Complexity Theory

Games/Logarithmic Space

Daniel Borchmann, Markus Krötzsch

Computational Logic

2015-12-02

 \odot

Games

⊕● 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-12-02	#1	©⊕@ 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-12-02	#2
Games/Logarithmic Space Games				Games/Logari	thmic Space Games		
Games as Computational Problems			Example: The Formula	a Game			
Many single-player games relate to NP -complete problems:							

2015-12-02

- Sudoku
- Minesweeper
- Tetris

▶ ...

Decision problem: Is there a solution?

(For Tetris: is it possible to clear all blocks?)

What about two-player games?

© ⊕ @ 2015 Daniel Borchmann, Markus Krötzsch

- Two players take moves in turns
- The players have different goals
- The game ends if a player wins

Decision problem: Does Player 1 have a winnings strategy?

In other words: can Player 1 enforce winning, whatever Player 2 does?

Complexity Theory

A contrived game, to illustrate the idea:

- Given: a propositional logic formula φ with consecutively numbered variables X₁,... X_ℓ.
- Two players take turns in selecting values for the next variable:
 - Player 1 sets X_1 to true or false
 - Player 2 sets X₂ to true or false
 - Player 1 sets X₃ to true or false

▶ ...

until all variables are set.

Player 1 wins if the assignment makes φ true.
 Otherwise, Player 2 wins.

#3 @ () @ 2015 Daniel Borchmann, Markus Krötzsch

Deciding the Formula Game

FORMULA GAME

Input: A formula φ .

Problem: Does Player 1 have a winning strategy on φ ?

Theorem 12.1

FORMULA GAME is **PSPACE**-complete.

Proof sketch.

Theorem 12.2

Proof.

FORMULA GAME is essentially the same as TRUE QBF.

GENERALISED GEOGRAPHY is PSPACE-complete.

TRUE QBF OF FOL MODEL CHECKING.

► GEOGRAPHY is PSPACE-hard:

Give algorithm that runs in polynomial space.

Proof by reduction Formula Game \leq_p Geography.

Having a winning strategy means: there is a truth value for X_1 , such that, for all truth values of X_2 , there is a truth value of X_3, \ldots such that φ becomes true.

If we have a QBF where quantifiers do not alternate, we can add dummy quantifiers and variables that do not change the semantics to get the same alternating form as for the Formula Game.

Example: The Geography Game

A children's game:

- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.

A mathematicians' game:

- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- Repetitions are not allowed.
- The first player who cannot mark a new node looses.

Decision problem (Generalised) Geography:

given a graph and start node, does Player 1 have a winning strategy?

©€ 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-12-02 #5	©⊕⊚ 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-12-02 #6
Games/Logarithm	nic Space Games		Games/Logari	ithmic Space Games	
GEOGRAPHY IS PSPACE-complete		GEOGRAPHY IS PSPACE-	hard		

JEUGRAPHT IS I DPAUE-HAIU

Let φ with variables X_1, \ldots, X_ℓ be an instance of FORMULA GAME. Without loss of generality, we assume:

- ℓ is odd (Player 1 gets the first and last turn)
- \varphi is in CNF

We now build a graph that encodes FORMULA GAME in terms of GEOGRAPHY

- The left-hand side of the graph is a chain of diamond structures that represent the choices that players have when assigning truth values
- The right-hand side of the graph encodes the structure of φ : Player 2 may choose a clause (trying to find one that is not true under the assignment); Player 1 may choose a literal (trying to find one that is true under the assignment).

(see board or [Sipser, Theorem 8.14])

©€) ② 2015	Daniel Borchmann	, Markus Krötzsch
------------	------------------	-------------------

• **Geography** \in **PSPACE**:

Complexity Theory

It is not difficult to provide a recursive algorithm similar to the one for

2015-12-02

#7 © (1) 2015 Daniel Borchmann, Markus Krötzsch

Games/Logarithmic Space Games	Games/Logarithmic Space Logarithmic Space			
More Games				
The characteristic of $PSPACE$ is quantifier alternation				
This is closely related to taking turns in 2-player games.				
Are many games PSPACE-complete?				
 Issue 1: many games are finite – that is: computationally trivial generalise games to arbitrarily large boards generalised Tic-Tac-Toe is PSPACE-complete generalised Reversi (Othello) is PSPACE-complete Issue 2: (generalised) games where moves can be reversed may require very long matches such games often are even harder generalised Go is ExpTIME-complete generalised Draughts (Checkers) is ExpTIME-complete generalised Chess is ExpTIME-complete 	Logarithmic Space			
© ⊕ © 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #9 Games/Logarithmic Space 2015-12-02 #9	© ① ③ 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #10 Games/Logarithmic Space Logarithmic Space			
Logarithmic Space	Problems in L and NL			
Polynomial space				
As we have seen, polynomial space is already quite powerful.	What sort of problems are in ${\rm L}$ and ${\rm NL}$?			
We therefore consider more restricted space complexity classes.	In logarithmic space we can store			
Linear space	 a fixed number of counters (up to length of input) 			
Even linear space is enough to solve SAT.	a fixed number of pointers to positions in the input string			

Sub-linear space

To get sub-linear space complexity, we consider Turing-machines with separate input tape and only count working space.

Recall:

 $L = LOGSPACE = DSPACE(\log n)$ $NL = NLOGSPACE = NSPACE(\log n)$

Hence,

L contains all problems requiring only a constant number of

▶ NL contains all problems requiring only a constant number of

counters/pointers for solving.

counters/pointers for verifying solutions.

mic Space	Logarithmic Space

Examples: Problems in L

Examples: Problems in L

Example 12.3

The language $\{0^n 1^n \mid n \ge 0\}$ is in L.

Algorithm.

Check that no 1 is ever followed by a 0 Requires no working space (only movements of the read head)

Games/Logarith

- Count the number of 0's and 1's
- Compare the two counters

PALINDROMES

Input:	Word <i>w</i> on some input alphabet Σ
Problem:	Does <i>w</i> read the same forward and backward?

Example 12.4

Palindromes $\in L$.

Algorithm.

- Use two pointers, one to the beginning and one to the end of the input.
- At each step, compare the two symbols pointed to.
- Move the pointers one step inwards.

©⊕@ 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-12-02	#13	©⊕⊚ 2015 Daniel Borchmann, Markus Krötzsch		Complexity Theory	2	2015-12-02	#14
Games/Logarith	nmic Space Logarithmic Space			Games/Logari	ithmic Space	Logarithmic Space			
Example: A Problem in	NL			An Algorithm for Reach	ABILITY				

Example: A Problem in NL

REACHABILITY a.k.a. STCON a.k.a. PATH				
	Input: Directed graph G, vertices $s, t \in V$			
	Problem:	Does G contain a path from s to t ?		
Example	12.5			
Reachability \in NL.				
Algorithm	1.			

- Use a pointer to the current vertex, starting in s.
- Iteratively move pointer from current vertex to some neighbour vertex nondeterministically
- Accept when finding t; reject when searching for too long

More formally:

- **01** CANREACH(G, s, t) :
- c := |V(G)| // counter02
- 03 p := s// pointer
- while c > 0 : 04
- if p = t : 05
- return TRUE 06
- 07 else :
- nondeterministically select G-successor p' of p80
- 09 p := p'
- c := c 110
- // eventually, if no success: 11
- 12 return FALSE

Defining Reductions in Logarithmic Space

Log-Space Reductions and NL-Completeness

To compare the difficulty of problems in P or NL, polynomial-time reductions are useless.

Definition 12.6

A log-space transducer \mathcal{M} is a logarithmic space bounded Turing machine with a read-only input tape and a write-only, write-once output tape, and that halts on all inputs.

 \mathcal{M} computes a function $f: \Sigma^* \to \Sigma^*$, where f(w) is the content of the output tape of \mathcal{M} running on input w when \mathcal{M} halts.

f is called a log-space computable function.

Definition 12.7

A log-space reduction from $\mathcal{L} \subseteq \Sigma^*$ to $\mathcal{L}' \subseteq \Sigma^*$ is a log-space computable function $f: \Sigma^* \to \Sigma^*$ such that for all $w \in \Sigma^*$:

 $w \in \mathcal{L} \iff f(w) \in \mathcal{L}'$

We write $\mathcal{L} \leq_{l} \mathcal{L}'$ in this case.

