs Scott continuous functions
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to form a category Alg. This definition leads to a rather advantageous property, namely cartesian closed-
ness, which will be discussed in the next section. The aim of this section is to identify a notion of
morphism for join-semilattices that produces a category which is equivalent to Alg.

Definition 4.1. Consider categories A and B. An equivalence of categories A and B is constituted by a
pair of functors F : A → B and G : B → A, together with a pair of natural isomorphisms η : GF ⇒ idA
and ε : FG⇒ idB, where idA and idB denote the identity functors on the respective categories.

It is well-known that a functor F : A → B that is part of an equivalence of categories must be
full and faithful, i.e. there must be a bijection between the hom-sets A(A, A′) (the set of all morphisms
from A to A′) and B(FA,FA′). Thus our next goal is to define a set of morphisms between each pair
of join-semilattices which corresponds bijectively to the set of Scott continuous mappings between the
associated algebraic lattices. It is easy to see that we cannot expect to use functions for this purpose for
mere cardinality reasons: the set of compacts can be significantly smaller than its algebraic lattice. This
problem was already solved by Scott in the closely related case of his information systems [21], which
we shall also encounter later on. The idea is to shift to a special set of relations, called approximable
mappings. To our knowledge, the notion of approximable mappings has not yet been introduced to the
study of join-semilattices, so we spell out the details.

Definition 4.2. Consider join-semilattices S and T with least elements ⊥S and ⊥T , respectively. A rela-
tion{ ⊆ S × T is an approximable mapping if the following hold:

(am1) a{ ⊥T (non-emptiness)

(am2) a{ b and a{ b′ implies a{ b ∨ b′ (directedness)

(am3) a ≤ a′, a{ b, and b′ ≤ b imply a′ { b′ (monotonicity and downward closure)

for all elements a, a′ ∈ S and b, b′ ∈ T . This situation is denoted by writing S { T .

The labels for the above properties already indicate their purpose: for every element a ∈ S the set
{b ∈ T | a { b} is an ideal of T and the resulting assignment S → Idl(T ) is monotone. It is now rather
obvious how this encodes Scott continuous functions: The image of a compact element is given explicitly
via the ideal of compacts which approximates it. The image of a non-compact element is obtained by
representing it as directed supremum of compacts and applying Scott continuity.

Some easy checks show that join-semilattices with least element together with approximable map-
pings indeed constitute a category Sem∨, where composition of morphisms is defined as the usual com-
position of relations. Thus for two approximable mappings S {1 R and R{2 T , one defines

{2 ◦{1 = {(s, t) | there is r ∈ R such that (s, r) ∈{1 and (r, t) ∈{2}.

Clearly, {2 ◦ {1 satisfies (am1) since a {1 ⊥R and ⊥R {2 ⊥T . Likewise, under the assumptions
of (am2), one finds intermediate values r, r′ ∈ R with a {1 r {2 b and a {1 r′ {2 b′. By (am2)
a {1 r ∨ r′, and by (am3) r ∨ r′ {2 b and r ∨ r′ {2 b′. Hence a {1 r ∨ r′ {2 b ∨ b′ by another
application of (am2). Finally, suppose the assumptions for (am3) hold for{2 ◦{1. Then there is r ∈ R
such that a {1 r {2 b and hence a′ {1 r {2 b′ as required. The identity morphism on a semilattice
S ∈ |Sem∨| is just its greater-or-equal relation ≥S . The fact that this yields an identity under relational
composition is just statement (am3). Associativity is inherited from relational composition.
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Lemma 4.1. The object mappings Idl and K from Section 3 can be extended to morphisms as follows. For
any approximable mapping{ ⊆ S × T , define Idl({) : Idl(S ) → Idl(T ) as Idl({)(I) = {b | there is a ∈
I with a { b}. For any Scott continuous mapping f : L → M, define K f ⊆ KL × KM by setting
K f = {(a, b) | b ≤ f (a)}. These definitions produce functors Idl : Sem∨ → Alg and K : Alg→ Sem∨.

Proof:
To see that Idl is indeed well-defined, observe that for any a ∈ S , Idl({)(↓a) = {b | a { b}, by (am3).
This set has already been recognized as an ideal, and hence Idl({) is well-defined for the compact ele-
ments of Idl(S ). By algebraicity, any ideal I is equal to the directed union

⋃
a∈I ↓a, and hence, observing

that Idl({) preserves all unions, Idl({)(I) =
⋃

a∈I Idl({)(↓a). This observation shows that, as a directed
union of ideals, Idl({)(I) is an ideal, and that Idl({) is Scott continuous.

It is immediate that Idl({) maps the identity approximable mapping ≥ to the identity function. To see
that it also preserves composition, note that Scott continuity allows us to restrict to the case of principal
ideals. Thus consider two approximable mappings S {1 R and R {2 T and some principal ideal ↓a,
a ∈ S . We compute

(
Idl({2)◦Idl({1)

)
(↓a) = Idl({2){r | a{1 r} = {b | there is r with a{1 r and r{2

b} = {b | a({2 ◦{1)b} = Idl({2 ◦{1)(↓a).
Now clearly K f has properties (am1) to (am3). For functoriality consider Scott continuous functions

f1 : L → M and f2 : M → N. It is easy to see that for a ∈ KL and c ∈ KN, whenever there is
b ∈ KM with b ≤ f1(a) and c ≤ f2(b), one has c ≤ f2( f1(a)). Since the converse also holds, we find that
K( f2 ◦ f1) = {(a, c) | c ≤ f2( f1(a))} = {(a, c) | there is b ∈ KM with b ≤ f1(a) and c ≤ f2(b)} = K f2 ◦ K f1.
Finally, applying K to the identity function clearly yields the identity approximable mapping. ut

We finish this section by showing the expected categorical equivalence:

Theorem 4.1. The functors Idl and K of Section 3 yield an equivalence of the categories Alg and Sem∨.

Proof:
For an algebraic lattice L let ηL : L → Idl(K(L)) : x 7→ ↓x ∩ K(L) be the isomorphism as established in
Theorem 3.1. Now consider an algebraic lattice M and a Scott continuous function f : L → M. For any
element x ∈ L, Idl(K( f )) maps the ideal ηL(x) to the ideal {b | there is a ∈ K(L) with a ≤ x and b ≤ f (a)}.
Since Scott continuity guarantees that the supremum of all f (a) is f (x), this is just the set ηM( f (x)) of all
compacts below f (x). Consequently, Idl(K( f ))(ηL(x)) = ηM( f (x)), i.e. η is a natural transformation.

