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Abstract
Combining artificial neural networks and logic programming for machine

learning tasks is the main objective of neural symbolic integration. One
important step towards practical applications in this field is the development
of techniques for extracting symbolic knowledge from neural networks.

In this thesis a new extraction method is proposed and thoroughly investi-
gated. It translates the class of feedforward networks with binary threshold
functions into propositional logic programs by means of a decompositional
approach.
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1 Introduction and Motivation
Artificial neural networks are a well known concept of machine learning and widely
used in practical applications. They have shown to perform very good at learning and
generalizing from examples and there are established algorithms for such tasks. But
the trained knowledge which is represented within the network, is rather hidden and
hard to understand. The network produces an answer for a given query, but a reason
for particular conclusions is not supplied. Its inside is often viewed as a ”black box”.
Therefore it is important to transform the stored knowledge for further investigation and
application into a more human readable version. Logic programs, contrary to neural
approaches, are understandable and explain their process of inference. However they
are not good at learning tasks. Why not combine and use the advantages of both to
overcome their shortcomings? The combination of neural networks and logic programs is
the main objective of neural symbolic integration and currently there is a lot of interest,
and research in this field ([GBG02], [BH05]).

Imagine a learning task with some background knowledge expressed in form of a
logic program and additionally some real world examples, which are not captured by
the program: how do we enhance the program by those examples? According to the
neural symbolic integration paradigm, this program is embedded into a neural network
and improved by training. The knowledge would increase in quality and reliability. In
order to realize the refined knowledge in the former setting, the new program has to be
extracted from the network. This task is the subject of this thesis.

Challenges of an extraction lie in its time complexity and the comprehensibility of the
refined rules ([Dar00]). There are two basic approaches to extraction, the pedagogical
and the decompositional one. The first one views a network as a black box and queries
all possible inputs. Although there are improvements, the general problem of the global
approaches is their complexity. Decompositional methods have a better performance,
but unfortunately often lose soundness or completeness.

1.1 Previous Work

For a general introductory survey of neural symbolic integration I refer to [BH05] and
recommend [ADT95] and [Dar00] for the special task of rule extraction.

In [HK94] a bridge between propositional logic programs and neural networks is es-
tablished by a transformation algorithm. The algorithm designs a three layered feed
forward net with binary threshold functions and adjusts the weights, so that the net-
work computes the semantics of the program. Moreover, for every feed forward neural
network a logic program can be generated such that the associated semantic operator
has the same input-output behaviour.

The reduction of propositional programs to several minimality criteria is analyzed in
[Leh05], especially if they are provided by a pedagogical extraction of a neural network.
On the one hand it is shown that in the case of positive networks one can compute a
unique minimal propositional program. On the other hand, in the normal case a unique
minimal logic program does not necessarily exist. I will reuse two examples stated in
this work and refer to the minimality algorithms.
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The extraction algorithm ”MofN” is presented in [ToSh93] for the ”Knowledge Based
Artificial Neural Network” (KBANN), an example for a neural symbolic system. This
decompositional method is concerned about drawing rules of the form ”if M literals of
the set of N literals are true then follows...” from one neuron.

In [GBG02] the method of [HK94] is extended by relating proposition logic programs
and networks of sigmoidal neurons. They design a ”Connectionist Inductive Learning
and Logic Programming System”, short CIL2P , which realizes the ideas of neural-
symbolic integration and apply it to real world problems. Moreover, they develop an
extraction algorithm upon networks with sigmoidal neurons. In this extraction, subset
orderings of the global search space are taken into consideration and some pruning rules
are specified. The algorithm is sound and complete. However, the results are restricted to
the structure of weights in the network and loses those properties if applied to arbitrary
networks.

1.2 Goals

I want to design an algorithm that accomplishes a complete and sound extraction of
a feed forward neural network with binary threshold functions. The resulting program
should be as small as possible, i.e. reduced with respect to subsumption and unsatis-
fiable clauses. Contrary to pedagogical extraction methods, where the reduction steps
are applied towards the ”end” of the extraction, I will use a decompositional approach.
That means, the network is broken up into subnetworks and an extraction is done on
those substructures. My leading idea is to apply reduction steps already on those sub-
structures. To do so, I state an algorithm that extracts the knowledge of a single binary
neuron in terms of its incoming neurons. I will provide a method to reassemble and put
those extracted parts together. To preserve completeness and soundness it requires the
construction of two connectives and their algebraic properties. In the developed algebra
the whole composition can be formulated and the soundness be proven.

1.3 Structure of the Thesis

In section 2 propositional logic programs, artificial neural networks and some algebraic
structures are briefly introduced. The following section 3 is centered around developing
an algorithm which shows how to extract symbolic knowledge from one single neuron.
This is done by viewing the semantics of a neuron in an abstract way and transforming
it into a set. The algebra behind those sets is thereafter examined wrt. equality in
logic programs and I will define equivalence relations which capture different levels of
reduction. Consequently the main theorem is stated which relates the semantics of logic
programs and the equivalence classes. In section 4, I am concerned with the actual
extraction of a network. This is followed in 5 by a discussion of my results and finally
an outlook on improvements and further work.

2 Preliminaries
I will briefly introduce logic programming and neural networks to the extend it is needed
for my thesis. For a more complete and detailed introduction I refer to [Apt97] and
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[Roj02] respectively. For a primary on algebraic structures I refer to [LiPi97].

2.1 Propositional Logic Programs

Propositional programs are a subset of propositional logic. The language of propositional
logic is build up from a set of propositional variables (or atoms) and the known logic
connectives. A literal denotes an atom or its negation. A propositional logic program P
consists of a set of normal clauses. A normal clause is an implication with a single atom
in the head and a finite set of literals in the body. i.e. of the structure H ← L1, L2 . . . Ln,
where H is an atom and Li are literals.

Throughout this thesis I will only talk about propositional programs, therefore the
term ”program” is sometimes used as a synonym.

Example 2.1 Let p, q, r be atoms. As listed in Figure 1 three logic programs of different
size are presented.

P1 :

p← ¬p, r

p← q,¬r

p← p,¬q

P2 :

p← ¬p, r

p← q,¬r

p← p,¬r

p← ¬q, r

P3 :

p← ¬p, r

p← q,¬r

p← p,¬r

p← ¬q, r

p← p,¬q, r

p← p,¬q,¬r

p← p,¬p

Figure 1: Logic programs P1, P2 and P3

The set of atoms occurring in the clauses of a program P is called a Herbrand base
BP . An interpretation assigns every atom and formula a truth value, and a Herbrand
interpretation IB can be seen as as a subset of BP . The semantic operator TP maps
interpretations to interpretations by

TP (I) = {q | q ← p1, . . . , pn,¬r1, . . . , rm ∈ P, n, m ≥ 0,

{p1, . . . , pn} ⊆ I, {r1, . . . , rm} ∩ I = ∅}

TP is also called the immediate consequence operator of program P and is a convenient
tool for capturing the semantics of a logic program. Mostly it is possible to calculate a
model (an interpretation to true) of a program by using the least fixpoint of TP .
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Example 2.2 The T operator of program P1:

TP1(∅) = ∅
TP1({p}) = {p}
TP1({r}) = {p}
TP1({q}) = {p}

TP1({p, q}) = {p}
TP1({p, r}) = {p}
TP1({q, r}) = {p}

TP1({p, q, r}) = ∅

Note, that TP1(I) = TP2(I) = TP3(I) for all Interpretations I and thus have the same
semantics. Throughout this paper I refer to those examples as P1, P2 and P3.