Definition 12.8

A problem $\mathcal{L} \in NL$ is complete for NL if every other language in NL is log-space reducible to \mathcal{L} .

⊛⊕ @ 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-12-02 #*	17	©⊕@ 2015 Daniel Borchmann, Markus Krötzsch		Complexity Theory	2015-12-02	#18
Games/Logarithmic Sp	pace Logarithmic Space			Games/Logarit	thmic Space	Logarithmic Space		
Detour: P-completeness				An NL-Complete Prob	lem			

Log-space reductions are also used to define P-complete problems:

Definition 12.9

A problem $\mathcal{L} \in P$ is complete for P if every other language in P is log-space reducible to \mathcal{L} .

We will see some examples in later lectures ...

Theorem 12.10

REACHABILITY is NL-complete.

Proof idea.

Let \mathcal{M} be a non-deterministic log-space TM deciding \mathcal{L} .

On input w:

- (1) modify Turing machine to have a unique accepting configuration (easy)
- (2) construct the configuration graph (graph whose nodes are configurations of \mathcal{M} and edges represent possible computational steps of \mathcal{M} on w)
- (3) find a path from the start configuration to the accepting configuration

Games/Logarithmic :	Space Logarithmic Space		Games/Logar	ithmic Space coNL			
NL-Completeness							
Proof sketch. We construct $\langle G, s, t \rangle$ from \mathcal{M} ar \blacktriangleright A configuration $(q, w_2, (p_1, p_2))$	nd w using a log-space trans $p_2))$ of $\mathcal M$ can be described	sducer: in <i>c log n</i>					
 space for some constant c and n = w . List the nodes of G by going through all strings of length c log n and outputting those that correspond to legal configurations. 			coNL				
 List the edges of G by going length c log n and outputting 	through all pairs of strings those pairs where $C_1 \vdash_{\mathcal{M}} C$	(C_1, C_2) of C_2 .					
 s is the starting configuratio Assume w.l.o.g. that <i>M</i> has 	n of G. a single accepting configur	ation t.					
$w \in \mathcal{L} ext{ iff } \langle G, s, t angle \in Reachability$							
	(see also Sipser, Theorem 8	3.25)					
©⊕@ 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-12-02 #2	1 @ () () @ 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-12-02 #22		
Games/Logarithmic	Space CONL		Games/Logar	ithmic Space CONL			

@① 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-12-02 #21	© () () 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2015-12-02	#2
Games/Logari	thmic Space CONL		Games/Logari	ithmic Space coNL		
CONL			The NL vs. coNL Pro	blem		

As for time, we consider complement classes for space.

Recall Definition 9.6:

For a complexity class $\mathrm{C},$ we define $\mathrm{coC}:=\{\mathcal{L}:\overline{\mathcal{L}}\in\mathrm{C}\}.$

Complement classes for space:

- $\blacktriangleright \text{ coNL} := \{ \mathcal{L} : \overline{\mathcal{L}} \in \text{NL} \}$
- $\blacktriangleright \text{ conpspace} := \{ \mathcal{L} : \overline{\mathcal{L}} \in \text{NPSpace} \}$

From Savitch's theorem:

PSPACE = NPSPACE and hence CONPSPACE = PSPACE, but merely $\text{NL} \subseteq \text{DSPACE} (\log^2 n)$ and hence $\text{CONL} \subseteq \text{DSPACE} (\log^2 n)$

Another famous problem in complexity theory: is $\rm NL$ = $\rm coNL$?

- First stated in 1964 [Kuroda]
- Related question: are complements of context-sensitive languages also context-sensitive?

(such languages are recognized by linear-space bounded TMs)

 \blacktriangleright Open for decades, although most experts believe $\rm NL \neq \rm CONL$

Games/Logarithmic Space CONL

The Immerman-Szelepcsényi Theorem

Surprisingly, two independent people resolve the $\rm NL$ vs. $\rm coNL$ problem simutaneously in 1987

More surprisingly, they show the opposite of what everyone expected:

```
Theorem 12.11 (Immerman 1987/Szelepcsényi 1987) NL = CONL.
```

Proof.