For a join-semilattice S with least element, we define εS ⊆ S × K(Idl(S )) by setting εS = {(a, I) | I ⊆
↓a}. From Theorem 3.1 we derive that every compact ideal I is of the form ↓b, hence εS = {(a, ↓b) | b ≤
a}. It should now be obvious that εS is an isomorphism whose inverse is given by {(↓b, a) | a ≤ b}. For
naturality of ε, consider some approximable mapping S { T . We compute K(Idl({)) ◦ εS = {(a, ↓b) |
there is a′ ∈ S with a′ ≤ a and (↓a′, ↓b) ∈ K(Idl({))}. Expanding the condition (↓a′, ↓b) ∈ K(Idl({)),
we find it equivalent to ↓b ⊆ Idl({)(↓a′), which in turn is true iff ↓b ⊆ {t | a′ { t}, exploiting the fact that
↓a′ is compact. Finally, by (am3) this is equivalent to a′ { b, and we obtain K(Idl({)) ◦ εS = {(a, ↓b) |
a{ b}, again by (am3). On the other hand, εT ◦{ = {(a, ↓b) | there is b′ ∈ T with a{ b′ and b ≤ b′}.
Using (am3) once more, this evaluates to {(a, ↓b) | a { b}, which finishes the proof of naturality of
ε. ut
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5. A cartesian closed category of formal contexts

Formal concept analysis (FCA, [9]) is a powerful lattice-based tool for symbolic data analysis. In essence,
it is based on the extraction of a lattice—called formal concept lattice—from a binary relation called for-
mal context consisting of a set of objects, a set of attributes, and an incidence relation. The transformation
from a two-dimensional incidence table to a lattice structure is a crucial paradigm shift from which FCA
derives much of its power and versatility as a modeling tool. The concept lattices obtained this way
turn out to be exactly the complete lattices, and the particular way in which they structure and represent
knowledge is very appealing and natural from the perspective of many scientific disciplines.

The successful applications of FCA, however, are mainly restricted to finite contexts and finite con-
cept lattices, since infinite complete lattices generally do not lend themselves for practical implementa-
tions. Yet, infinite structures are highly relevant for numerous concrete tasks in knowledge representation
and reasoning: model theories of logic programs, computation domains in functional programming, and
class hierarchies in ontology research are some typical examples. In order to make methods from FCA
available in these application areas, we suggest an interpretation of formal contexts based solely on
finitely representable knowledge, thereby obtaining a canonical and computationally feasible represen-
tation of infinite data-structures. In effect, we establish a systematic connection between formal concept
analysis and algebraic lattices, and thus with domain theory [2], as a categorical equivalence, enriching
the link between the two areas as outlined in [31]. This leads to a category of formal contexts that we
now show directly to be cartesian closed.

Definition 5.1. A formal context is a structure P = (O, A, |=), where O and A are sets, and |= ⊆ O×A is a
binary relation. In this case the members of O are called objects, the members of A are called attributes,
and |= is viewed as an incidence relation between these two. Accordingly, one says that an object o has
property a whenever o |= a, i.e. (o, a) ∈ |=.

Functions αP : 2O → 2A and ωP : 2A → 2O are defined by setting αP(X) = {a ∈ A | o |= a for all o ∈
X} and ωP(Y) = {o ∈ O | o |= a for all a ∈ Y}.1 If the context is clear, we omit the subscript from these
maps. We also abbreviate α ◦ ω by αω etc. as is customary in category theory.

Intuitively, α yields all attributes common to a set of objects. Conversely, ω maps a set of attributes
to all objects that fall under all of these attributes. It is straightforward to show that α and ω form
an antitone Galois connection between the powerset lattices. This is usually exploited for constructing
closure operators α ◦ ω : 2A → 2A and ω ◦ α : 2O → 2O. It turns out that the closure systems for both of
these are dually isomorphic, the isomorphisms being given by α and ω.

For studying these closure systems, we can therefore focus our attention on the map α ◦ ω. Sets of
attributes that are closed with respect to this operator are called (attribute) concepts in the literature. FCA
builds on the fact that the collection of all concepts of any given formal context is a complete lattice, and
that all complete lattices can be obtained this way. This relationship is mediated by the closure system
on 2A induced by the mapping αω. We take a slightly different approach and focus our attention on the
operation of αω on K(2A), the join-semilattice with least element given by the finite subsets of A. It turns
out that this way we obtain all complete algebraic lattices instead of all complete ones. Corollary 3.1
suggests the following.

1In FCA, αP(X) is usually written as X′, and ωP(Y) is similarly written as Y ′. We feel that for our treatment a more explicit
notation is more convenient.
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Corollary 5.1. For every formal context P = (O, A, |=), the set Sem(P) = αω(K(2A)) is a join-semilattice
with least element. Conversely, every such semilattice can (up to isomorphism) be represented in this
way.

Proof:
In spite of our earlier considerations, we give the easy direct proof. For two finite sets X and Y , αω(X∪Y)
is the least closed set that contains X and Y , and thus also αω(X) and αω(Y). Hence αω(X) ∨ αω(Y) =

αω(X ∪ Y). The first part of the proof is finished by noting that αω(∅) is the least closed set.
Conversely, for a join-semilattice with least element S , consider the context (S , S ,≥). Then for any

finite X ⊆ S , αω(X) is the set of all lower bounds of all upper bounds of X. But this is easily recognized as
↓
∨

X. Note that the least upper bound of the empty set is just the least element. The obvious isomorphism
between S and the semilattice ({↓s | s ∈ S },⊆) suffices to complete the proof. ut

By Theorem 3.1 the above shows that every algebraic lattice can be represented by some formal
context and vice versa. To make this explicit, we can extend the closure operator of Corollary 5.1 to a
Scott continuous closure operator on 2A, as done before in the proof of Corollary 3.1. In this way we can
recover the following result from [34].

Corollary 5.2. Consider a formal context P = (O, A, |=) and the mapping c : 2A → 2A : x 7→
⋃
{αω(X) |

X ⊆ x, X finite}. Then Alg(P) = c(2A) is an algebraic lattice and every algebraic lattice is of this form (up
to isomorphism).

Proof:
Clearly, c is just the unique Scott continuous closure operator induced by α ◦ ω as in Corollary 3.1.
By Theorem 3.2 its closure system is indeed an algebraic lattice. For the other direction combine Theo-
rem 3.2 and 3.1 to see that c(2A) is isomorphic to the ideal completion of Sem(P). Since every algebraic
lattice is of this form for some join-semilattice with least element, the claim follows from Corollary 5.1.

ut

Closed sets with respect to the operator c from the above proposition have been termed approximable
concepts in [34]. Naturally, it is also possible to extend this result to a categorical equivalence. For this
purpose we define a category Cxt of formal contexts. The morphisms between two contexts P and Q are
defined by setting Cxt(P,Q) = Sem∨(Sem(P),Sem(Q)).2 The following is readily seen.

Theorem 5.1. The categories Sem∨ and Cxt are equivalent.

The functors needed for this result are obvious: on the object level, we obtain suitable mapping from
Corollary 5.1, and the situation for morphisms is trivial. The construction of the natural isomorphisms is
similar to the one of ε in Theorem 4.1, where the identity approximable mapping was modified using the
given order-isomorphism of the semilattices.

In the remainder of this section we investigate the categorical constructions that are possible within
the categories Alg, Sem∨, and Cxt, where the latter will be the explicit object of study. Because Cxt is
equivalent to Alg, we know that it is cartesian closed. We make the required constructions explicit in the
sequel, and thus give a mostly self-contained proof of cartesian closedness of Cxt.
2In [13] a slightly different definition of morphisms is given. In the formulation given there, the corresponding approximable
mapping is not defined on the closed sets Sem(P) but on all finite attribute sets. We get a context morphism in this sense by
extending our approximable mappings, relating two finite sets iff their closures are related.
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Figure 1. The product construction in Cxt.

Definition 5.2. A category C is cartesian closed if it has all finite products, and there is a functor Cop ×

C→ C : (A, B) 7→ BA and a natural bijection between the hom-sets C(A × B,C) and C(A,CB).

Exact requirements for showing each of these properties will be given in the respective proofs and
statements. We first consider the empty product, i.e. the terminal object, which turns out to be given
by the formal context 1 = (∅, ∅, ∅). Indeed, for every formal context P = (O, A, |=) there is a unique
approximable mapping P { 1 that relates every finite subset of A to the empty set. The situation for
binary products is not much more difficult.