2.2 Artificial Neural Networks

Throughout this thesis, I will only consider neural networks consisting of a weighted
directed acyclic graph of neurons with binary threshold functions. The consequences of
this restriction are reviewed in the discussion of my results. The theory of training and
designing neural networks is not part of my work and will therefore not be explained
here, an introduction for this is [Roj02].

Definition 2.3 A neuron is a single unit in a neural network and is a tuple (w, θ, Φ, Ψ)
defined as:

• w : I → R is called a weight function and gives every incoming edge a weight. The
set I contains all neurons that have a direct edge to this neuron. If the incoming
neurons are ordered, w can be seen as a weight vector.

• ~i = {i1, i2, . . . , in} ∈ Rn is called the input vector, i.e. the output of the nodes, that
have a direct edge this neuron. In my case neurons have only output of +1 or −1.

• θ ∈ R is the threshold.

• Φ : Rn → R is the activation function. It calculates the activation of the neuron
by taking the sum of the weighted input neurons, in my case:

Φ(~i) = ~w ·~i

• Ψ : R→ R is the output function, also called a binary threshold function:

Ψ(x) =

{
1 x ≥ 0

−1 x < 0
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Figure 2: A schematic view of a neuron with a binary threshold function

Since I will only consider neurons that have the same kind of activation and output
function, Φ and Ψ are not explicitly stated. So a neuron (as in Figure 2) computes
the weighted activation of its connected input, subtracts the threshold and applies the
output function. This value is then further used to calculated the activations of the
other neurons.

Definition 2.4 An artificial neural network is a tuple (A, E, w) defined as follows:

• (A,E) is a directed, acyclic graph, i.e. A is a set of neurons and E ∈ A × A the
set of edges that connect neurons.

• w : A×A→ R is a global weight function, assigning a real number to every edge.
The weight function v for a single neuron n is given by the global weight function
as v(a) := w(a, n)

Figure 3: A network with 3 input and output neurons and a single hidden layer of 4
neurons

The computation of the networks follows by propagating the activation of the input
layer through the neurons in the hidden layers to the units of the output layer. The
neural network as a whole computes a function from {+1,−1}n to {+1,−1}m, where n
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and m are the number of input and output neurons respectively. However, in this thesis
only networks with the same number of input as output neurons are considered. So the
network in Figure 3 computes a function from {+1,−1}3 to {+1,−1}3. A neuron is said
to fire if it has output of +1.

2.3 Algebra

Algebra is the field of mathematical structures. An algebraic structure consists of a set
and a collection of operations that have to satisfy certain conditions.

Definition 2.5

A monoid (M, ∗, e) ia a set M with a binary operation ∗ : M×M →M and the following
properties:

• Associativity: for all a, b, c in M, (a ∗ b) ∗ c = a ∗ (b ∗ c)

• Identity element: there exists an element e ∈ M , such that for all a ∈ M , a ∗ e =
e ∗ a = a.

A monoid is commutative if additionally for all a, b ∈M , a ∗ b = b ∗ a.

Definition 2.6

A semiring (S, +, 0, ∗, 1) is a set with two binary operators satisfying the following con-
ditions:

• (S,+,0) is a commutative monoid

• (S,*,1) is a monoid

• Left and right distributivity: For all a, b, c ∈ S, a ∗ (b + c) = (a ∗ b) + (a ∗ c) and
(b + c) ∗ a = (b ∗ a) + (c ∗ a).

A semiring is commutative if additionally the second monoid (S,*,1) is commutative.

Definition 2.7

A Boolean algebra (A,∨, 0,∧, 1,¬) is a set A, supplied with two binary operations ∧ ,
∨, a unary operation ¬ and two elements 0 and 1, such that, for all elements a and b
in A, the following axioms hold:

• associativity and commutativity of ∧ and ∨

• Left and right distributivity for ∧ and ∨.

• absorbtion: a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = b

• complements: a ∨ ¬a = 1 and a ∧ ¬a = 0

Definition 2.8
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An equivalence relation R on a set A is a binary relation on A that is reflexive, symmetric
and transitive, i.e., it holds for all a, b and c in A that

• (Reflexivity) a R a

• (Symmetry) if a R b then b R a

• (Transitivity) if a R b and b R c then a R c

In the analysis of how to compose the divided sub networks into a whole program
(Section 3.6) , I use those algebraic structures. In order to put together small parts, two
connectives are introduced. Their properties lead me to investigate a semiring. This
semiring is then lifted to a boolean algebra by use of an equivalence relation.

2.4 Running Example

Throughout this document I will make use of a running example and show this method
of extraction by referring to this example network. Figure 4 shows a drawing of the
network and its weight function in form of a table. The number next to the neurons are
the thresholds. The example consists of a three layered network with three nodes in the
input and output layer and four neurons in the hidden layer.

node node weight node node weight
p a 1,0 a p’ 2,0
p b 0,5 a q’ 0,0
p c 0,2 a r’ -3,3
p d -0,5 b p’ 1,0
q a 1,0 b q’ -0,9
q b 0,3 b r’ 2,3
q c 0,3 c p’ 5,0
q d -0,6 c q’ -1,1
r a -2,0 c r’ -0,1
r b -2,1 d p’ 3,0
r c 0,4 d q’ 0,0
r d 1,1 d r’ 0,1

Figure 4: Network with 3 input and output neurons and a single hidden layer of 4 neurons
and its weight table

2.5 Naive Extraction

How does a pedagogical extraction approach work? The naive method would be to query
all possible inputs and derive rules for the program. If the output neuron - referring to
a propositional atom p - fires, rules can be deduced by taking the queried input vector
implying p. The result for the running example will be referred to as P4:
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P4 :

p← p,¬q,¬r

p← ¬p,¬q, r

p← ¬p, q,¬r

p← p, q,¬r

p← p,¬q, r

p← ¬p, q, r

The extracted program of this method is not very readable and clearly redundant.
This algorithm is also not very practical since it is of exponential complexity in the
number of input neurons. It would be necessary to check 2n possible input vectors.
The programs P1 to P4 all have the same semantic consequence operator. So, there are
smaller programs that would be desirable to extract.

3 A Theory of Coalitions
To describe the dynamics of a single neuron, I will develop a notation called a set of
coalitions which captures all combination that make a neuron fire. Furthermore, I will
show that it is sufficient to calculate with a minimal subset of those coalitions and present
an algorithm to effectively compute them. Additionally, the counterpart of a coalition is
introduced, namely an opposition set which stores all combinations that hinder a neuron
to fire. The same results also hold for an opposition set.

