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Exercise 1
Exercise. Show that any Datalog program can be expressed as a safe Datalog program that is polynomial in the size
of the original program and given schema.

Definition (Lecture 12, Slide 17)
I A Datalog rule H ← B is safe if all variables in H also occur in B.
I A Datalog program P is safe if all rules r ∈ P are safe.

Solution.
I Consider a (possibly unsafe) Datalog program P.
I We define a new Datalog program P′:

I we add a fresh predicate Top,
I for every `-ary EDB predicate r occurring in P and all 1 ≤ i ≤ `, we add a new rule Top(xi )← r(x1, . . . , x`),
I for every constant c occurring in P, we add a new fact Top(c),
I for every rule (H ← B)[x1, . . . , xn] ∈ P, we add the rule H ← B ∧ Top(x1) ∧ · · · ∧ Top(x`).

I Then for every fact ϕ over the signature of P, we have that P′ entails ϕ over an instance D iff P entails ϕ over D.
I The size of P′ is polynomial in the size of P, and P′ is safe.
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Exercise 2
Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is not connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.
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1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is not connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

1.

Odd(x)← first(x)

Odd(y)← Even(x), succ(x , y)

Even(y)← Odd(x), succ(x , y)

EvenParity()← Even(x), last(x)

15 / 53



Exercise 2
Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
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5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

2.

<(x , y)← succ(x , y)

<(x , z)← <(x , y), succ(y , z)

<>(x , y), <>(y , x)← <(x , y)

TwoOutgoingEdges()← edge(x , y), edge(x , z), <>(y , z)
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Solution.

2.

<(x , y)← succ(x , y)

<(x , z)← <(x , y), succ(y , z)

<>(x , y), <>(y , x)← <(x , y)

TwoOutgoingEdges()← edge(x , y), edge(x , z), <>(y , z)

3. This is (most likely) not expressible (unless P = NP), since 3-colourability is NP-complete and Datalog has P
data complexity.
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Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is not connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

4. C(x , y) x and y are in the same connected component
D(x , y , k) x and y are not reachable via a path of length at most k

N(x , y , z, k) there is no path of length k + 1 from x to z via y

C(x , x)← C(x , y),C(y , x)← edge(x , y)

C(x , z)← C(x , y),C(y , z) D(x , y , `),D(y , x , `)← ¬edge(x , y), first(`), <>(x , y)

N(x , y , z, k)← first(y),D(x , y , k) N(x , y , z, k)← first(y),D(y , z, k)

N(x , y ′, z, k)← succ(y , y ′),N(x , y , z, k),D(x , y ′, k) N(x , y ′, z, k)← succ(y , y ′),N(x , y , z, k),D(y ′, z, k)

D(x , z, k ′)← succ(k , k ′),D(x , z, k), last(y),N(x , y , z, k) Ans()← D(x , y , k), last(k)
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Exercise 2
Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is not connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

5.

oneEdge(x , y)← first(y), edge(x , y) noEdge(x , y)← first(y),¬edge(x , y)

oneEdge(x , z)← noEdge(x , y), succ(y , z), edge(x , z) noEdge(x , z)← noEdge(x , y), succ(y , z),¬edge(x , z)

oneEdge(x , z)← oneEdge(x , y), succ(y , z),¬edge(x , z)

r(x)← last(y), noEdge(x , y) s(x)← first(x), r(x)

r(x)← last(y), oneEdge(x , y) s(y)← succ(x , y), s(x), r(y)

NoTwoOutEdges()← s(x), last(x)
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Exercise. Assume that the database uses a binary EDB predicate edge to store a directed graph. Try to express the
following properties in semi-positive Datalog programs with a successor ordering, or explain why this is not possible.

1. The database contains an even number of elements.
2. The graph contains a node with two outgoing edges.
3. The graph is 3-colourable.
4. The graph is not connected (*).
5. The graph does not contain a node with two outgoing edges.
6. The graph is a chain.

Solution.

6.

Chain()← Connected(),NoTwoInEdges(),NoTwoOutEdges(), NoCycle()

C(x),R(x)← first(x) C(y)← C(x), edge(x , y)

R(x)← R(x), succ(x , y),C(y) C(y)← C(x), edge(y , x)

Connected()← last(x),R(x)

nI(x , y)← first(x),¬edge(x , y) nO(x , y)← first(x),¬edge(y , x)

nI(x ′, y)← succ(x , x ′), nI(x , y),¬edge(x ′, y) nO(x ′, y)← succ(x , x ′), nO(x , y),¬edge(y , x ′)

NoCycle()← last(x), nI(x , y), nO(x , z)

20 / 53



Exercise 3
Exercise. A Horn logic program is in propHorn2 if every rule it contains is of the form H ← or H ← B1 ∧ B2.
It was claimed that entailment checking in propHorn2 is P-hard. To support this claim, explain how entailment in
propositional Horn logic can be reduced to entailment in propHorn2. Argue how this reduction can be accomplished in
logarithmic space.

Solution.
I Let P be a propositional Horn logic program.
I Then, let P′ be the proposition Horn logic program such that, for all formulas Body→ H ∈ P,

I if Body = B consists of a single atom, then add B ∧ B → H ∈ P′,
I if Body = B1 ∧ . . . ∧ Bn with n ≥ 3, then add B1 ∧ B2 → F2,F2 ∧ B3 → F3, . . . ,Fn−1 ∧ Bn → H ∈ P′ where F2, . . . ,Fn−1 are

fresh propositional variables.
I otherwise, add Body→ H ∈ P′.