Proposition 5.1. Consider two formal contexts P = (OP, AP, |=P) and Q = (OQ, AQ, |=Q), and define a
formal context P × Q = (OP ] OQ, AP ] AQ, (|=Q) ] (|=P) ] (OP × AQ) ] (OQ × AP)), where ] denotes
disjoint union.

Then P×Q is the categorical product of P andQ, i.e. there are approximable mappings πP : P×Q→ P

and πQ : P × Q → Q such that, given approximable mappings {P and {Q as in Figure 1, there is a
unique approximable mapping 〈{P,{Q〉 that makes this diagram commute.

Proof:
Since context morphisms are defined with reference to the induced semilattices, we first look at Sem(P×
Q). It is easy to see that concept closure in P × Q is computed by taking disjoint unions of closures in
P and Q, i.e. for sets X ⊆ AP and Y ⊆ AQ, one finds that αω(X ] Y) = αω(X) ] αω(Y). Hence every
element of Sem(P × Q) corresponds to a unique disjoint union of elements of Sem(P) and Sem(Q).

We can now define the projections by setting (X ] Y, X′) ∈ πP iff X′ ⊆ X and (X ] Y,Y ′) ∈ πQ iff
Y ′ ⊆ Y , for all X, X′ ∈ Sem(P) and Y , Y ′ ∈ Sem(Q). It is readily seen that these morphisms satisfy the
properties of Definition 4.2.

Now consider{P and{Q as in Figure 1. We define the relation 〈{P,{Q〉 by setting (Z, X ] Y) ∈
〈{P,{Q〉 iff Z {P X and Z {Q Y , for all concepts X, Y , Z from the corresponding semilattices. Again
it is easy to check the conditions of Definition 4.2, since they follow immediately from the corresponding
properties of{P and{Q. Furthermore, if there is X ] Y ∈ Sem(P × Q) with (Z, X ] Y) ∈ 〈{P,{Q〉

and (X ] Y, X′) ∈ πP then Z {P X′ by the definition of πP and (am3). Conversely, if Z {P X′ then
one finds that X′ ] αω(∅) ∈ Sem(P × Q) yields the required intermediate element to show that (Z, X′) ∈
πP ◦ 〈{P,{Q〉. Since a similar reasoning applies to{Q, Figure 1 commutes as required.

Finally, for uniqueness of 〈{P,{Q〉 consider R{ P ×Q with πP ◦{ ={P and πQ ◦{ ={Q. If
Z { X ] Y , then (Z, X) ∈ πP ◦{ and hence Z {P X and, by a similar reasoning, Z {Q Y . Conversely,
if Z {P X then there must be some X′ and Y ′ such that X ⊆ X′ and Z { X′ ] Y ′. By (am3) this implies
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Z { X ] Y ′. The same argument can be applied to{Q. Thus whenever Z {P X and Z {Q Y , there
are X′ and Y ′ with Z { X ] Y ′ and Z { X′ ] Y . Invoking properties (am2) and (am3) for {, this
shows that Z { X ] Y . We have just shown that Z { X ] Y iff Z {P X and Z {Q Y , and hence that
{ = 〈{P,{Q〉 as required. ut

The above product construction is also known in formal concept analysis as the direct sum of two
contexts [9]. However, it is not the only possible specification of the products in Alg. For each formal
context P = (OP, AP, |=P), we define a context P+ = (O+

P, A
+
P, |=P+), where O+

P = OP ∪ {g} and A+
P =

AP ∪ {m}, with g and m being fresh elements: g < OP and m < AP. For defining the incidence relation,
we set o |=P+ a whenever o |=P a (requiring that a ∈ AP and o ∈ OP) or o = g or a = m. Thus P+ emerges
from P by “adding a full row and a full column.”

Now let P = (OP, AP, |=P) and Q = (OQ, AQ, |=Q) be formal contexts. Define a new formal context
P ⊗ Q = (O+

P × O+
Q, A

+
P × A+

Q, |=P×Q) of P and Q by setting (o1, o2) |=P×Q (a1, a2) iff o1 |=P+ a1 and
o2 |=Q+ a2. This turns out to be an alternative description of the products in Cxt.

Proposition 5.2. Given arbitrary formal contexts P = (OP, AP, |=P) and Q = (OQ, AQ, |=Q), the contexts
P × Q and P ⊗ Q are isomorphic in Cxt. Equivalently, P ⊗ Q is the object part of the categorical product
of P and Q in Cxt.

Proof:
The required isomorphism corresponds to an iso approximable mapping between the two semilattices
Sem(P ×Q) and Sem(P ⊗Q). The elements of the former were already recognized as disjoint unions of
concepts from P and Q. In the latter case, concepts are easily recognized as products of concepts from
P+ and Q+. Adding the additional elements m and g guarantees that neither of these extended formal
contexts allows for the empty set as a concept, so that each element of Sem(P⊗Q) is indeed of the form
X × Y for two uniquely determined concepts X = αω(X) ∈ Sem(P+) and Y = αω(Y) ∈ Sem(Q+).

We define a relation{+ ⊆ Sem(P×Q)×Sem(P⊗Q) by setting X {+ Y whenever p1(Y)∩ AP ⊆ X
and p2(Y) ∩ AQ ⊆ X, where pi denotes the projection to the ith components in a set of pairs. Conversely,
a relation{− ⊆ Sem(P ⊗ Q) × Sem(P × Q) is specified by setting Y {− X whenever X ∩ AP ⊆ p1(Y)
and X ∩ AQ ⊆ p2(Y).

We claim that{+ and{− are mutually inverse approximable mappings between Sem(P × Q) and
Sem(P⊗Q). The properties of Definition 4.2 follow immediately from our use of set-theoretic operations
in the definitions. Furthermore it is easy to see that X({− ◦{+)X′ implies X′ ⊆ X for any two elements
X, X′ ∈ Sem(P × Q). The converse implication also holds, which can be concluded from the obvious
relationships X {+ αω(X ∩ AP)×αω(X ∩ AQ), αω(X′ ∩ AP)×αω(X′ ∩ AQ){− X′, and αω(X′ ∩ AP)×
αω(X′∩AQ) ⊆ αω(X∩AP)×αω(X∩AQ). Hence{− ◦{+ is indeed the identity approximable mapping.
A similar reasoning shows that the same is true for{+ ◦{−, thus finishing the proof.

Finally, the assertion that this makes ⊗ an alternative product construction is a basic fact from cate-
gory theory. The required projections are obtained by composing{− with the projections from the proof
of Proposition 5.1. ut

The construction of exponentials in Cxt turns out to be slightly more intricate. To fully understand
the following definition, it is helpful to look at the function spaces in Alg. These are just the sets of
all Scott continuous maps between two algebraic lattices under the pointwise order of functions. The
standard technique for describing the compact elements of this lattice are so-called step functions. Given
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two algebraic lattices L and M and two compacts a ∈ K(L) and b ∈ K(M), one defines a function
|a ⇒ b| : L → M, that maps an element x to b whenever a ≤ x, and to ⊥M otherwise. It is well-known
that any such step function is Scott continuous and compact in the function space of L and M (see [10]).
However, not all compacts are of this form, since finite joins of step functions are also compact maps
that can usually take more than two different values.