For the compositional part, the interplay between coalition sets and their connection
to logic programs are investigated. The main theorem declares the connection of se-
mantically equal programs and the algebraic structures behind coalition sets and their
composition.

3.1 Extended Sets

In this section A will always denote a finite set of symbols {a1, a2, . . . , an}. Every symbol
will later refer to a neuron in the network.

Definition 3.1 Ã is called the extended set and enriches the set A by a new symbol for
every element in A:

Ã = A ∪ {ā | a ∈ A}

As a conventions, A will denote the powerset of the powerset of A: A := ℘(℘(Ã)).
Elements of this set are of great interest and will be examined throughout this thesis.
They will be the bridge between logic programs and neural networks. In Section 3.2 the
link between programs and A is shown and in Section 4.1 the connection to networks.

Definition 3.2 Let B ⊆ Ã. B is a base iff
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• ∀a ∈ A either ā ∈ B or a ∈ B.

• ∀a ∈ A {a, ā} * B

The set B wrt. A is the set of all possible bases of A. A base captures the possible
symbols that can occur, when we want to develop a coalition. They correspond to the
sign of the weight of the incoming connection. Bases can be understood as Herbrand
interpretations and are used to define the T operator in Section 3.2 .

Definition 3.3 The function · : ℘(Ã)→ ℘(Ã) is defined as follows, for all Y ⊆ Ã:

Y := {ā | a ∈ Y } ∪ {a | ā ∈ Y }

Example 3.4 A = {p, q, r}, then:

Ã = {p, q, r, p̄, q̄, r̄}

and a base B could be:
B = {p, q̄, r}

For this base, the ”inverse” B̄ is:

B̄ = {p̄, q, r̄}

On the other hand, {p, p̄, r} would not be a base, because q does not occur and both p, p̄
occur.

3.2 Power Sets and Logic Programs

The correspondence between power sets and logic programs is crucial for my thesis. It
allows me to treat logic programs in an algebraic way. In fact, the definition of the
consequence operator TP can be easily translated into this form.

Let A be the Herbrand base and now looked upon as a set of symbols. It is possible
to reformulate a propositional logic programm P as a function from A to A.

P (p) = {{p1, . . . , pn, r̄1, . . . , r̄n} | p← p1, . . . , pn,¬r1, . . . ,¬rn ∈ P} |

and vice versa. On the one hand, P is a set of clauses (a logic program) and on the
other hand it can be viewed as a function P : A→ A. It is only a different notation and
therefore the same letter is used.

Example 3.5 Let A = {p, q, r} , for example can program P1 be written as a function
P1 : A→ A with A = {p, q, r} by: P1(p) = {{p̄, r}, {q, r̄}, {p, q̄}}, P1(q) = P1(r) = ∅.

In the way of expressing logic programs as sets, a Herbrand interpretation, which is
a subset of the Herbrand base, would correspond to a base. A Herbrand interpretation
I is the same as a base B, when it holds, that a ∈ B iff a ∈ I and ā ∈ B iff a 6∈ I.
Analogously, the semantic operator T can be reformulated.

Definition 3.6 Let P : A → A an arbitrary function. The Operator TP : B → B is
defined es followed, B ∈ B:

TP (B) = {a ∈ A | ∃C ∈ P (a) such that C ⊆ B} ∪ {ā | a ∈ A and ∀C ∈ P (a)C * B}
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3.3 Coalitions

In Section 3.1 I have established a set Ã to refer to every node in a network. Likewise,
I require a mapping onto the weights in the network which works with the notation of
an extended set. Therefore the following definition:

Definition 3.7 Let g : A → R be an arbitrary function. This function is extended to
g̃ : Ã→ R by

g̃(x) :=

{
−g(x) if x is of the form ȳ

g(x) else

Returning to our running example, let g be the weight function between q′ and the
hidden layer, then g̃ would return a positive value for b̄ and c̄.

In order to treat all neurons equally, regardless of the signs of the weights, I define a
base wrt. the weight function. With this bases and g̃, I am only opposed to units with
positive weights. However, the ”negated” symbols will later be of great interest.

Definition 3.8 Let g : A → R be an arbitrary function. The base G wrt. g is created
by defining

G := {a | g(a) ≥ 0} ∪ {ā | g(a) < 0}

With the following definition I will capture the ”least” activation of a neuron, if not
all output levels of the input neurons are fixed. The remaining outputs are supposed
to be negative wrt. the incentive of the examined neuron. This does not necessarily
mean a negative weight and in the extraction it will become clear what is meant by the
incentive.

Definition 3.9 Let g : A → R be an arbitrary function and G the base according to g.
| · |gG : ℘(G)→ R gives every possible subsets of G a value. Let C ⊆ G:

|C|gG :=
∑
a∈C

g̃(a)−
∑

a∈G\C

g̃(a)

If clear from the context I will omit the g and write | · |G. Also omitting the G is not
appropriate, because we are interested in distinguishing between | · |gG and | · |g

Ḡ
.

Now I can introduce the notation of a coalition, which is a set of symbols for which
the value is above a threshold θ ∈ R.

Definition 3.10 Let g : A→ R be an arbitrary function, G the base wrt. g and θ ∈ R.

• C ⊆ G. If |C|G ≥ θ then C is called a coalition.

• The set Cg,θ ⊆ ℘(G) contains all possible coalitions.

Cg,θ = {C ⊆ G | |C|G ≥ θ}

14



With the same tools I will define an opposition, a set that states those inputs that
have to be fixed in order to keep a neuron from exceeding its threshold. Therefore an
opposition chooses the symbols from the ”inverted” base.

Definition 3.11 Let g : A→ R be an arbitrary function, G the base wrt. g and θ ∈ R.

• O ⊆ Ḡ. If |O|Ḡ < θ then O is called an opposition.

• The set Og,θ ⊆ ℘(Ḡ) contains all possible opposition.

Og,θ = {O ⊆ Ḡ | |O|Ḡ < θ}

Example 3.12 A = {p, q, r}, g(p) = −0, 5,g(q) = −0, 6, g(r) = 1, 1. θ = 0, 7. Then
G = {p̄, q̄, r} and for example:

|{q̄}|G = g̃(q̄)− (g̃(p̄) + g̃(r)) = 0, 5− (−(−0, 6) + 1, 1) = −1, 2

|{r̄}|Ḡ = g̃(r̄)− (g̃(p) + g̃(q)) = −1, 1− (−0, 5 +−0, 6) = 0, 0

Cg,θ = {{p̄, r}, {q̄, r}, {p̄, q, r}, {p, q̄, r}}
Og,θ = {{r̄}, {p, q}, {r̄, p}, {r̄, q}, {r̄, p, q}}

3.4 Minimal Elements in A
I want to define two functions upon elements in A. The first isolates all elements that
are involved in a subset relation with another element. The second excludes all sets that
contain a and ā for some a ∈ A. This minimization corresponds to the reduction steps
of logic programs (as in [Leh05]), only here I treat it on the basis of sets.

