
Games/Logarithmic Space

Complexity Theory
Games/Logarithmic Space

Daniel Borchmann, Markus Krötzsch

Computational Logic

2015-12-02

cba

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #1

Games/Logarithmic Space Games

Games

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #2

Games/Logarithmic Space Games

Games as Computational Problems

Many single-player games relate to NP-complete problems:

Sudoku

Minesweeper

Tetris

. . .

Decision problem: Is there a solution?
(For Tetris: is it possible to clear all blocks?)

What about two-player games?

Two players take moves in turns

The players have different goals

The game ends if a player wins

Decision problem: Does Player 1 have a winnings strategy?
In other words: can Player 1 enforce winning, whatever Player 2 does?

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #3

Games/Logarithmic Space Games

Example: The Formula Game

A contrived game, to illustrate the idea:

Given: a propositional logic formula ϕ with consecutively numbered
variables X1, . . .X`.

Two players take turns in selecting values for the next variable:

Player 1 sets X1 to true or false
Player 2 sets X2 to true or false
Player 1 sets X3 to true or false
. . .

until all variables are set.

Player 1 wins if the assignment makes ϕ true.
Otherwise, Player 2 wins.

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #4

Games/Logarithmic Space Games

Deciding the Formula Game

Formula Game

Input: A formula ϕ.

Problem: Does Player 1 have a winning strategy on ϕ?

Theorem 12.1
Formula Game is PSpace-complete.

Proof sketch.
Formula Game is essentially the same as True QBF.

Having a winning strategy means: there is a truth value for X1, such that, for all truth values
of X2, there is a truth value of X3, . . . such that ϕ becomes true.

If we have a QBF where quantifiers do not alternate, we can add dummy quantifiers and

variables that do not change the semantics to get the same alternating form as for the

Formula Game. �
cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #5

Games/Logarithmic Space Games

Example: The Geography Game

A children’s game:

Two players are taking turns naming cities.

Each city must start with the last letter of the previous.

Repetitions are not allowed.

The first player who cannot name a new city looses.

A mathematicians’ game:

Two players are marking nodes on a directed graph.

Each node must be a successor of the previous one.

Repetitions are not allowed.

The first player who cannot mark a new node looses.

Decision problem (Generalised) Geography:
given a graph and start node, does Player 1 have a winning strategy?

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #6

Games/Logarithmic Space Games

Geography is PSpace-complete

Theorem 12.2
Generalised Geography is PSpace-complete.

Proof.
Geography ∈ PSpace:
Give algorithm that runs in polynomial space.
It is not difficult to provide a recursive algorithm similar to the one for
True QBF or FOL Model Checking.

Geography is PSpace-hard:
Proof by reduction Formula Game ≤p Geography.

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #7

Games/Logarithmic Space Games

Geography is PSpace-hard

Let ϕ with variables X1, . . . ,X` be an instance of Formula Game.
Without loss of generality, we assume:

` is odd (Player 1 gets the first and last turn)

ϕ is in CNF

We now build a graph that encodes Formula Game in terms of Geography

The left-hand side of the graph is a chain of diamond structures that
represent the choices that players have when assigning truth values

The right-hand side of the graph encodes the structure of ϕ: Player 2
may choose a clause (trying to find one that is not true under the
assignment); Player 1 may choose a literal (trying to find one that is
true under the assignment).

(see board or [Sipser, Theorem 8.14]) �

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #8

Games/Logarithmic Space Games

More Games

The characteristic of PSpace is quantifier alternation

This is closely related to taking turns in 2-player games.

Are many games PSpace-complete?

Issue 1: many games are finite – that is: computationally trivial
{ generalise games to arbitrarily large boards

generalised Tic-Tac-Toe is PSpace-complete
generalised Reversi (Othello) is PSpace-complete

Issue 2: (generalised) games where moves can be reversed may
require very long matches
{ such games often are even harder

generalised Go is ExpTime-complete
generalised Draughts (Checkers) is ExpTime-complete
generalised Chess is ExpTime-complete

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #9

Games/Logarithmic Space Logarithmic Space

Logarithmic Space

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #10

Games/Logarithmic Space Logarithmic Space

Logarithmic Space

Polynomial space

As we have seen, polynomial space is already quite powerful.

We therefore consider more restricted space complexity classes.

Linear space

Even linear space is enough to solve Sat.

Sub-linear space
To get sub-linear space complexity, we consider Turing-machines with
separate input tape and only count working space.