Our goal is to construct a formal context that represents the join-semilattice of all compact Scott
continuous functions in the sense of Corollary 5.1. Intuitively, the collection of all step functions suggests
itself as the set of attributes. Finitely generated concepts should represent finite joins of step functions,
which in turn correspond bijectively to lower sets with respect to the pointwise order of step functions. In
order to obtain a formal context that yields this lower closure, one is tempted to take some subset of Scott
continuous functions for objects, and to employ the inverted pointwise order as an entailment relation.
This is indeed feasible, but our supply of step functions unfortunately is insufficient to serve as object set
in this case. We end up with the following definition:

Definition 5.3. Consider two formal contexts P and Q, and the sets A = Sem(P) × Sem(Q) and O =

Fin(A). A formal context [P { Q] = (O, A, |=) is defined by setting {(ai, bi)} |= (a, b) iff b ⊆
∨
{bi | ai ⊆

a}, where
∨

is the join operation from the semilattice Sem(Q).

This definition derives from the above discussion by representing step functions |a ⇒ b| via pairs
(a, b).3 Hence, the approximable concepts of [P { Q] as obtained in Corollary 5.2 are sets of such
pairs, i.e. relations between Sem(P) and Sem(Q). The reader’s suspicion about the true nature of these
relations shall be confirmed:

Lemma 5.1. Given contexts P and Q, the algebraic lattice L = Alg[P { Q] of approximable concepts
of [P { Q] coincides with the lattice of all approximable mappings from P to Q, ordered by subset
inclusion.

Proof:
Consider any approximable concept x ∈ L. Definition 5.3 implies that the pairs of arbitrary elements
a ∈ Sem(P) and the least element of Sem(Q) are modelled by any object of [P { Q], i.e. (am1) of
Definition 4.2 holds for x. For (am2), assume (a, b1) ∈ x and (a, b2) ∈ x. Following the construction in
Corollary 5.2, one finds that αω

(
{(a, b1), (a, b2)}

)
⊆ x. However, for any object o of [P{ Q], o |= (a, b1)

and o |= (a, b2) clearly implies o |= (a, b1∨b2), by expanding the definition of |=, and thus (a, b1∨b2) ∈ x.
Finally, for (am3) consider some (a, b) ∈ x, a′ ⊇ a, and b′ ⊆ b. Clearly, we have αω({(a, b)}) ⊆ x. The
definition of |= shows immediately that every object that models (a, b) must also model (a′, b′), and thus
(a′, b′) ∈ αω({(a, b)}) as required.

For the converse consider any approximable mapping P{ Q. We show that{ ∈ L. Given any finite
subset X = {(ai, bi)} ⊆{, one finds that X |= (an, bn) for all (an, bn) ∈ X. Thus X ∈ ω(X) and, whenever
(a, b) ∈ αω(X), one also has X |= (a, b), i.e. b ⊆

∨
{b j | a j ⊆ a}. Defining J = { j | a j ⊆ a}, one finds that

for every n ∈ J, an ⊆
∨
{a j | j ∈ J} and hence

∨
{a j | j ∈ J} { bn by (am3). Since J is finite, one can

employ an easy induction to show that
∨
{a j | j ∈ J}{

∨
{b j | j ∈ J}, where the case J = ∅ follows from

(am1) and the induction step uses (am2). Obviously
∨
{a j | j ∈ J} ⊆ a and b ⊆

∨
{b j | j ∈ J}, and hence

a{ b by (am3). This shows that{ is an approximable concept. ut

3This correspondence is not injective. In fact, the context [P { Q] in general contains both duplicate rows and duplicate
columns.



P. Hitzler, M, Krötzsch, G.-Q. Zhang /A Categorical View on Algebraic Lattices in Formal Concept Analysis 15

The above considerations shed additional light on approximable mappings in general: they can in
fact be viewed as lower sets of step functions, the joins of which uniquely determine an arbitrary Scott
continuous map between the induced algebraic lattices. We remark that this also hints at an alternative
formulation of the constructions in Lemma 4.1.

It remains to show that the above construction does indeed yield a function space in the sense of
category theory:

Proposition 5.3. The construction [− { −] yields the categorical function space of the two contexts,
i.e. for all contexts P, Q, and R, there is a bijection between the sets Cxt(P×Q,R) and Cxt(P, [Q{ R]),
and this bijection is natural in all arguments.

Proof:
Our earlier results can be employed to simplify this proof. The algebraic lattices associated with the above
contexts is denoted by L = Alg(P), M = Alg(Q), and N = Alg(R), and we write [M → N] for the lattice
of all Scott continuous functions from M to N, ordered pointwise. The categorical equivalences between
Cxt, Sem∨, and Alg (Theorem 4.1 and Theorem 5.1) and the categorical role of the product construction
Q × R (Proposition 5.1) establish natural bijections between the sets Cxt(P × Q,R) and Alg(L × M,N),
where L × N is the standard product order. Likewise, using the same equivalences and the bijection of
function spaces from Lemma 5.1, one finds another natural bijection between Cxt(P, [Q { R]) and
Alg(L, [N → M]).

The proof is completed by providing the well-known natural bijection of the sets Alg(L × M,N) and
Alg(L, [N → M]). This standard proof can for example be found in [10]. ut

Summing up these results, we obtain:

Theorem 5.2. The categories Alg, Sem∨, and Cxt are cartesian closed.

Proof:
Cxt was shown cartesian closed in Proposition 5.1 and Proposition 5.3. Closure of the other categories
follows by their categorical equivalence (Theorem 4.1 and Theorem 5.1). ut

The cartesian closed category Cxt which we propose here is tailored to the needs of Computer Sci-
ence. It differs from the categories normally considered in formal concept analysis by emphasizing al-
gebraicity, whereas morphisms listed e.g. in [9] are suitable for complete, but not necessarily algebraic,
lattices. We also stress the fact that our novel interpretation of formal contexts perfectly agrees with the
classical one, as long as finite contexts or lattices are considered, which covers most of the current FCA
applications in Computer Science. On the other hand, the different treatment of infinite data structures
displays a deviation from the classical philosophically motivated viewpoint towards one that respects the
practical constraints of finiteness and computability.

However, the computationally inspired treatment of infinite contexts which we propose here, comes
at the price of loosing the duality between objects and attributes which is present in classical FCA.
Indeed, the closure systems of α ◦ ω : 2A → 2A and ω ◦ α : 2O → 2O are dually isomorphic, as already
mentioned. The mapping c : 2A → 2A : x 7→

⋃
{αω(X) | X ⊆ x, X finite} from Corollary 5.2, however,

has no such straightforward relation to the mapping d : 2O → 2O : x 7→
⋃
{ωα(X) | X ⊆ x, X finite}.
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6. Further representations

So far, we encountered three equivalent representations for algebraic lattices. Clearly, the hard part was
to establish the equivalence of the rather diverse categories Alg and Sem∨. Many other equivalent cat-
egories can now be recognized by relating them to one of these two—an objective that will in general
be accomplished rather easily. A typical example for this has already been given in form of the category
Cxt, that was easily seen to be equivalent to Sem∨.

The representations given below are grouped according to these observations: we start with “logical”
descriptions that have their closest relationships to the categories Cxt and Sem∨, and then proceed to
formulations that can be connected to Alg in a more natural way. Classifying representations in this way
is by no means arbitrary: as we will see the end of this section, our arrangement reflects the “localic”
respectively “spacial” side of a very specific case of Stone duality.