Definition 3.13 Let C ∈ A. The function µ : A → A minimizes C by excluding all
elements that have subsets in C.

µ(C) = C \ {C ∈ C | ∃C ′ ∈ C s.t .C ′ ⊂ C}

Definition 3.14 Let C ∈ A. The function η : A → A minimizes C by excluding all sets
that contain a and ā for some a ∈ A:

η(C) = C \ {C ∈ C | ∃a ∈ A such that {a, ā} ⊆ C}

I defined the functions as a set difference, but it can also be stated explicitly. In that case
η(C)) = {C ∈ C | @a ∈ A s.t. {a, ā} ⊆ C} and µ(C) = {C ∈ C | @C ′ ∈ C s.t. C ′ ⊂ C}.

The following proposition shows that those two function can be applied independently
and this is important for later proofs.

Proposition 3.15 For C ∈ A, the following holds:
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1. µ and η are idempotent:

µ(µ(C)) = µ(C)
η(η(C)) = η(C)

2.

µ(η(C)) = η(µ(C))

3. Let Cg,θ be a set of coalitions created by g and θ

η(Cg,θ) = Cg,θ

Proof:

1. Suppose this is not true. Then I would have to find an element in µ(C), which is
not present in µ(µ(C)) or converse. But since all element in µ(C) have no subset
relation with each other, this element cannot exist. With the same argumentation,
there cannot exist an element in µ(µ(C)) that is not contained in µ(C). This shows
idempotency of µ. For η this is done analogously.

2. By applying both definitions we get

µ(η(C)) ={C ∈ η(C) | @C ′ ∈ η(C) s.t. C ′ ⊂ C}

Evidently it doesn’t matter if I first exclude all irrelevant elements (wrt. η) and
then test the remaining about subset relation or if I do the exclusion of η after all
supersets are separated. Thus

{C ∈ η(C) | @C ′ ∈ η(C) s.t. C ′ ⊂ C}
=η({C ∈ C | @C ′ ∈ C s.t. C ′ ⊂ C})
=η(µ(C)))

3. Subsets of a base never contain both a and ā, since the definition of a base exclude
it. A coalition set contains only subsets of bases, therefore η does not subtract
anything. �

If a coalition set is given by a function and a threshold, η has no effect (Proposition
3.15), so I define a minimal coalition to be only minimized by µ. In the following sections
I demonstrate that the minimized coalitions are sufficient to capture the knowledge of
one neuron. Therefore it is enough to compute only the minimal elements.

16



Example 3.16 This shows the minimization of the coalition set and opposition set of
the Example 3.12:

Cg,θ = {{p̄, r}, {q̄, r}, {p̄, q, r}, {p, q̄, r}}
µ(Cg,θ) = {{p̄, r}, {q̄, r}}
Og,θ = {{r̄}, {p, q}, {r̄, p}, {r̄, q}, {r̄, p, q}}

µ(Og,θ) = {{r̄}, {p, q}}

3.5 Algorithm to Compute Minimal Coalitions and Opposition

In this section I will introduce a algorithm which computes µ(Cg,θ) and µ(Og,θ) given
g : A→ R and θ ∈ R. This algorithm corresponds to an extraction of a neuron into an
appropriate notation, namely the minimal coalition and opposition sets.

3.5.1 Search Space

Given a function g : X → R and the base G. The search tree is defined as follows:

• Every node is a subset of G

• The root is the empty set ∅

• The children of a node differ in one element, this element is smaller wrt. g than
all elements in the parent.

• The order of the children is according to g̃. descending from right to left. If some
elements have the same weight, one takes an arbitrary but fixed order.

Looking from top to bottom, one element is added at every step and the descendants
of a node are its supersets. For clearness reasons, every node is referred to by the symbol
that separates it from its parent, and not the whole set.

Example 3.17 In Figure 5 the subnetwork used for the extraction of neuron p’ is en-
larged. The search tree for the neuron q’ would then be build by the base of the incoming
neurons B = {a, b, c, d} and the weight function, as showed in Figure 6. The left most
node in the search tree corresponds to the set {a} and lowest right most to {a, b, c, d}.

3.5.2 Algorithm

Main objective of the algorithm is to find the minimal elements in a coalition set given
by a weight function and a threshold. Those elements correspond to the first nodes
found which exceed the threshold, when searched top to bottom. The algorithm bases
its pruning on the following two situations that can occur while searching:

• If a minimal node is found, no other minimal nodes can be found below it, because
all sub-nodes are super sets.
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Figure 5: The neuron p’ and its input neurons (Example 3.17)

neuron weight
a 2,0
b 1,0
c 5,0
d 3,0

Figure 6: The search tree of neuron p’ (Example 3.17)
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• If a whole subtree contains no coalitions, then all siblings to the left of the root of
this subtree have no either. Additionally, if this root was the right most child of
its parent, all siblings of this parent can be cut off as well. This can go on until
one node is not the right most or the main root is reached.

An algorithm with deep first search enhanced with those two rules is stated here.
Let S = {s1, s2, s3, . . . sn} be an ordered set of all symbols, with g̃(s1) ≤ g̃(s2) ≤ . . . ≤

g̃(sn), g : S → R the weight function and θ ∈ R the threshold. Cg,θ is the resulting set,
initially empty. S and Cg,θ are globally accessible. First ∅ is tested and if |∅|g,G is already
above the threshold, then the only minimal element is already found: Cg,θ = {∅}. Else
the function ”coalition” with the element sn is called: coalition({sn})

Algorithm 1: computes a minimal coalition set
function coalition({si1 , si2 , . . . , sik})

C := {si1 , si2 , . . . , sik}
if(|C|g,G ≥ θ)

add C to Cg,θ

/* cut off subtree, continue with left sibling */

if(i1 6= 1)
call coalition({si1−1, si2 , si3 , . . . , sik})

elseif(C 6= {s1})
call coalition({si2−1, si3 , si4 , . . . , sik})

endif
elseif(i1 6= 1)

/* if not leaf, continue searching */

call coalition({si1−1, si1 , si2 , si3 , . . . , sik})
else

/* if leaf, perform the second cutting step */

let l be such that C = {s1, s2, . . . , sl, sil+1, sil+2, . . . , sik}
with l + 1 6= il+1

if(k > l)
call coalition({sl, sil+2, . . . , sik})

endif
endif

endfunction

A detailed discussion of the complexity of this algorithm goes beyond this work. If
all weights are of equal size, the resulting set can become exponentially large wrt. the
number of elements in the base set, therefore the worst case complexity is exponen-
tial. However, the smaller the coalition set gets, the less nodes have to be search and
the cutting is relatively effective. Furthermore, the algorithm works fine with negative
weights.