Recall:

L = LogSpace = DSpace(log n)

NL = NLogSpace = NSpace(log n)

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #11

Games/Logarithmic Space Logarithmic Space

Problems in L and NL

What sort of problems are in L and NL?

In logarithmic space we can store

a fixed number of counters (up to length of input)

a fixed number of pointers to positions in the input string

Hence,

L contains all problems requiring only a constant number of
counters/pointers for solving.

NL contains all problems requiring only a constant number of
counters/pointers for verifying solutions.

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #12

Games/Logarithmic Space Logarithmic Space

Examples: Problems in L

Example 12.3

The language {0n1n | n ≥ 0} is in L.

Algorithm.

Check that no 1 is ever followed by a 0
Requires no working space (only movements of the read head)

Count the number of 0’s and 1’s

Compare the two counters

�

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #13

Games/Logarithmic Space Logarithmic Space

Examples: Problems in L

Palindromes

Input: Word w on some input alphabet Σ

Problem: Does w read the same forward and
backward?

Example 12.4

Palindromes ∈ L.

Algorithm.

Use two pointers, one to the beginning and one to the end of the
input.

At each step, compare the two symbols pointed to.

Move the pointers one step inwards. �

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #14

Games/Logarithmic Space Logarithmic Space

Example: A Problem in NL

Reachability a.k.a. STCON a.k.a. Path

Input: Directed graph G, vertices s, t ∈ V(G)

Problem: Does G contain a path from s to t?

Example 12.5

Reachability ∈ NL.

Algorithm.

Use a pointer to the current vertex, starting in s.

Iteratively move pointer from current vertex to some neighbour vertex
nondeterministically

Accept when finding t ; reject when searching for too long

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #15

Games/Logarithmic Space Logarithmic Space

An Algorithm for Reachability

More formally:

01 CanReach(G,s,t) :
02 c := |V(G)| // counter
03 p := s // pointer
04 while c > 0 :
05 if p = t :
06 return TRUE
07 else :
08 nondeterministically select G-successor p′ of p
09 p := p′

10 c := c − 1
11 // eventually, if no success:
12 return FALSE

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #16

Games/Logarithmic Space Logarithmic Space

Defining Reductions in Logarithmic Space

To compare the difficulty of problems in P or NL, polynomial-time
reductions are useless.

Definition 12.6
A log-space transducerM is a logarithmic space bounded Turing machine
with a read-only input tape and a write-only, write-once output tape, and
that halts on all inputs.

M computes a function f : Σ∗ → Σ∗, where f(w) is the content of the
output tape ofM running on input w whenM halts.

f is called a log-space computable function.

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #17

Games/Logarithmic Space Logarithmic Space

Log-Space Reductions and NL-Completeness

Definition 12.7
A log-space reduction from L ⊆ Σ∗ to L′ ⊆ Σ∗ is a log-space computable
function f : Σ∗ → Σ∗ such that for all w ∈ Σ∗:

w ∈ L ⇐⇒ f(w) ∈ L′

We write L ≤L L′ in this case.

Definition 12.8
A problem L ∈ NL is complete for NL if every other language in NL is
log-space reducible to L.

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #18

Games/Logarithmic Space Logarithmic Space

Detour: P-completeness

Log-space reductions are also used to define P-complete problems:

Definition 12.9
A problem L ∈ P is complete for P if every other language in P is
log-space reducible to L.

We will see some examples in later lectures . . .

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #19

Games/Logarithmic Space Logarithmic Space

An NL-Complete Problem

Theorem 12.10
Reachability is NL-complete.

Proof idea.
LetM be a non-deterministic log-space TM deciding L.

On input w:

(1) modify Turing machine to have a unique accepting configuration (easy)

(2) construct the configuration graph (graph whose nodes are
configurations ofM and edges represent possible computational
steps ofM on w)

(3) find a path from the start configuration to the accepting configuration

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #20

Games/Logarithmic Space Logarithmic Space

NL-Completeness

Proof sketch.
We construct 〈G, s, t〉 fromM and w using a log-space transducer:

A configuration (q,w2, (p1, p2)) ofM can be described in c log n
space for some constant c and n = |w |.
List the nodes of G by going through all strings of length c log n and
outputting those that correspond to legal configurations.

List the edges of G by going through all pairs of strings (C1,C2) of
length c log n and outputting those pairs where C1 `M C2.

s is the starting configuration of G.