6.1. Logic and information systems

The representation of join-semilattices via formal contexts did already incorporate some logical flavor:
approximable concepts can be viewed as sets closed under a certain entailment relation. Scott continuity
of this closure is reminiscent of the compactness property of a logic. However, we will see that a much
closer connection to some very well-known logics can be made. The reader is referred to [8] for related
considerations.

Definition 6.1. Given a set A of propositions, the set of well-formed conjunctive propositional formulae
S (A) over A is given by the following expression:

S (A) F > | a ∈ A | (S (A) ∧S (A))

A relation ` ⊆ S (A) ×S (A) is a consequence relation of conjunctive propositional logic (CP logic) if
it is closed under application of the following rules:

F ` > (T) F ` F (R)
F ` G, G ` H

F ` H
(Cut)

F ` (G ∧ H)
F ` G

(W1)
F ` (G ∧ H)

F ` H
(W2)

F ` G, F ` H
F ` (G ∧ H)

(And)

In this case (S (A), `) is called a deductive system (of CP logic). For any two formulae F,G ∈ S (A), the
situation where F ` G and G ` F is denoted F ≈ G.

Hence deductive systems are logical systems of the conjunctive fragment of propositional logic,
together with a (not necessarily minimal) consequence relation. The following properties are easily ver-
ified.

Lemma 6.1. Consider a deductive system (S (A), `). The following hold for all formulae F, G, and
H ∈ S (A):

• ((F ∧G) ∧ H) ≈ (F ∧ (G ∧ H))

• (F ∧G) ≈ (G ∧ F)
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• F ≈ (F ∧ F)

• F ≈ (F ∧ >)

Hence we see that the rules (W1), (W2), and (And) imply associativity, commutativity, and idempo-
tency of ∧. Furthermore, occurrences of > can be eliminated. Consequently, we henceforth write formu-
lae of CP in the form a1 ∧ a2 ∧ . . . ∧ an (ai ∈ A), knowing that this determines a set of “real” formulae
up to proof-theoretic equivalence. Additionally, for the case n = 0 the above expression is interpreted as
the singleton set {>}. Any statement about formulae in this notation represents the corresponding set of
statements about the original formulae. We can now consider the algebraic semantics (see [8]) of these
logics. This is based largely on the following notion:

Definition 6.2. Consider a deductive system (S (A), `). The Lindenbaum algebra of (S (A), `) is the
poset obtained from the preorder (S (A), `) through factorization by the equivalence relation ≈, i.e.
[F]≈ ≤ [G]≈ iff F ` G. The Lindenbaum algebra is denoted by LA(S (A), `).

Hence the Lindenbaum algebra is a partially ordered set of ≈-equivalence classes of formulae, or-
dered by syntactic entailment. Since it can cause hardly any confusion, we take the freedom to denote
equivalence classes by one of their representatives or even by the simplified notation introduced above.
Of course, this creates possible ambiguity between the conjunction symbol and the meet operation within
the Lindenbaum algebra. The following lemma shows that this is not a problem.

Lemma 6.2. Consider a deductive system (S (A), `) and formulae F,G ∈ S (A). Then [F]≈ ∧ [G]≈ =

[F ∧G]≈.

Proof:
We have to show that F ∧G ` F, F ∧G ` G, and that for any formula H such that H ` F and H ` G, we
find H ` F ∧G. These assertions are obvious consequences of the proof rules of CP. ut

Since the meet operation yields a unique result, this shows that F ≈ F′ and G ≈ G′ imply F ∧
G ≈ F′ ∧ G′, which is just the Replacement Theorem [8] for CP logics. We state the now obvious
representation theorem:

Theorem 6.1. For any deductive system (S (A), `), the Lindenbaum algebra LA(S (A), `) is a meet-
semilattice with greatest element. Conversely, every such semilattice is isomorphic to the Lindenbaum
algebra of some deductive system.

Proof:
Lemma 6.2 already showed the existence of binary meets. We conclude the first part of the proof by
noting that [>]≈ is the required greatest element.

For the converse let S be a meet-semilattice with greatest element. We define a consequence relation
` on S (S ) by setting, for all a1, a2, . . . , an, b1, b2, . . . , bm ∈ S , a1 ∧ a2 ∧ . . . ∧ an ` b1 ∧ b2 ∧ . . . ∧ bm

whenever a1 ∧ a2 ∧ . . . ∧ an ≤ b1 ∧ b2 ∧ . . . ∧ bm. One can easily check that this definition satisfies all of
the required rules. Note that (T) follows by our convention to represent > by the empty conjunction. To
reduce confusion, we denote meets in S by

∧
and meets in LA(S (S ), `) by

∧
≈.
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We claim that S is isomorphic to LA(S (S ), `). Indeed, consider the mappings f : S → LA(S (S ), `)
and g : LA(S (S ), `)→ S defined by setting f (a) = [a]≈ and, for propositions ai, 1 ≤ i ≤ n, g[

∧
≈ ai]≈ =∧

ai. To see that g is well-defined, note that for any two formulae
∧
≈ ai,

∧
≈ b j ∈ S (S ) we have that∧

≈ ai ≈
∧
≈ b j (in S (S )) implies

∧
ai =

∧
b j (in S ) by the definition of `.

Finally, we show that g and f are inverse to each other. By what was said above, g( f (a)) = a is
immediate. On the other hand, any formula

∧
≈ ai is syntactically equivalent to

∧
ai by the definition of

`. This shows bijectivity of f and g. Monotonicity of both functions is obvious from their definition. ut

This relationship closes the gap to our prior category Sem∨, since the above meet-semilattices are
just the order duals of the objects within this category. By an approximable mapping between two meet-
semilattices with least element or two deductive systems of CP logic, we mean an approximable mapping
between the induced join-semilattices. The following is immediate.

Theorem 6.2. Consider the categories Sem∧ and CCP of meet-semilattices with greatest element and
deductive systems of CP logic, respectively, together with approximable mappings as morphisms. Then
Sem∨, Sem∧, and CCP are equivalent.

The insights just obtained allow to relate our study with results obtained in [12, 11], where the
conjunctive fragment of the logic RZ (introduced in [20]), was found to be closely related to concept
closure in FCA. We derive a very similar result, but some preparations are needed first.

An algebraic cpo D is a dcpo with least element ⊥ such that every e ∈ D is the directed supremum
of all compact elements below it. A coherent algebraic cpo is an algebraic cpo such that, with respect to
the Scott topology (see Definition 6.4), the intersection of any two compact open sets is compact open.

These notions can be found in [20], along with a characterization of the Smyth Powerdomain of any
given coherent algebraic cpo D by means of a logic defined on D, which we call the logic RZ. We will
only be concerned with the conjunctive fragment of RZ, which can be given as follows. For compact
elements c1, . . . , cn, d1, . . . , dm we write c1 ∧ . . . ∧ cn ` d1 ∧ . . . ∧ dm iff any minimal upper bound of
{c1, . . . , cn} is above all di. This way, we obtain a deductive system (K(D), `), and the following result,
which is related to those in [12, 11], and such considerations were put to use in [11] for developing a
generic non-monotonic rule-based reasoning paradigm over hierarchical knowledge.

Theorem 6.3. Let P = (O, A, |=) be any formal context. Then there is a coherent algebraic cpo D and
a mapping ι : A → D such that for every finite set X = {a1, . . . , an} ⊆ A we have αω(X) = {a |
ι(a1) ∧ . . . ∧ ι(an) ` ι(a)}.

Proof:
Define D = Alg(P) and set ι(a) = αω({a}) for a ∈ A. Since D is a complete algebraic lattice, it is a
coherent algebraic cpo.