Example 3.18 In Figure 7 the search tree of neuron p’ after applying the algorithm is
presented. All nodes that have been reached by the algorithm are marked grey and have
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the computed value next to it. The order of calling the procedure ”coalition” is stated to
the left.

coalition({c})
coalition({c, d}) → add
coalition({c, a})
coalition({c, a, b})→ add
coalition({c, b})
coalition({d})
coalition({d, a})
coalition({d, a, b})

Figure 7: The order of calling the procedure ”coalition” and the search tree marked with
the nodes that are visited.

Example 3.19 In this example the extraction of neuron b is visualized in Figure 8. The
weights are: w(p) = 0, 5 , w(q) = 0, 3 , w(r) = −2, 1 and the threshold is 0,1. This time
the weight for r is negative, therefore the base is {p, q, r̄}.

coalition({r̄})→ add
coalition({p})
coalition({q, p})

Figure 8: The order of calling the coalition algorithm, visualized by the marked search
tree.

Unfortunately the opposition set cannot easily be derived from a given coalition set.
Nevertheless the algorithm would be very similar to the one for coalitions. Luckily, only
the comparisons of the conditions have to be changed. Instead of testing if |C| ≥ θ,
it has to be checked if |C| < θ. All other steps stay the same, therefore the algorithm
will not be stated explicitly here. Note, that elements of oppositions are taken from the
”inverted” base B̄, because in oppositions, neurons are stated to be not firing.

3.6 Structures for Composing Coalitions

Let me now introduce three algebraic structures. The base set of the first one is A, which
represents all syntactical programs. The two last ones build upon equivalence classes of
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the first one. Those classes preserve equivalence in a logic programming sematic, whereas
the second equivalence relation is stronger than the first one. The second appeared to
realize all sets that would be equal under the semantic operator T. The intuition behind
the connectives in the algebras is taken from combining coalition sets. In the process
of reassembling the decomposed network, ”uniting” and ”intersecting” coalition and
opposition sets is demanded, but unfortunately for intersection this appeared not to be
equivalent to the normal set treatment. Therefore I introduce a new operator ⊗ and
show its algebraic properties.

3.6.1 The Semiring of A

A is the powerset of the powerset of an extended set Ã.

Definition 3.20 Let C1, C2 ∈ A.The operation ⊗ : A×A → A is defined as follows:

C1 ⊗ C2 = {C1 ∪ C2 | C1 ∈ C1 and C2 ∈ C2}

Lemma 3.21 The structure A = (A,∪, ∅,⊗, {∅}) is a commutative semiring.

Proof: We have to show the following properties:

1. (A,∪, ∅) is a commutative Monoid.

2. (A,⊗, {∅}) is a commutative Monoid.

3. Between ⊗ and ∪ the distributivity holds. Let C1, C2, C3 ∈ A. The following holds:

(C1 ⊗ C2) ∪ (C1 ⊗ C3) = C1 ⊗ (C2 ∪ C3)

and
(C1 ∪ C2)⊗ (C1 ∪ C3) = C1 ∪ (C2 ⊗ C3)

which are shown as follows:

1. Set union ∪ is known to be associative and commutative, [LiPi97]. Therefore
(A,∪) is a commutative semigroup. Since ∅ ∪X = X for all X, it follows that ∅ is
a unit element.

2. The commutativity of ⊗ follows easily from the definition. For associativity:

(C1 ⊗ C2)⊗ C3 = {(C1 ∪ C2 | C1 ∈ C1 and C2 ∈ C2)} ⊗ C3
= {C ′ ∪ C3 | C ′ ∈ {(C1 ∪ C2 | C1 ∈ C1 and C2 ∈ C2)} and C3 ∈ C3}
= {(C1 ∪ C2) ∪ C3 | C1 ∈ C1 and C2 ∈ C2 and C3 ∈ C3}
= {C1 ∪ (C2 ∪ C3) | C1 ∈ C1 and C2 ∈ C2 and C3 ∈ C3}
= C1 ⊗ (C2 ⊗ C3)

It is easy to see that {∅} is the unit element.
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3.

(C1 ⊗ C2) ∪ (C1 ⊗ C3) = {(C1 ∪ C2 | C1 ∈ C1 and C2 ∈ C2)} ∪
{(C1 ∪ C3 | C1 ∈ C1 and C3 ∈ C3)}

= {(C1 ∪ C ′ | C1 ∈ C1 and (C ′ ∈ C2 or C ′ ∈ C3)}
= {(C1 ∪ C ′ | C1 ∈ C1 and C ′ ∈ (C2 ∪ C3)}
= C1 ⊗ (C2 ∪ C3)

the other distributivity can be shown analogoulsly.

�
Now I will turn back to the two minimization functions that I introduced in Section

3.4 and examine their properties in A.

Proposition 3.22 For C,D ∈ A the following holds:

1 : η(C ∪ D) = η(C) ∪ η(D)

2 : η(C ⊗ D) = η(η(C)⊗ η(D))

3 : µ(C ∪ D) = µ(µ(C) ∪ µ(D))

4 : µ(C ⊗ D) = µ(µ(C)⊗ µ(D))

Proof:

1. I have to show that all elements that are in η(C ∪ D) are also in η(C) ∪ η(D) and
vice versa.

• For all E ∈ η(C ∪ D) either E ∈ C or E ∈ D. This E would also have to be
in η(C) or in η(D), because it does not contain any symbol together with its
counterpart, and is therefore also in η(C) ∪ η(D).

• the other direction is shown the same way.

2. I will show that η(C ⊗ D) ⊆ η(η(C)⊗ η(D)) and η(η(C)⊗ η(D)) ⊆ η(C ⊗ D):

• Imagine this is not true: Then ∃E ∈ η(C ⊗D), but E 6∈ η(η(C)⊗ η(D)). This
E does not contain any illegal occurrence of a symbol (@a ∈ As.t.{a, ā} ⊆ E).
For this E there has to be a C ∈ C and D ∈ D s.t. C ∪D = E. From that
follows that C and D have no illegal occurrence of any symbol and therefore
C is also in η(C) and and D in η(D). But then E must also be in η(C)∪ η(D),
which contradicts the assumption.

• For the other direction analogous steps are done.

3. Here I have to prove that µ(C∪D) ⊆ µ(µ(C)∪µ(D)) and µ(µ(C)∪µ(D)) ⊆ µ(C∪D).
The first side is shown by proof by contradiction, the other is done similar, but
will not be explicitly stated here.
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• Suppose this is wrong, then there is an element E in µ(C ∪D) which is not in
µ(µ(C) ∪ µ(D)). I can assume that this E ∈ C and there are no other sets in
C ∪D that are subsets of E (otherwise E would have been cut by µ). Then E
does not have any subsets in C and is therefore in µ(C) and in µ(C) ∪ µ(D).
Because µ(C) ∪ µ(D) ⊆ (C ∪ D) and there where no elements in C ∪ D that
are subsets of E, E must also be in µ(µ(C) ∪ µ(D)), which contradicts the
assumption.