Show that $\overline{\text{Reachability}}$ is in NL.

Remark: alternative explanations provided by

- Sipser (Theorem 8.27)
- Dick Lipton's blog entry We All Guessed Wrong (link)
- Wikipedia Immerman–Szelepcsényi theorem

Towards Nondeterminsitic Nonreachability

How could we check in logarithmic space that t is not reachable from s?

Initial idea:

- **Q1** NAIVENONREACH(G, s, t) :
- 02 for each vertex v of G :
- 03 if CANREACH(G, s, v) and v = t:
- **0**4 return FALSE
- 05 // eventually, if FALSE was not returned above:

06 return TRUE

Does this work?

No: the check CANREACH(G, s, v) may fail even if v is reachable from sHence there are many (nondeterministic) runs where the algorithm accepts, although t is reachable from s.

©⊕@ 2015 Daniel Borchmann, Markus Krötzsch Games/Logarithmic :	Complexity Theory Space CONL	2015-12-02 #25	⊚⊕@ 2015 Daniel Borchmann, Markus Krötzsch Games/Logarithm	Complexity Theory	2015-12-02	#26
Towards Nondeterminsition	c Nonreachability		Counting Reachable Ver	tices – Intuition		
Things would be different if we know the number <i>count</i> of vertices real 01 COUNTINGNONREACH(G, s, t, c) 02 <i>reached</i> := 0 03 for each vertex v of 04 if CANREACH(G, s, v) 15 05 <i>reached</i> := <i>reached</i> 05 06 if $v = t$:	new chable from <i>s</i> : count) : G : + 1		Idea: Count number of vertices r we call this number co then the number we a Use a limited-length reach CanReach(G, s, v, length): (we actually implemented CanRe Compute the count iterative	eachable in at most length sount _{length} re looking for is $count = conability test:"t reachable from s in G in south(G, s, v, production)ach(G, s, v) as CanReach(G, s, v, production)ely, starting with length = 0$	steps unt _{V(G) −1} ≤ <i>length</i> steps V(G) −1)) steps:	>"
<pre>07 return FALSE 08 // eventually, if FAL 09 return (count = reached Problem: how can we know court</pre>	SE was not returned abov d) nt?	e:	 for <i>length</i> > 0, go thro are reachable to do this, for each sugshorter path, and chee use the counting trick (the required number 	ugh all vertices u of G and c ch u , go through all v reaches ck if you can directly reach u to make sure you don't miss count length was computed b	check if they able by a <i>I</i> from them s any <i>V</i> efore)	

Counting Reachable Vertices – Algorithm			Completing the Proof of $NL = CONL$			
The count for <i>length</i>	= 0 is 1. For <i>length</i> > 0, we compute as	follows:				
Q1 COUNTREACHABLE(G, s, length, count _{length-1}): Q2 count := 1 // we always count s			Putting the ingredients together:			
03 for each vertex u of G such that $u \neq s$:		01 NonReachable (G, s, t) :				
04 reached := 0		<pre>02 count := 1 // number of nodes reachable in 0 steps</pre>				
05 for each vertex v of G :			03 for $\ell := 1$ to $ V(G) - 1$:			
06 if CanReach $(G, s, v, length - 1)$:		04 count _{prev} := count				
07 reached := reached + 1		05 $count := CountReachable(G, s, \ell, count_{prev})$				
08 if G has an edge $v \to u$:			06 return CountingNonReach(<i>G</i> , <i>s</i> , <i>t</i> , <i>count</i>)			
09 coun	t := count + 1					
10 GOTO 03 // continue with next U			It is not hard to see that this procedure runs in logarithmic space, since we			
11 if reached < $count_{length-1}$:			use a fixed number of counters and pointers. \Box			
12 REJECT /	/ whole algorithm fails					
13 return count						
© ① © 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02		2015-12-02 #29	© € © 2015 Daniel Borchmann,	Markus Krötzsch	Complexity Theory	2015-12-02 #30

Games/Logarithmic Space CONL

Games/Logarithmic Space coNL