Now consider the finite set X as above. Using the completeness of the lattice, we obtain that ι(X) has
αω(X) as supremum, which suffices. ut

The difference between Theorem 6.3 and the results in [12, 11] lies in the fact that the latter were
proven by taking D to be a sublattice of the (classical) formal concept lattice, instead of Alg(P), which
facilitates reasoning with formal contexts in a natural way.

Finally, we come to another popular description of algebraic lattices, that fits well into the above
discussion, and will also shed additional light on morphisms of CCP.
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Definition 6.3. Consider a structure (A,
), where A is a set, and 
 ⊆ Fin(A) × A is a relation between
finite subsets of A and elements of A. Then (A,
) is a Scott information system (with trivial consistency
predicate) if the following hold:

(IS1) a ∈ X implies X 
 a,

(IS2) if X 
 y for all y ∈ Y and Y ` a, then X 
 a.

Scott information systems were introduced in [21] as a logical characterization of order structures
arising in denotational semantics. The connection to CP logic is as follows.

Proposition 6.1. There is a bijective relationship between Scott information systems and deductive sys-
tems of CP logic.

Proof:
Consider a Scott information system (A,
). Using the set A as propositions, we obtain the set of CP
formulae S (A). A consequence relation ` for S (A) is defined by setting a1∧a2∧. . .∧an ` b1∧b2∧. . .∧bm

whenever {a1, a2, . . . , an} 
 bi for all i = 1, . . .m. We have to verify that ` is closed under the rules given in
Definition 6.1. For the case m = 0 the condition is obviously true so that we obtain axiom (T). Likewise,
the conditions for axiom (R) are satisfied due to condition (IS1) in Definition 6.3. Similarly, the (Cut)
rule follows immediately from (IS2). For the rules (W1), (W2), and (And), we simply notice that these
are direct consequences from our definition of `.

Now for the opposite direction, consider a deductive system (S (A), `). Using the set of propositions
of S (A) as attributes, we construct a Scott information system (A,
), where we define {a1, a2, . . . , an} 

b whenever a1 ∧ a2 ∧ . . . ∧ an ` b. Again it is straightforward to check that this is indeed an information
system. (IS1) can be deduced from the rules (R) and iterated applications of (W1) and (W2). Under the
assumption of (IS2), we see that the (And) rule allows us to construct a conjunction that corresponds to
the premise Y of the second rule. By (Cut) this yields the required entailment.

To complete the proof, we note that these two constructions are in fact inverse to each other. The
identity on Scott information systems is trivial. For CP logics, we note that any sequent a1∧a2∧. . .∧an `

b1 ∧ b2 ∧ . . . ∧ bm induces via (W1)/(W2) the existence of sequents a1 ∧ a2 ∧ . . . ∧ an ` bi, for all
i = 1, . . . ,m. The original sequent can then be reconstructed from the entailment of the Scott information
system induced from these relations. ut

Note that this proposition yields a bijective correspondence, not just a relationship up to isomorphism.
Indeed Scott information systems are essentially an efficient formulation of conjunctive propositional
logic, where the properties of ∧ are obtained implicitly by using sets in the first place. The category
of Scott information systems and approximable mappings between the induced semilattices is denoted
SIS4. From 6.1 one easily concludes that SIS is isomorphic to CCP, and hence also equivalent to all
categories mentioned earlier.

Furthermore, approximable mappings between CP logics need not be expressed on the level of their
Lindenbaum algebras, but could be formulated directly on formulae. From this viewpoint, approximable
mappings appear as consequence relations between different logical languages. Indeed, all the require-
ments of Definition 4.2 do still have a very intuitive reading under this interpretation: (am1) and (am2)

4Historically, this is indeed the first context for which approximable mappings were defined [21].
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correspond to (T) and (And) of Definition 6.1, respectively, while (am3) can be viewed as a modified
(Cut) rule, that also subsumes (W1) and (W2). Hence we recognize approximable mappings as a simple
form of multilingual sequent calculi as introduced in [15] for the more complicated case of positive logic
(i.e., logics including conjunction and disjunction). Further details and motivation can be found therein.

We remark that one could as well have connected CP logic or information systems directly to al-
gebraic lattices, instead of presenting the ideal completion for semilattices of compacts. In the case of
logics, algebraic lattices are obtained directly as sets of models of a deductive system, where models are
considered as deductively closed sets of (true) formulae. These turn out to be exactly the filters5 within
the corresponding Lindenbaum algebras, and the duality to ideal completion is immediate. The reader
may care to consult [8] for a general treatment of such matters. For Scott information systems, algebraic
lattices are constructed similarly as sets of elements. As defined in [21], an element of an information
system (A,
) is a subset x ⊆ A such that a ∈ x whenever there is some finite set X ⊆ x with X 
 a.

Our logical considerations can also be put to practical use by noting that every definite logic program
(see, e.g., [17]) can be expressed by a deductive system in the above sense. This has also been mentioned
in [32]. Considering the fact that the theory of definite logic programs is quite well-developed, these
insights are merely providing some further explanation for the situation in this field. In the light of the
connections to Stone duality outlined below and the immediate connection to algebraic semantics of
logical systems, one could also further analyze the situation for more expressive logical languages from
this perspective.

Note that only a small portion of Scott information systems and algebraic lattices can be obtained
from definite logic programs. The reason is that there are only countably many different programs, but
uncountably many Scott information systems (even for countable sets of generators). We also remark
that, while algebraicity always makes fixed point computation possible in theory, the specific structure
of the information systems of logic programs is employed to ensure that the semantic operator suitable
for logic programs is indeed effectively computable.

We do not bother to give a category of logic programs, although this could be done by adjusting the
formalism of approximable mappings. However, it is not clear at the moment how the subcategory of
algebraic lattices that arises in this way can be characterized.

6.2. The Scott topology

Next we want to study the spacial side of Stone duality. It is here where we find the models and their se-
mantic entailment, while the localic side is inhabited by syntactic representations and their proof theory.
We already mentioned that models in our case take the specific form of algebraic lattices, and thus it is
natural to ask which subsets of models correspond to a logical theory. The appropriate collection of sets
turns out to be the following well-known topology:

Definition 6.4. Consider a dcpo P. A subset O ⊆ P is Scott open if the following hold:

1. x ∈ O and x ≤ y imply y ∈ O (O is an upper set),

2. for any directed set D ⊆ P,
∨

D ∈ O implies D ∩ O , ∅ (O is inaccessible by directed suprema).

5A filter F is the dual of an ideal: an upper set F = ↑F such that a, b ∈ F implies the existence of some c ∈ F such that c ≤ a
and c ≤ b.
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The Scott topology on P is the collection of Scott open sets. We use σ(P) to denote this collection and
Σ(P) = (P, σ(P)) for the resulting topological space.

But one can also reverse the process to obtain orders from topologies:

Definition 6.5. Consider a topological space (X, τ). Then τ defines a specialization (pre-)order ≤ on X
by setting x ≤ y whenever x ∈ O implies y ∈ O for any O ∈ τ. A topology on a partially ordered set is
called order consistent if its specialization order coincides with the order of the poset.

For an algebraic lattice, the Scott topology has some more specific properties. Recall that an open
set is compact if it is a compact element of the open set lattice, and that a topology is coherent if the
intersection of any two compact open sets is compact. Proof for the following statements can be found
in [2, 10, 14].

Proposition 6.2. Consider an algebraic lattice L. We have the following:

1. σ(L) is order consistent.