I For all propositional variables V occurring in P, we have that P |= V if and only if P |= V ′.
I The program P′ can be computed with a LogSpace transducer:

I count number of body atoms to generate these rules
I count number of rules to have fresh identifiers for every newly translated rule, and
I count the of any propositional variable name to have unique identifiers
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Exercise 4
Exercise. Prove that entailment checking in propositional Horn logic is P-hard.

Solution.
I Consider a P-TMM = 〈Q,Γ,Σ, q0, qf , δ〉 and an input word w = w1, . . . ,wn ∈ Σ∗.
I We define a Datalog program P such that P entails a predicate Accept() iff the TMM accepts w .
I SinceM is polynomial,M halts after at most nk steps for some k ≥ 0.
I Constants:

I celli ,j for all 1 ≤ i ≤ j ≤ nk + 1, and
I all elements q ∈ Q and γ ∈ Γ

I Facts:
I right(celli ,j , celli ,j+1), future(celli ,j , celli+1,j ), for 1 ≤ i ≤ j ≤ nk ,
I S(cell0,i ,wi ) for 1 ≤ i ≤ n, and S(cell0,i , b) for n + 1 ≤ i ≤ nk , and
I T(cell0,0, q0)

I Rules:
I Accept()← T(x , qf ),
I NTR(z)← T(x , y) ∧ right(x , z), NTR(y)← NTR(x) ∧ right(x , y), NTL(z)← T(x , y) ∧ right(z, x),

NTL(x)← right(x, y) ∧ NTL(y), NT(x)← NTR(x), NT(x)← NTL(x), S(y , z)← NT(x) ∧ future(x , y) ∧ S(x , z),
I T (z, q′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) ∧ right(z, y), S(y , γ′)← T (x , q) ∧ S(x , γ) ∧ future(x , y) for all 〈q, γ, q′, γ′, L〉 ∈ δ,
I and similarly for all 〈q, γ, q′, γ′,R〉 ∈ δ

I The grounding of P is a Propositional Horn Logic program that is polynomial in the size of P (which is polynomial
in the size of n).

I ground(P) can be computed by a LogSpace transducer.
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Exercise 5
Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using . . .

1. . . . a successor ordering?
2. . . . atomic EDB negation?
3. . . . an equality predicate ≈ with the obvious semantics?
4. . . . an inequality predicate 0 with the obvious semantics?

Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).
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Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using . . .

1. . . . a successor ordering?
2. . . . atomic EDB negation?
3. . . . an equality predicate ≈ with the obvious semantics?
4. . . . an inequality predicate 0 with the obvious semantics?

Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).

1.

<(x , y)← succ(x , y) properEdge(x , y)← edge(x , y), <(x , y)

<(x , z)← <(x , y), succ(y , z) properEdge(x , y)← edge(x , y), <(y , x)

properPath(x , y)← properEdge(x , y)

properPath(x , z)← properPath(x , y), properEdge(y , z)

properCycle()← properPath(x , x)
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Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
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4. . . . an inequality predicate 0 with the obvious semantics?

Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).

2. I Suppose that P is a program entailing Accept iff edge contains a proper cycle.

I Consider the DB I = { edge(i , j) | 1 ≤ i ≤ j ≤ 2 }.
I Then P,I |= Accept, and there must be a derivation of Accept that does not use negation.
I Let P+ ⊆ P be the negation-free subset of P.
I P+,I |= Accept, and I maps homomorphically onto { edge(a, a) }, contradiction.
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Exercise 5
Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using . . .

1. . . . a successor ordering?
2. . . . atomic EDB negation?
3. . . . an equality predicate ≈ with the obvious semantics?
4. . . . an inequality predicate 0 with the obvious semantics?

Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).

2. I Suppose that P is a program entailing Accept iff edge contains a proper cycle.
I Consider the DB I = { edge(i , j) | 1 ≤ i ≤ j ≤ 2 }.
I Then P,I |= Accept, and there must be a derivation of Accept that does not use negation.
I Let P+ ⊆ P be the negation-free subset of P.
I P+,I |= Accept, and I maps homomorphically onto { edge(a, a) }, contradiction.

3. Since ≈ can be axiomatised using x ≈ x ←, Datalog with an equality predicate is not more expressive than
Datalog.
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Exercise. Show that the following property cannot be expressed in Datalog: The edge predicate has a proper cycle,
i.e., a cycle that is not of the form edge(a, a).
Can you express this property using . . .

1. . . . a successor ordering?
2. . . . atomic EDB negation?
3. . . . an equality predicate ≈ with the obvious semantics?
4. . . . an inequality predicate 0 with the obvious semantics?

Solution.

0. We know that Datalog is homomorphism-closed, but the property of having a proper cycle is not, since any
edge-cycle maps homomorphically onto edge(a, a).

2. I Suppose that P is a program entailing Accept iff edge contains a proper cycle.
I Consider the DB I = { edge(i , j) | 1 ≤ i ≤ j ≤ 2 }.
I Then P,I |= Accept, and there must be a derivation of Accept that does not use negation.
I Let P+ ⊆ P be the negation-free subset of P.
I P+,I |= Accept, and I maps homomorphically onto { edge(a, a) }, contradiction.

3. Since ≈ can be axiomatised using x ≈ x ←, Datalog with an equality predicate is not more expressive than
Datalog.

4.

properEdge(x , y)← edge(x , y) ∧ x 0 y properPath(x , y)← properEdge(x , y)

properPath(x , z)← properPath(x , y) ∧ properEdge(y , z) properCycle()← properPath(x , x)
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