4. This is shown likewise to proof 2 and 3.

Now I will make some preparations for the equivalence classes by defining two functions
in A, that use the minimization functions η and µ.

α :A → A
C 7→ µ(η(C)

and, note that B are all bases wrt. A:

β :A → A
C 7→ η(B ⊗ C)

Example 3.23 To get the intuition behind those functions I will use α upon P3(p) and
P2(p) and β on P1(p).

α(P3(p)) = µ(η({{p̄, r}, {q, r̄}, {p, r̄}, {q̄, r}, {p, q̄, r}, {p, q̄, r̄}, {p, p̄}}))
= µ({{p̄, r}, {q, r̄}, {p, r̄}, {q̄, r}, {p, q̄, r}, {p, q̄, r̄}})
= {{p̄, r}, {q, r̄}, {p, r̄}, {q̄, r}}

and P2(p):
α(P2(p)) = P2(p)

so P2 is minimized already and the two resulting sets are equal, α(P2(p)) = α(P3(p)).
Note that B = {{p, q, r}, {p̄, q, r}, {p, q̄, r}, {p̄, q̄, r}, {p, q, r̄}, {p̄, q, r̄}, {p, q̄, r̄}, {p̄, q̄, r̄}}.

Multiplying with B and reducing by η is the same as:

η(B ⊗ C) = {B ∈ B | ∃C ∈ C s.t. C ⊆ B}

With this simplification the calculation of β is as follows:

β(P1(p)) = η(B ⊗ {{p̄, r}, {q, r̄}, {p, q̄}}
= {{p̄, q, r}, {p, q̄, r}, {p̄, q̄, r}, {p, q, r̄}, {p̄, q, r̄}, {p, q̄, r̄}}

and for P2:

β(P2(p)) = η(B ⊗ {{p̄, r}, {q, r̄}, {p, r̄}, {q̄, r}}
= {{p̄, q, r}, {p, q̄, r}, {p̄, q̄, r}, {p, q, r̄}, {p̄, q, r̄}, {p, q̄, r̄}}

It seems that applying β is similar to the T operator, since we found out that β(P1(p)) =
β(P2(p)) and the two programs had also equal semantics.
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Proposition 3.24 Properties of α,β. C,D ∈ A

1 : α(C ∪ D) = α(α(C) ∪ α(D))

2 : β(C ∪ D) = β(C) ∪ β(D)

3 : α(C ⊗ D) = α(α(C)⊗ α(D))

4 : β(C ⊗ D) = β(β(C)⊗ β(D))

The proof is mostly technical and deduced from the previous proposition and the obser-
vation that B = η(B) = µ(B) = η(B ⊗ B):

1.

α(C ∪ D) = µ(η(C ∪ D)))

= µ(η(µ(η(C) ∪ µ(η(D)))))

= α(α(C) ∪ α(D))

2.

β(C ∪ D) = η(B ⊗ (C ∪ D))

= η((B ⊗ C) ∪ (B ⊗D))

= η(B ⊗ C) ∪ η(B ⊗D)

= β(C) ∪ β(D)

3. similar to 1.

4.

β(C ⊗ D) = η(B ⊗ (C ⊗ D))

= η(η(B)⊗ η(C ⊗ D))

= η(η(B ⊗ B ⊗ B)⊗ η(C ⊗ D))

= η(B ⊗ B ⊗ B ⊗ C ⊗ D)

= η(B ⊗ (B ⊗ C)⊗ (B ⊗D))

= η(B ⊗ η(B ⊗ C)⊗ η(B ⊗D))

= β(β(C)⊗ β(D))

�

3.6.2 The Semiring A∼

Definition 3.25 I define the following relation ∼⊆ A×A. C1, C2 ∈ A:

C1 ∼ C2 iff α(C1) = α(C2)
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It is easy to see that ∼ is an equivalence relation, since the definition is done by an
equivalence sign.

Definition 3.26 Let [C]∼,[D]∼ be two equivalence classes. The two operators ∪̃ and ⊗̃
are defined as

[C]∼⊗̃[D]∼ = [C ⊗ D]∼

and
[C]∼∪̃[D]∼ = [C ∪ D]∼

Proposition 3.27 ⊗̃ and ∪̃ are well defined.

Proof:
I have to show that the definition is independent of the chosen representatives, ∀C′ ∈ [C]∼
and ∀D′ ∈ [D]∼ we have to show: [C ′ ∪ D′]∼ = [C ∪ D]∼ and [C ′ ⊗D′]∼ = [C ⊗ D]∼:
First we know that C ′ ∈ [C]∼ and D′ ∈ [D]∼.

[C ′ ∪ D′]∼ = [α(C ′ ∪ D′)]∼

= [α(α(C ′) ∪ α(D′))]∼

= [α(α(C) ∪ α(D))]∼

= [(C ∪ D)]∼

The proof for ⊗ is similar �

By showing this, A∼ = (A/∼, ∪̃, [∅]∼, ⊗̃, [{∅}]∼) inherits all properties of A. An
equivalence relation as ∼ which is compatible with some algebraic operators is also
called a congruence relation [LiPi97].

This structure is useful for several reasons: First of all, every equivalence relation [C]∼
has a unique computable representant µ(η(C) and this representant is a minimal element.
Secondly expressions in A∼ can be simplified by factoring out and freely applying µ and
η.

3.6.3 The Boolean Algebra A∼=

Definition 3.28 The relation ∼=⊆ A×A is defined as follows, C,D ∈ A:

C ∼= D iff β(C) = β(D)

Since ∼= is defined by a function, it is an equivalence relation.

Definition 3.29 Let [C]∼=,[D]∼= be two equivalence classes. The two operators ∪̂ and ⊗̂
are defined as

[C]∼=⊗̂[D]∼= = [C ⊗ D]∼=

And
[C]∼=∪̂[D]∼= = [C ∪ D]∼=
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Proposition 3.30 The Definition of ⊗̂ and ∪̂ is well defined.

This is shown analogously to ⊗̃ and ∪̃, see proof of Proposition 3.27.
Again, I define A∼= = (A/∼=, ∪̂, [∅]∼=, ⊗̂, [{∅}]∼=) and A∼= inherits all properties from the

former semiring. The isomorphism between the boolean connectives and set operations
are a well known result, [LiPi97]. A similar connection could not be found for the first
two structures. But for A∼= the correspondence is established, and in the new factor
algebra, union and ”intersection” correspond to ”and” and ”or”.

Lemma 3.31 A∼= is a Boolean Algebra.

