Complexity Theory
Games/Logarithmic Space

Daniel Borchmann, Markus Krötzsch

Games

Computational Logic

```
2015-12-02
```

(c)(1)
©®® 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory

Games as Computational Problems

Many single-player games relate to NP-complete problems:

- Sudoku
- Minesweeper
- Tetris
- ...

Decision problem: Is there a solution?
(For Tetris: is it possible to clear all blocks?)
What about two-player games?

- Two players take moves in turns
- The players have different goals
- The game ends if a player wins

Decision problem: Does Player 1 have a winnings strategy?
In other words: can Player 1 enforce winning, whatever Player 2 does?

Deciding the Formula Game

Example: The Geography Game

Formula Game

Input: A formula φ.
Problem: Does Player 1 have a winning strategy on φ ?

Theorem 12.1
Formula Game is PSpace-complete.
Proof sketch.
Formula Game is essentially the same as True QBF.
Having a winning strategy means: there is a truth value for X_{1}, such that, for all truth values of X_{2}, there is a truth value of X_{3}, \ldots such that φ becomes true.
If we have a QBF where quantifiers do not alternate, we can add dummy quantifiers and variables that do not change the semantics to get the same alternating form as for the Formula Game.

A children's game:

- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.

A mathematicians' game:

- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- Repetitions are not allowed.
- The first player who cannot mark a new node looses.

Decision problem (Generalised) Geography:
given a graph and start node, does Player 1 have a winning strategy?

Geography is PSpace-hard

Let φ with variables X_{1}, \ldots, X_{ℓ} be an instance of Formula Game.
Without loss of generality, we assume:

- ℓ is odd (Player 1 gets the first and last turn)
- φ is in CNF

We now build a graph that encodes Formula Game in terms of Geography

- The left-hand side of the graph is a chain of diamond structures that represent the choices that players have when assigning truth values
- The right-hand side of the graph encodes the structure of φ : Player 2 may choose a clause (trying to find one that is not true under the assignment); Player 1 may choose a literal (trying to find one that is true under the assignment).
(see board or [Sipser, Theorem 8.14])

More Games

The characteristic of PSpace is quantifier alternation
This is closely related to taking turns in 2-player games.
Are many games PSPACE-complete?

- Issue 1: many games are finite - that is: computationally trivial \leadsto generalise games to arbitrarily large boards
- generalised Tic-Tac-Toe is PSPACE-complete
- generalised Reversi (Othello) is PSpace-complete
- Issue 2: (generalised) games where moves can be reversed may require very long matches
\leadsto such games often are even harder
- generalised Go is ExpTime-complete
- generalised Draughts (Checkers) is ExpTime-complete
- generalised Chess is ExpTime-complete
©(O) 2015 Daniel Borchmann, Markus Krötzsch

Games/Logarithmic Space \quad| Complexity Theory |
| :---: |
| Logarithmic Space |\quad 2015-12-02 \#9

Logarithmic Space

Problems in L and NL

Polynomial space

As we have seen, polynomial space is already quite powerful.
We therefore consider more restricted space complexity classes.

Linear space

Even linear space is enough to solve Sat.

Sub-linear space

To get sub-linear space complexity, we consider Turing-machines with separate input tape and only count working space.

Recall:

$$
\begin{aligned}
\mathrm{L}=\operatorname{LOGSPACE} & =\mathrm{DSPACE}(\log n) \\
\mathrm{NL}=\operatorname{NLOGSPACE} & =\operatorname{NSPACE}(\log n)
\end{aligned}
$$

Examples: Problems in L

Example 12.3

The language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is in L .

Algorithm

- Check that no 1 is ever followed by a 0 Requires no working space (only movements of the read head)
- Count the number of 0's and 1's
- Compare the two counters

Example 12.4

Palindromes $\in L$ L.
Algorithm.

- Use two pointers, one to the beginning and one to the end of the input.
- At each step, compare the two symbols pointed to.
- Move the pointers one step inwards.