2. The set B = {↑c | c ∈ K(L)} is a base for σ(L).

3. The compact opens of Σ(L) are exactly the finite unions of members of B.

4. σ(L) is coherent.

5. σ(L) is sober.6

Order consistency insures that algebraic lattices and their Scott topologies uniquely characterize
each other. A category ΣAlg of Scott topologies on algebraic lattices is readily obtained by employing
continuous maps between topologies as morphisms.

Theorem 6.4. The categories Alg and ΣAlg are isomorphic, hence equivalent.

Proof:
The required functors are defined on objects by taking the Scott topology and the specialization order of
the arguments, respectively. By order consistency of the topologies, this yields a bijection between the
classes of objects. Since the carrier sets of lattices and topologies remain unchanged, one can consider
every function between algebraic lattices directly as a function between spaces and vice versa. To finish
the proof, one needs to show that a function between algebraic lattices is Scott continuous iff it is contin-
uous with respect to the Scott topologies. This standard result can for example be found in [2]. ut

In the next section, we see that the topological spaces of ΣAlg are indeed very specific.

6We did not define sobriety in this document. Readers who are not familiar with this concept may safely ignore this statement.
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6.3. Stone duality

Since the very beginning of the theory, Stone duality has been recognized as a tool for relating proof
theory, algebraic semantics, and model theory of logical systems (see [26]). One direction of this in-
vestigation has already been mentioned in Section 6.1: Lindenbaum algebras can be represented by
corresponding model theories, where models are characterized as subsets (filters) of formulae. Dually,
one could also have presented every formula by the set of its models. The conceptual step from such sys-
tems of specific subsets to topological spaces was the key to the strength and utility of Stone’s original
representation theorems.

However, it still took decades to recognize that it would be even more advantageous to undo this step
to the spacial side of Stone duality and to return to the more abstract world of partially ordered sets. It
became apparent that topologies could not only serve as a representation for specific ordered structures,
but that conversely orders could serve as a general substitute for topological spaces. Indeed, the leap to
the spacial side is usually not an easy one—in many cases it cannot be made within classical Zermelo-
Fraenkel set theory (ZF). The localic side on the other hand can mimic most of the features of the original
topological setting, while being freed from the weight of points which often prevent purely constructive
reasoning.

In what follows we embed our specific scenery into the setting of Stone duality. However, it turns
out that the special case we consider does not justify to present the theory in its common generality.
Hence we give explicit proofs for the object level relationships in our specialized setting and hint at the
connections to more abstract versions of Stone duality where appropriate. Other than providing the merit
of a more self-contained presentation, this also enables us to work exclusively in ZF, with no additional
choice principles whatsoever. As a general reference on Stone duality, we recommend [14].

The passage from spaces to orders is a particularly simple one: the open set lattice of a topology is
already a poset. The class of posets arising in this way are the spacial locales.

Definition 6.6. A complete lattice L is a locale if the following infinite distributive law holds for all
S ⊆ L and x ∈ L:

x ∧
∨

S =
∨
{x ∧ s | s ∈ S }.

A point of a locale is a principal prime ideal of L, i.e. a subset p ⊆ L such that p = ↓
∧

p and, for any
x ∧ y ∈ p, x ∈ p or y ∈ p. The set of all points of L is denoted by pt(L).

A locale is spacial if, for any two elements x, y ∈ L with x � y, there is a point p ⊆ L such that
x ∈ p and y < p. L is spectral if L is algebraic, its greatest element is compact, and the meet of any two
compact elements of L is compact.

We remark that locales are also called frames, and that structures of this kind are equivalently char-
acterized as complete Heyting algebras.7

It is now easy to see that any open set lattice yields a locale, where distributivity follows from the
corresponding distributivity of finite intersections over infinite unions. Furthermore, Proposition 6.2 (2),
(3), and (4) show that, for an algebraic lattice L, (σ(L),⊆) is even a spectral locale. We shall find that
these locales are even more specific than this.

Our starting point for investigating topologies were algebraic lattices, which we have earlier rec-
ognized as the model theories of deductive systems of CP logics. The abstraction to (certain) spectral

7The interested reader will find definitions and treatment in [14, 10].
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locales brings us back to proof theory. We now characterize the above locales by relating them to Lin-
denbaum algebras of CP logic, and reobtain topological spaces from this data.

We consider arbitrary meet-semilattices with greatest element, knowing that they are up to isomor-
phism just the Lindenbaum algebras of CP (Theorem 6.1). Furthermore, we already mentioned that the
collections of all filters (the order-dual concepts of the ideals) of such semilattices are just the algebraic
lattices, which follows immediately from Theorem 3.1. We can now give a characterization for the locale
of Scott open sets of algebraic lattices:

Theorem 6.5. Consider a meet-semilattice S with greatest element and the corresponding algebraic lat-
tice (Flt(S ),⊆) of filters of S . The collection of lower sets of S , ordered by subset inclusion, is isomorphic
to σ(Flt(S )). Every Scott open set lattice of an algebraic lattice is of this form.

Proof:
Theorem 3.1 shows the bijective correspondence between the elements of S and the compacts of Flt(S ),
since S is dually order-isomorphic to K(Flt(S )). Proposition 6.2 demonstrated that every Scott open
set is characterized by the compact elements it contains. Now it is obvious that such sets of compacts
correspond to upper sets in the join-semilattice of compacts, and thus to lower sets in its dual meet-
semilattice. The other direction is also immediate from the according part of Theorem 3.1. ut

Hence the spectral locales of the form σ(L) for some algebraic lattice L are more precisely char-
acterized as the lower set topologies of meet-semilattices with greatest element, i.e. as the Alexandrov
topologies of join-semilattices with least element. Note also that meets and joins within these locales
are really given by the corresponding set operations. By σAlg we denote the category of all locales iso-
morphic to the collection of lower sets on some meet-semilattice with greatest element together with
functions that preserve finite meets and arbitrary joins.8

Next we want to connect up with the common constructions of Stone duality.

Lemma 6.3. Consider a meet-semilattice with greatest element S and its locale of lower sets σ. Then
the meet-prime elements of σ are exactly the complements of the filters of S .

Proof:
Let F ⊆ S be a filter and set A = S \F ∈ σ. Now assume there are lower sets B1, B2 ∈ σ such that
B1 ∩ B2 = A. For a contradiction, assume that there are elements b1 ∈ B1 ∩ F and b2 ∈ B2 ∩ F. Then
b1 ∧ b2 ∈ F and b1 ∧ b2 ∈ B1 ∩ B2 = A—a contradiction. Hence, one of B1, B2 contains just the elements
of A as required.

Conversely, let A ∈ σ be meet-prime and consider the upper set F = S \A. For any two elements
a, b ∈ F it is easy to see that ↓a∩ ↓b = ↓(a∧ b). Hence, if a∧ b ∈ A then ↓a∪ A and ↓b∪ A are elements
of σ with intersection A, which cannot be. Hence a ∧ b ∈ F as required. ut

This gives us all necessary information about the points of these locales (see Definition 6.6), since
these were defined to be just the principal ideals generated by meet-prime elements. We can thus identify

8This is of course rather a category of frames and frame homomorphisms than a category of locales (which would be described
by its dual). We have chosen to trade some terminological precision for conciseness of the presentation.