Proof Sketch:
I will omit theˆabove the connectives and the ∼= at the equivalence classes. Most of the
properties of a Boolean algebra follow from what has been shown before:

• ∨ = ∪ and ∧ = ⊗

• distributivity holds

• 0 = [∅] and 1 = [{∅}]

• 1. absorbtion: x ∨ (x ∧ y) = x

[C]⊗ ([C] ∪ [D]) = [C ⊗ B]⊗ ([C ⊗ B] ∪ [D ⊗ B])

= ([C ⊗ B]⊗ [C ⊗ B]) ∪ ([C ⊗ B]⊗ [D ⊗ B])

= [C ⊗ B] ∪ [{B ∈ B | ∃C ∈ (C ∩ D) : C ⊆ B}]
= [C ⊗ B]

= [C]

• the other absorbtion is shown similar

• ¬([C]) = [B \ (C ⊗ B)], because

[C] ∪ ¬[C] = [C] ∪ [B \ (C ⊗ B)]

= [B ⊗ C] ∪ [B \ (C ⊗ B)]

= [B]

= [{∅}]

and

[C]⊗ ¬[C] = [C]⊗ [B \ (C ⊗ B)]

= [B ⊗ C]⊗ [B \ (C ⊗ B)]

= [(B ⊗ C)⊗ (B \ (C ⊗ B))]

= [∅]

�
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3.6.4 Main Theorem

The equivalence classes collect equal coalition sets, but how correspond ∼ and ∼= to each
other? And to what degree are they related to equivalence of programs? The following
theorem answers those questions and gives me the right to calculate with an arbitrary
element of an equivalence class without worrying about changing the semantics of the
related logic program.

Theorem 1 Let A be a finite set, A = ℘(℘(Ã)). Let P, Q : A → A be arbitrary
functions.

1 : ∀a ∈ A : [P (a)]∼ = [Q(a)]∼

⇒ ∀a ∈ A : [P (a)]∼= = [Q(a)]∼=

2 : ∀a ∈ A : [P (a)]∼= = [Q(a)]∼=

⇔ TP = TQ

Proof:

1. ∀a ∈ A : [P (a)]∼ = [Q(a)]∼ ⇒ ∀a ∈ A : [P (a)]∼= = [Q(a)]∼=.
This is shown easily by the equation β(x) = β(α(x)) ∀x ∈ A. To prove this I use
the properties of µ, η and B: β(α(x)) = η(B⊗µ(η((x)) and µ(η(B)) = B, therefore
η(B ⊗ µ(η((x)))) = η(µ(η(B))⊗ µ(η((x)))) = η(µ(B ⊗ x)) = η(B ⊗ x) = β(x). In
addition it is easy to see that β(β(x)) = β(x). Let a ∈ A, from [P (a)]∼ = [Q(a)]∼
I conclude that α(P (a)) = α(Q(a)):

[P (a)]∼= = [β(P (a))]∼=

= [β(α(P (a)))]∼=

= [β(α(Q(a)))]∼=

= [Q(a)]∼=

2. and (∀a ∈ A : [P (a)]∼= = ([Q(a)]∼= ⇔ TP = TQ) is proven by changing the quanti-
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fiers. TP quantifies over the bases and the equivalence classes over the symbols.

∀a ∈ A : [P (a)]∼= = [Q(a)]∼=

⇔ ∀a ∈ A : η(B ⊗ P (a)) = η(B ⊗Q(a))

⇔ ∀a ∈ A : {B ∈ B | ∃C ∈ P (a) s.t. C ⊆ B} = {B ∈ B | ∃D ∈ Q(a) s.t. D ⊆ B}
⇔ (∀a ∈ A)(∀B ∈ B) : ((∃C ∈ P (a) s.t. C ⊆ B)⇔ (∃C ∈ Q(a) s.t. C ⊆ B))

⇔ ∀B ∈ B : {a ∈ A | ∃C ∈ P (a) s.t. C ⊆ B} = {a ∈ A | ∃D ∈ Q(a) s.t. D ⊆ B}
⇔ ∀B ∈ B : TP (B) = TQ(B)

⇔ TP = TQ

�

Example 3.32 In Example 3.23, I showed that [P2]∼ = [P3]∼ and [P1]∼= = [P2]∼=, thus
P1, P2 and P3 have the same consequence operator.

4 The Extraction
In the previous section, I have shown how to compute a coalition set for every neuron
and developed an algebraic treatment of those coalition sets. Now, I will show how to
use this knowledge to compose the parts according to the net structure into a complete
extracted logic program. The idea behind this is to start first with the output neurons
and compute their coalitions. Every symbol in those sets refers to a neuron in the
hidden layer, so this symbol is ”replaced” by its coalition set. If the symbol is negated,
the opposition set is taken. This is done recursively until we reach the input layer, there
we stop and the resulting set expresses the clause bodies for the output symbols. The
proven laws of distributivity and commutativity allow me to factor out symbols and
simplify sub expressions.

4.1 Construction

Let y be a neuron, that has input neurons X = {x1, x2, . . . , xn} and a weight function
g(X)→ R. The base G is according to g and θ is the threshold. I will use the following
conventions:

Cy := Cg,θ

Oȳ := Og,θ

Given a neural network (N, E, w) with the set I ⊆ N of input neurons. This network is

interpreted as a function ANN : I → ℘(℘(Ĩ). The following function out : N → ℘(℘(I))
formulates the computation.

out(y) :=


{{y}} y ∈ I⋃

C∈Cy

(⊗
x∈C(out(x))

)
y ∈ N \ I and y is of the form a⋃

O∈Oy

(⊗
x∈O(out(x))

)
y ∈ N \ I and y is of the form ā
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This function expresses the computation behind a neuron: A neuron fires if there is a (∪)
combination of input neurons that fire at the same time (⊗) such that the activation is
above the threshold. All hidden and output neurons depend directly or indirectly to the
activations of the neurons of the input layer, therefore we have to resolve every symbol
which refers to such a neuron back to it. This is done recursively and stops until the
computed set only contain neurons of the input layer. And since the network is feed
forward and has no cycles, this process terminates. In the end I have an expression
in the semiring (℘(℘(I)),∪, ∅,⊗, {∅}). This expressions can be simplified by the two
minimization functions µ and η any time, since I have proven that all elements in [out(·)]∼
have the same T operator.

[out(y)]∼ =


[{{y}}]∼ y ∈ I⋃̃

C∈µ(Cy)

(⊗̃
x∈C [(out(x))]∼

)
y ∈ N \ I and y is of the form a⋃̃

O∈µ(Oy)

(⊗̃
x∈O[(out(x))]∼

)
y ∈ N \ I and y is of the form ā

Algorithm 1 from Section 3.5 can be used to compute µ(Cy) and µ(Oy).

4.2 Soundness and Completeness

The soundness and completeness of my extraction method follow from the Main Theorem
1 stated in Section 3.6.4. The knowledge of an output neuron is captured by the function
out() in terms of the input neurons of the network. This function is an expression in
the semiring A and the theorem states, that every element of [out()]∼ has the same
semantics wrt. logic programs. Therefore it is possible to take the minimal coalition
and opposition sets for the formulation of out().