Palindromes

Input: \quad Word w on some input alphabet Σ
Problem: Does w read the same forward and

Examples: Problems in L

```
backward?
        backward?
```

Complexity Theory
2015-12-02 \#14
(c)()2015 Daniel Borchmann, Markus Krötzsch Games/Logarithmic Space Logarithmic Space

An Algorithm for Reachability

Reachablity a.k.a. STCON a.k.a. РAth

Input: Directed graph G, vertices $s, t \in V(G)$
Problem: Does G contain a path from s to t ?

Example 12.5

Reachablity \in NL.
Algorithm.

- Use a pointer to the current vertex, starting in s.
- Iteratively move pointer from current vertex to some neighbour vertex nondeterministically

```
CanReach(G,s,t) :
    c:= |V(G)| // counter
    p:=s // pointer
    while c>0 :
        if p=t :
            return TRUE
        else :
            nondeterministically select G-successor p' of p
            p:= p'
            c:=c-1
    // eventually, if no success:
    return FALSE
```

- Accept when finding t; reject when searching for too long

Defining Reductions in Logarithmic Space

Log-Space Reductions and NL-Completeness

To compare the difficulty of problems in P or NL, polynomial-time reductions are useless.

Definition 12.6

A log-space transducer \mathcal{M} is a logarithmic space bounded Turing machine with a read-only input tape and a write-only, write-once output tape, and that halts on all inputs.
\mathcal{M} computes a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, where $f(w)$ is the content of the output tape of \mathcal{M} running on input w when \mathcal{M} halts.
f is called a log-space computable function.

Definition 12.7

A log-space reduction from $\mathcal{L} \subseteq \Sigma^{*}$ to $\mathcal{L}^{\prime} \subseteq \Sigma^{*}$ is a log-space computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that for all $w \in \Sigma^{*}$:

$$
w \in \mathcal{L} \Longleftrightarrow f(w) \in \mathcal{L}^{\prime}
$$

We write $\mathcal{L} \leq_{L} \mathcal{L}^{\prime}$ in this case.
Definition 12.8
A problem $\mathcal{L} \in \mathrm{NL}$ is complete for NL if every other language in NL is \log-space reducible to \mathcal{L}.

©(®) 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-12-02	\#17	@(®) 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-12-02	\#18
Games/Logarithmic Space	Logarithmic Space	Games/Logarithmic Space			Logarithmic Space		
Detour: P-completeness				An NL-Complete Problem			

Theorem 12.10

Reachability is NL-complete.
Proof idea.
Let \mathcal{M} be a non-deterministic log-space TM deciding \mathcal{L}.
On input w:
(1) modify Turing machine to have a unique accepting configuration (easy)
(2) construct the configuration graph (graph whose nodes are configurations of \mathcal{M} and edges represent possible computational steps of \mathcal{M} on w)
(3) find a path from the start configuration to the accepting configuration

NL-Completeness

Proof sketch.
We construct $\langle G, s, t\rangle$ from \mathcal{M} and w using a log-space transducer:

- A configuration $\left(q, w_{2},\left(p_{1}, p_{2}\right)\right)$ of \mathcal{M} can be described in $c \log n$ space for some constant c and $n=|w|$.
- List the nodes of G by going through all strings of length $c \log n$ and outputting those that correspond to legal configurations.
- List the edges of G by going through all pairs of strings $\left(C_{1}, C_{2}\right)$ of length $c \log n$ and outputting those pairs where $C_{1} \vdash_{\mathcal{M}} C_{2}$.
- s is the starting configuration of G.
- Assume w.l.o.g. that \mathcal{M} has a single accepting configuration t.
$w \in \mathcal{L}$ iff $\langle G, s, t\rangle \in \operatorname{Reachability}$

> (see also Sipser, Theorem 8.25)

coNL

 coNLAs for time, we consider complement classes for space.

Recall Definition 9.6:
For a complexity class C, we define $\operatorname{coC}:=\{\mathcal{L}: \overline{\mathcal{L}} \in \mathrm{C}\}$.
Complement classes for space:

- CONL $:=\{\mathcal{L}: \overline{\mathcal{L}} \in \mathrm{NL}\}$
- CoNPSpace $:=\{\mathcal{L}: \overline{\mathcal{L}} \in$ NPSPace $\}$

From Savitch's theorem:
PSpace = NPSpace and hence conPSpace = PSpace, but merely NL \subseteq DSpace $\left(\log ^{2} n\right)$ and hence CoNL \subseteq DSpace $\left(\log ^{2} n\right)$

Another famous problem in complexity theory: is NL =coNL?