24 P. Hitzler, M, Krötzsch, G.-Q. Zhang /A Categorical View on Algebraic Lattices in Formal Concept Analysis

the set of points pt(σ) with the set of all meet-prime elements of σ.9 Our insights allow us to give a direct
description of the topological spaces associated with semilattices:

Corollary 6.1. Let S be a meet-semilattice with greatest element, let L be an algebraic lattice, and let σ
be a spectral locale, such that

• S op is isomorphic to K(L) and

• σ is isomorphic to σ(L).

Then the following are homeomorphic:

1. (L, σ(L)), the Scott topology on L;

2. the topology on Flt(S ) generated from the basic open sets

Oa = {F ∈ Flt(S ) | a ∈ F} for all a ∈ S ;

3. the topology on pt(σ) given by the open sets

PA = {p ∈ pt(σ) | A < p} for all A ∈ σ.

Proof:
Most of the above should be obvious at this stage, so we spare out some details. Suitable bijections
between L, Flt(S ), and pt(σ) have been obtained in 3.1 and 6.3. First we show the homeomorphism
between (1) and (2) (which induces also that (Oa) is indeed a base). For this we only have to note that
Oa = {F ∈ Flt(S ) | ↑a ⊆ F}. Using the bijection between (principal) filters and (compact) elements from
Theorem 3.1, one sees that Oa corresponds to an open set ↑c, c ∈ K(L), of (1). The fact that these subsets
are open and form the basis for the Scott topology has been shown in Proposition 6.2.

For the homeomorphism between (2) and (3), we consider the locale of lower sets of S , which is
isomorphic to σ by Theorem 6.5. Clearly this affects the topology of (3) only up to homeomorphism.
Now in the locale of lower sets, a point (principal prime ideal) p = ↓B is in PA iff the corresponding
meet-prime B does not contain A. But this is the case iff the complement of B intersects A. Hence, by
Lemma 6.3, PA corresponds exactly to the collection of those filters of S that contain some element of
A, i.e. to the set

⋃
{Oa | a ∈ A}. But these are precisely the open sets of the topology of (2). ut

With respect to the given preconditions on the relationship between S , L, and σ, note that the various
transformations between semilattices, algebraic lattices, and locales established earlier yield a variety of
equivalent ways to state that the three given objects describe “the same thing”.

To complete the targeted categorical equivalence between the dual category of σAlg and ΣAlg (Alg,
Sem∨, . . . ), one still needs to prove a suitable bijection of hom-sets. This correspondence between inverse
frame homomorphisms and continuous functions is a basic result of Stone duality which we will not
repeat here. See [14] for details.
9Furthermore, we remark that this guarantees a sufficient supply of prime elements without invoking any additional choice
principles, i.e. we are dealing with a class of locales that is spacial in Zermelo-Fraenkel set theory. This contrasts with the class
of all spectral locales, which is only spacial when the existence of prime ideals is explicitly postulated, i.e. when the Boolean
prime ideal theorem [6] is assumed to hold.
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Figure 2. Summary of all established equivalences with reference to the corresponding (object-level) statements.
Labels at the arrow tips specify the name of the functor that was used in a construction, where Down denotes the
construction of the lower set topology from a meet-semilattice, Prm yields the set of principal prime ideals of a
locale, ordered by subset inclusion, and ≤ denotes the construction of the specialization order from a topological
space.

7. Summary and further results

We provided characterizations of the category of algebraic lattices by means of structures from logic, to-
pology, domain theory, and formal concept analysis. More precisely, we characterized algebraic lattices
by certain semilattices, formal contexts, and deductive systems of the conjunctive fragment of proposi-
tional logic. The novel category Cxt of formal contexts and approximable mappings was used to establish
the cartesian closure of these categories, and the categorical constructions needed for this were explicitly
given. Other representations referred to special classes of closure systems, Scott topologies, locales, and
definite logic programs. An overview of the major equivalences given herein is displayed in Figure 2.

Although this treatment is quite comprehensive, one could still add further equivalent formalisms.
Especially, we left out the coverage technique of [14] (see also [24]), which represents locales in a
syntactical way that relates closely to Scott information systems. Furthermore, we deliberately ignored
Scott’s earlier approach to presenting domains via neighborhood systems [22], since these structures
are not much more than a mixture of the later (token-set based) information systems and continuous
closure operators. Finally, one could also identify the classes of distributive lattices that arise as the
compact elements of the spectral locales we considered as the free distributive lattices over the underlying
semilattice.

In this article we have also presented a unified treatment of the basic techniques and mechanisms
that are applied to join domain theory, algebra, logic, and topology. Algebraic lattices turn out to be
the simplest case where such a discussion is feasible. Part of the given results have been generalized in
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various ways, some of which are subject to current research. A common way to generalize the above
results is to extend the logic under consideration. A technique for including “negation-like” constraints
without need for an internal negation operation has been employed by Scott in his original formulation
of information systems [21]. There he introduced a collection of finite subsets of propositions that are
consistent, assuming that no inconsistent sets can be mapped to true by any model. This procedure can
be viewed as an extension of the deductive system that allows statements of the form “X 
”, interpreted
as

∧
X 
 ⊥, where ⊥ is the constant false—a construction well-known under the notion of integrity

constraint in database theory. Clearly,⊥will then represent the least element in the resulting Lindenbaum
algebras. However, as important as introducing the constant ⊥ into the logical language is a change of the
model theory: models now have to be proper filters, i.e. the case that all (including ⊥) formulae evaluate
to true is excluded. The posets of models for such logics turn out to be exactly the Scott domains (the
bounded complete algebraic cpos).

As another step, one can include disjunction into the formalism. This already leads to a substantial
complication of the theory: choice principles are now needed to obtain models. Since logical conjunction
and disjunction are classically assumed to distribute over each other, one obtains all (bounded) distribu-
tive lattices as Lindenbaum algebras. In place of algebraic lattices one finds a curious class of dcpos
that have been termed information domains in [7]. Later the direct construction of distributive lattices
and locales from such deductive systems was studied in [4] and [5], and in [20] Smyth powerdomains
were characterized by similar means using a clausal logic which was also extended to non-monotonic
reasoning paradigms on hierarchical knowledge [20, 11]. Other than this, one can apply all the repre-
sentation machinery that has been set up for distributive lattices, including both Stone’s and Priestley’s
representation theorems for these structures ([14]).

Further strengthening of the logic is possible by including some internal negation operation. Intu-
itionistic negation yields Heyting algebras as Lindenbaum algebras. The resulting topologies are already
studied in [26], though the significance of specialization orders and domain theoretic concepts were not
yet recognized at this time. If classical negation is preferred instead, thus yielding classical propositional
logic, the class of Boolean algebras provides the well-known algebraic semantics. While topological
representation via Stone’s theorem is rather pleasant in this case, the domain theoretic aspects are quite
disappointing: the specialization order of models is discrete. Related approaches nevertheless have been
taken for the context of negation in logic programming [23, 11], but the domain-theoretic content of these
investigations remains to be determined.

For reasons as those just described, internal negation is usually not considered in domain-theoretical
studies. However both inconsistency of finite subsets and finite disjunctions can be employed with various
restrictions to obtain classes of domains that are more general than the Scott domains. A slight constraint
on either the logical ([7]) or the localic level ([1]) restricts the obtained class of dcpos (of models) to
the coherent algebraic dcpos. However, while this is a well-known concept in domain theory, it results
in rather unusual restrictions on the logics (Lindenbaum algebras, locales). Further conditions will lead
to SFP-domains [1, 29]. On the other hand, conditions that characterize a class of deductive systems that
produces exactly the L-domains have been studied in [30].
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