4.3 Extraction of the Running Example

x µ(Cx) µ(Ox)
p′ {{a, b, c}, {c, d}} /
q′ {{b̄, c̄}} /
r′ {{ā, b}} /
a {{r̄}, {p, q}} {{p̄, r}, {q̄, r}}
b {{r̄}} {{r}}
c {{p}, {q}, {r}} {{p̄, q̄, r̄}}
d {{p̄, r}, {q̄, r}} {{r̄}, {p, q}}

Figure 9: The coalition and opposition sets for each neuron. For the output neurons the
opposition sets are not needed

I will show the computation step by step for the propositional variable p, so I have to
calculate the expression for the output neuron p′. In Figure 9, a table with all needed
coalition and opposition sets is shown. The extraction is done by applying out() to p′.
The application of µ and η are done implicitly, since all elements of the equivalence class
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do not change the semantic operator.

out(p′) =
⋃

C∈µ(Cp′ )

(⊗
x∈C

(out(x))

)

=
⋃

C∈{{a,b,c},{c,d}}

(⊗
x∈C

(out(x))

)

=

 ⊗
x∈{a,b,c}

(out(x))

 ∪
 ⊗

x∈{c,d}

(out(x))



I show the first part of the union:
⊗

x∈{a,b,c}(out(x)) = out(a)⊗ out(b)⊗ out(c)
At this point the coalition sets of a,b,c and d contain only input neurons, therefore

I can skip the steps for computing out() for every one of them. I just have to replace
them by their coalition set.

out(a)⊗ out(b)⊗ out(c) = {{r̄}, {p, q}} ⊗ {{r̄}} ⊗ {{p}, {q}, {r}}
= {{r̄}, {p, q, r̄}} ⊗ {{p}, {q}, {r}}
= {{p, r̄}, {q, r̄}, {p, q, r̄}}
= {{p, r̄}, {q, r̄}}

The same is done for
⊗

x∈{c,d} out(x):

out(c)⊗ out(d) = {{p}, {q}, {r}} ⊗ {{p̄, r}, {q̄, r}}
= {{p̄, r}, {q̄, r}}

Finally the two sets are united,

out(p′) =

 ⊗
x∈{a,b,c}

(out(x))

 ∪
 ⊗

x∈{c,d}

(out(x))


= {{p, r̄}, {q, r̄}} ∪ {{p̄, r}, {q̄, r}}
= {{p, r̄}, {q, r̄}, {p̄, r}, {q̄, r}}

The remaining two output neurons q′ and r′ are treated here in a more briefly way, since
the computation is done analogously to p′:

out(q′) = out(b̄)⊗ out(c̄)

= {{r}} ⊗ {{p̄, q̄, r̄}}
= ∅
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and

out(r′) = out(ā)⊗ out(b)

= {{p̄, r}, {q̄, r}} ⊗ {{r̄}}
= ∅

So no combination of input neurons will make q′ and r′ fire, thus no rules can be ex-
tracted. The final extracted program is:

p← p,¬r

p← q,¬r

p← ¬p, r

p← ¬q, r

This is equal to program P2 from the initial example, although it would be more desirable
to get the smaller program P1.

4.4 Complexity

I have pointed out in Section 3.5 that Algorithm 1 for a single neuron is exponential in
the worst case. Consequently the overall complexity of the extraction will be exponential
as well. But the reassembling of coalition sets expressed by the formula out() is done
in polynomial time in the number of nodes in the network and the size of the coalition
sets:

Let m ∈ N be the number of layers in the network, k ∈ N the maximal number of
neurons in one layer and n ∈ N the maximal number of elements in all coalition and
opposition sets that are computed under the extraction. Then the maximal number of
applying ⊗ and ∪ is less than k · (n · k)m. ⊗ itself is of quadratic complexity. So in the
case of three layers the expenses of the computation of out is polynomial.

5 Conclusion and Further Work
In this work I have presented a decompositional method for extracting propositional logic
programs from artificial neural networks. The extraction method works with arbitrary
many layers in the network and there is no restriction on the structure of weights.

In Section 3.1 a theoretical background is developed for analyzing small parts of the
network. Because negative and positive weights are allowed, an extended set of symbols
was created for referring to neurons in two ways, positively and negatively. I showed
in Section 3.4 that only a small part of all possible activations of incoming edges have
to be taken into consideration. Algorithm 1 in Section 3.5 translates a single neuron
given by a weight function and a threshold into the prepared form. In Section 3.6 the
composition of extracted subnetworks is theoretically analyzed and in Section 4.1 this
is applied on a network. By using the theorem from Section 3.6.4 the soundness and
completeness is shown in 4.2.
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The programs P1 to P4 from the examples above and our running network demonstrate
that my extraction is more sufficient compared to the naive pedagogical one. Many
redundant steps, as would be performed by a pedagogical extraction, are avoided by
using my approach. However, there are cases a network would result in P1 or P4. So, the
comprehensibility of the extracted rules depends on the given network and its structure.

There are several parts in my extraction algorithm that can be improved or extended.

• In the compositional part a formula is computed and simplified. Based on prop-
erties of the algebra, heuristics may be found to improve the simplification.

• Since there might be cases in the computation where only parts of a coalition set is
needed, the extraction of a neuron should only be done to the extend it is required.
One approach would be that all neuron extractions run in parallel and they ”share”
their knowledge every time one coalition is found. In this process situations occur
in which one neuron does not have to be computed fully or even not at all. I do
not know if in general this would decrease the worst case complexity, but it could
be seen as an optimization step.

• I could use another notation for extracted rules as in [ToSh93]. They call it (M of
N), which means any combination of M elements in the set of literals N imply a
literal L. The Notation A could be enhanced by this notation and thus a reduction
of the size of the sets. This means, not all rules have to be written down explicitly
if they appear in this pattern and I propose that the extraction of a single neuron
could be done in polynomial time in the number of weights. How the operators
⊗ and ∪ would deal with this extension, I have not tried to develop, but I do not
exclude that this can be done.

• As I demonstrated, the extracted program is not necessary of minimal size. The
least reduction level that can be assured, is bounded to subsumption and trivially
contradictory clauses. The algorithm might do stricter reduction steps, but this
occurs by luck and is dependent on the structure of the network. Indented addi-
tional reduction steps could be performed at a very early stage, for example after
every computation of ⊗ and ∪. I have not found a practical algorithm to do that.
The methods presented in [Leh05] are of high complexity and use a pedagogical or
program search approach. In order to develop new methods, perhaps the algebra
can be used to prove the soundness of further minimizations.

• The implementation of this theory is an important step and I would like to see
how the algorithms work in practise. For this, some research has to go into the
translation from sigmoidal to binary activation functions. If this can be done
efficiently the extraction algorithm stated here could be tested for practical ability.
It can be applied to benchmark problems and be compared to other rule extraction
systems.

• With help of the algebra, the structure of networks can be changed without chang-
ing the semantics. A formula in A can easily be transformed into a sum of coalition
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sets and thereby be translated into a network structure. For this an algorithm has
to be developed, that computes a weight function and a threshold given a coalition
set C.

• The most interesting question is about how this approach can be extended to the
first order case! How would an algorithm corresponding to my neuron extrac-
tion look like? Can the algebra somehow be used to develop a decompositional
extraction of networks representing first order programs?
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