- First stated in 1964 [Kuroda]
- Related question: are complements of context-sensitive languages also context-sensitive?
(such languages are recognized by linear-space bounded TMs)
- Open for decades, although most experts believe NL \neq CONL

The Immerman-Szelepcsényi Theorem

Surprisingly, two independent people resolve the NL vs. coNL problem simutaneously in 1987

More surprisingly, they show the opposite of what everyone expected:
Theorem 12.11 (Immerman 1987/Szelepcsényi 1987)
NL $=$ coNL.
Proof.
Show that $\overline{\text { REACHABILTY }}$ is in NL.
Remark: alternative explanations provided by

- Sipser (Theorem 8.27)
- Dick Lipton's blog entry We All Guessed Wrong (link)
- Wikipedia Immerman-Szelepcsényi theorem

Towards Nondeterminsitic Nonreachability

How could we check in logarithmic space that t is not reachable from s ?
Initial idea:

```
NaiveNonReach(G, s,t) :
    for each vertex v of G :
            if CanReach(G, s,v) and v=t :
                return FALSE
    // eventually, if FALSE was not returned above:
    return TRUE
Does this work?
```

No: the check $\operatorname{CanReach}(G, s, v)$ may fail even if v is reachable from s Hence there are many (nondeterministic) runs where the algorithm accepts, although t is reachable from s.

©(1) 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-12-02	\#25	@(®) 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-12-02	\#26
Games/Logarithmic Space	CONL			Games/L	CoNL		

Towards Nondeterminsitic Nonreachability

Things would be different if we knew
the number count of vertices reachable from s :

```
CountingNonReach( \(G, s, t\), count) :
    reached \(:=0\)
    for each vertex \(v\) of \(G\) :
        if CanReach( \(G, s, v\) ) :
            reached \(:=\) reached +1
            if \(v=t\) :
                return FALSE
    // eventually, if FALSE was not returned above:
    return (count \(=\) reached)
```

Problem: how can we know count?

Counting Reachable Vertices - Intuition

Idea:

- Count number of vertices reachable in at most length steps
- we call this number count ${ }_{\text {length }}$
- then the number we are looking for is count $=$ count $_{|V(G)|-1}$
- Use a limited-length reachability test:

CanReach(G, s, v, length): " t reachable from s in G in \leq length steps" (we actually implemented $\operatorname{CanREach}(G, s, v)$ as $\operatorname{CanReach~}(G, s, v,|V(G)|-1)$)

- Compute the count iteratively, starting with length $=0$ steps:
- for length >0, go through all vertices u of G and check if they are reachable
- to do this, for each such u, go through all v reachable by a shorter path, and check if you can directly reach u from them
- use the counting trick to make sure you don't miss any v (the required number count length was computed before)

Completing the Proof of NL = CoNL

The count for length $=0$ is 1 . For length >0, we compute as follows:

```
01 CountReachable(G, s, length, count length-1) :
02 count :=1 // we always count }
03 for each vertex }u\mathrm{ of }G\mathrm{ such that }u\not=s\mathrm{ :
04 reached :=0
05 for each vertex v of G :
            for each vertex v of G :
                    reached := reached +1
            if G has an edge v 
                    count := count + 1
                    GOTO 03 // continue with next u
            if reached< count length-1 :
            REJECT // whole algorithm fails
    return count
if CanReach(G, s,v, length - 1) :
```

Putting the ingredients together:

Putting the ingredients together:

```
\(01 \operatorname{NonReachable}(G, s, t)\) :
02 count \(:=1 / /\) number of nodes reachable in 0 steps
    for \(\ell:=1\) to \(|V(G)|-1\) :
        count \(_{\text {prev }}:=\) count
        count \(:=\operatorname{CountReachable}^{(G, s}, \ell\), count \(\left._{\text {prev }}\right)\)
    return CountingNonReach( \(G, s, t\), count)
It is not hard to see that this procedure runs in logarithmic space, since we use a fixed number of counters and pointers.
use a fixed number of counters and pointers.
```