Assume w.l.o.g. thatM has a single accepting configuration t .

w ∈ L iff 〈G, s, t〉 ∈ Reachability

(see also Sipser, Theorem 8.25) �

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #21

Games/Logarithmic Space coNL

coNL

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #22

Games/Logarithmic Space coNL

coNL

As for time, we consider complement classes for space.

Recall Definition 9.6:

For a complexity class C, we define coC := {L : L ∈ C}.

Complement classes for space:

coNL := {L : L ∈ NL}
coNPSpace := {L : L ∈ NPSpace}

From Savitch’s theorem:
PSpace = NPSpace and hence coNPSpace = PSpace, but merely
NL ⊆ DSpace (log2 n) and hence coNL ⊆ DSpace (log2 n)

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #23

Games/Logarithmic Space coNL

The NL vs. coNL Problem

Another famous problem in complexity theory: is NL =coNL?

First stated in 1964 [Kuroda]

Related question: are complements of context-sensitive languages
also context-sensitive?
(such languages are recognized by linear-space bounded TMs)

Open for decades, although most experts believe NL , coNL

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #24

Games/Logarithmic Space coNL

The Immerman-Szelepcsényi Theorem

Surprisingly, two independent people resolve the NL vs. coNL problem
simutaneously in 1987

More surprisingly, they show the opposite of what everyone expected:

Theorem 12.11 (Immerman 1987/Szelepcsényi 1987)

NL = coNL.

Proof.

Show that Reachability is in NL.

Remark: alternative explanations provided by

Sipser (Theorem 8.27)

Dick Lipton’s blog entry We All Guessed Wrong (link)

Wikipedia Immerman–Szelepcsényi theorem

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #25

Games/Logarithmic Space coNL

Towards Nondeterminsitic Nonreachability

How could we check in logarithmic space that t is not reachable from s?

Initial idea:

01 NaiveNonReach(G, s, t) :
02 for each vertex v of G :
03 if CanReach(G, s, v) and v = t :
04 return FALSE
05 // eventually, if FALSE was not returned above:
06 return TRUE

Does this work?

No: the check CanReach(G, s, v) may fail even if v is reachable from s
Hence there are many (nondeterministic) runs where the algorithm accepts,
although t is reachable from s.

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #26

Games/Logarithmic Space coNL

Towards Nondeterminsitic Nonreachability

Things would be different if we knew
the number count of vertices reachable from s:

01 CountingNonReach(G, s, t , count) :
02 reached := 0
03 for each vertex v of G :
04 if CanReach(G, s, v) :
05 reached := reached + 1
06 if v = t :
07 return FALSE
08 // eventually, if FALSE was not returned above:
09 return (count = reached)

Problem: how can we know count?

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #27

Games/Logarithmic Space coNL

Counting Reachable Vertices – Intuition

Idea:

Count number of vertices reachable in at most length steps
we call this number count length

then the number we are looking for is count = count |V(G)|−1

Use a limited-length reachability test:
CanReach(G, s, v , length): “t reachable from s in G in ≤ length steps”
(we actually implemented CanReach(G, s, v) as CanReach(G, s, v , |V(G)| − 1))

Compute the count iteratively, starting with length = 0 steps:

for length > 0, go through all vertices u of G and check if they
are reachable
to do this, for each such u, go through all v reachable by a
shorter path, and check if you can directly reach u from them
use the counting trick to make sure you don’t miss any v
(the required number count length was computed before)

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #28

Games/Logarithmic Space coNL

Counting Reachable Vertices – Algorithm

The count for length = 0 is 1. For length > 0, we compute as follows:

01 CountReachable(G, s, length, count length−1) :
02 count := 1 // we always count s
03 for each vertex u of G such that u , s :
04 reached := 0
05 for each vertex v of G :
06 if CanReach(G, s, v , length − 1) :
07 reached := reached + 1
08 if G has an edge v → u :
09 count := count + 1
10 GOTO 03 // continue with next u
11 if reached < count length−1 :
12 REJECT // whole algorithm fails
13 return count

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #29

Games/Logarithmic Space coNL

Completing the Proof of NL = coNL

Putting the ingredients together:

01 NonReachable(G, s, t) :
02 count := 1 // number of nodes reachable in 0 steps
03 for ` := 1 to |V(G)| − 1 :
04 countprev := count
05 count := CountReachable(G, s, `, countprev)
06 return CountingNonReach(G, s, t , count)

It is not hard to see that this procedure runs in logarithmic space, since we
use a fixed number of counters and pointers. �

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-12-02 #30

