
KNOWLEDGE GRAPHS

Lecture 4: Introduction to SPARQL

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 6th Nov 2018

Review

We can use reification to encode complex structures in RDF graphs:

Film Actor Character

Arrival Amy Adams Louise Banks

Arrival Jeremy Renner Ian Donnelly

Gravity Sandra Bullock Ryan Stone

Arrival

Amy Adams

Louise Banks

Jeremy Renner

Ian Donnelly

Gravity

Sandra Bullock Ryan Stone

actor-role

actor-role

actor

character

actor

character

actor-role

actor character

We can also encode lists:

• Linked lists (e.g., RDF collections)

• Array-style representations with one property per position (e.g., RDF containers)

• as sets (give up order)

But not all data structures are a natural fit for RDF graphs (and not for other knowledge
graph either)

Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 2 of 22

Introduction to SPARQL

Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 3 of 22

An RDF query language and more

SPARQL is short for SPARQL Protocol and RDF Query Language

• W3C standard since 2008

• Updated in 2013 (SPARQL 1.1)

• Supported by many graph databases

The SPARQL specification consists of several major parts:

• A query language

• Result formats in XML, JSON, CSV, and TSV

• An update language

• Protocols for communicating with online SPARQL services

• A vocabulary for describing SPARQL services

Full specifications can be found online:
https://www.w3.org/TR/sparql11-overview/

Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 4 of 22

SPARQL queries

The heart of SPARQL is its query language.

Example 4.1: The following simple SPARQL query asks for a list of all resource
IRIs together with their labels:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?resource ?label
WHERE {
?resource rdfs:label ?label .

}

Basic concepts:

• SPARQL uses variables, marked by their initial ?

• The core of a query is the query condition within WHERE { . . . }

• Conditions can be simple patterns based on triples, similar to Turtle syntax

• SELECT specifies how results are produced from query matches

Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 5 of 22

Basic SPARQL by example

Example 4.2: Find up to ten people whose daughter is a professor:

PREFIX eg: <http://example.org/>
SELECT ?parent
WHERE {
?parent eg:hasDaughter ?child .

?child eg:occupation eg:Professor .

} LIMIT 10

Example 4.3: Count all triples in the database:

SELECT (COUNT(*) AS ?count)
WHERE { ?subject ?predicate ?object . }

Example 4.4: Count all predicates in the database:

SELECT (COUNT(DISTINCT ?predicate) AS ?count)
WHERE { ?subject ?predicate ?object . }

Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 6 of 22

Basic SPARQL by example (2)

Example 4.5: Find the person with most friends:

SELECT ?person (COUNT(*) AS ?friendCount)
WHERE { ?person <http://example.org/hasFriend> ?friend . }
GROUP BY ?person
ORDER BY DESC(?friendCount) LIMIT 1

Example 4.6: Find pairs of siblings:

SELECT ?child1 ?child2
WHERE {
?parent <http://example.org/hasChild> ?child1, ?child2 .

FILTER(?child1 != ?child2)
}

Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 7 of 22

The shape of a SPARQL query

Select queries consist of the following major blocks:

• Prologue: for PREFIX and BASE declarations (work as in Turtle)

• Select clause: SELECT (and possibly other keywords) followed either by a list of
variables (e.g., ?person) and variable assignments (e.g., (COUNT(*) as
?count)), or by *

• Where clause: WHERE followed by a pattern (many possibilities)

• Solution set modifiers: such as LIMIT or ORDER BY

SPARQL supports further types of queries, which primarily exchange the Select clause
for something else:

• ASK query: to check whether there are results at all (but don’t return any)

• CONSTRUCT query: to build an RDF graph from query results

• DESCRIBE query: to get an RDF graph with additional information on each query
result (application dependent)

Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 8 of 22

Basic SPARQL syntax

RDF terms are written like in Turtle:

• IRIs may be abbreviated using qualified:names (requires PREFIX declaration) or
<relativeIris> (requires BASE declaration)

• Literals are written as usual, possibly also with abbreviated datatype IRIs

• Blank nodes are written as usual

In addition, SPARQL supports variables:

Definition 4.7: A variable is a string that begins with ? or $, where the string can
consist of letters (including many non-Latin letters), numbers, and the symbol _.
The variable name is the string after ? or $, without this leading symbol.

Example 4.8: The variables ?var1 and $var1 have the same variable name (and
same meaning across SPARQL).

Convention: Using ? is widely preferred these days!

Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 9 of 22

Basic Graph Patterns
We can now define the simplest kinds of patterns:

Definition 4.9: A triple pattern is a triple 〈s, p, o〉, where s and o are arbitrary
RDF termsa or variables, and p is an IRI or variable. A basic graph pattern (BGP)
is a set of triple patterns.

aCuriously, SPARQL allows literals as subjects, although RDF does not.∗

Note: These are semantic notions, that are not directly defining query syntax. Triple
patterns describe query conditions where we are looking for matching triples. BGPs are
interpreted conjunctively, i.e., we are looking for a match that fits all triples at once.

Syntactically, SPARQL supports an extension of Turtle (that allows variables everywhere
and literals in subject positions). All Turtle shortcuts are supported.

Convention: We will also use the word triple pattern and basic graph pattern to
refer to any (syntactic) Turtle snippet that specifies such (semantic) patterns.

∗ This was done for forwards compatibility with future RDF versions, but RDF 1.1 did not add any such extension. Hence such patterns can never
match in RDF.
Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 10 of 22

Blank nodes
Remember: Bnode ids are syntactic aids to allow us serialising graphs with such
nodes. They are not part of the RDF graph.

What is the meaning of blank nodes in query patterns?

• They denote an unspecified resource (in particular: they do not ask for a bnode of
a specific node id in the queried graph!)

• In other words: they are like variables, but cannot be used in SELECT
• Turtle bnode syntax can be used ([] or _:nodeId), but any node id can only

appear in one part of the query (we will see complex queries with many parts later)

What is the meaning of blank nodes in query results?

• Such bnodes indicate that a variable was matched to a bnode in the data
• The same node id may occur in multiple rows of the result table, meaning that the

same bnode was matched
• However, the node id used in the result is an auxiliary id that might be different

from what was used in the data (if an id was used there at all!)
Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 11 of 22

Answers to BGPs
What is the result of a SPARQL query?

Definition 4.10: A solution mapping is a partial function µ from variable names to
RDF terms. A solution sequence is a list of solution mappings.

Note: When no specific order is required, the solutions computed for a SPARQL query
can be represented by a multiset (= “a set with repeated elements” = “an unordered list”).

Definition 4.11: Given an RDF graph G and a BGP P, a solution mapping µ is a
solution to P over G if it is defined exactly on the variable names in P and there is
a mapping σ from blank nodes to RDF terms, such that µ(σ(P)) ⊆ G.

The cardinality of µ in the multiset of solutions is the number of distinct such map-
pings σ. The multiset of these solutions is denoted evalG(P), where we omit G if
clear from the context.

Note: Here, we write µ(σ(P)) to denote the graph given by the triples in P after first
replacing bnodes according to σ, and then replacing variables according to µ.
Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 12 of 22

Example

We consider a graph based on the earlier film-actor example (but with fewer bnodes!):

eg:Arrival eg:actorRole eg:aux1, eg:aux2 .

eg:aux1 eg:actor eg:Adams ; eg:character "Louise Banks" .

eg:aux2 eg:actor eg:Renner ; eg:character "Ian Donnelly" .

eg:Gravity eg:actorRole [eg:actor eg:Bullock;

eg:character "Ryan Stone"] .

The BGP (and triple pattern) ?film eg:actorRole [] has the solution multiset:

film cardinality

eg:Arrival 2

eg:Gravity 1

The cardinality of the first solution mapping is 2 since the bnode can be mapped to two
resources, eg:aux1 and eg:aux2, to find a subgraph.

Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 13 of 22

Example (2)

We consider a graph based on the earlier film-actor example (but with fewer bnodes!):

eg:Arrival eg:actorRole eg:aux1, eg:aux2 .

eg:aux1 eg:actor eg:Adams ; eg:character "Louise Banks" .

eg:aux2 eg:actor eg:Renner ; eg:character "Ian Donnelly" .

eg:Gravity eg:actorRole [eg:actor eg:Bullock;

eg:character "Ryan Stone"] .

The BGP (and triple pattern) ?film eg:actorRole [eg:actor ?person] has
the solution multiset:

film person cardinality

eg:Arrival eg:Adams 1

eg:Arrival eg:Renner 1

eg:Gravity eg:Bullock 1

Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 14 of 22

Boolean queries

Definition 4.11: Given an RDF graph G and a BGP P, a solution mapping µ is a
solution to P over G if it is defined exactly on the variable names in P and there is
a mapping σ from blank nodes to RDF terms, such that µ(σ(P)) ⊆ G.

The cardinality of µ in the multiset of solutions is the number of distinct such map-
pings σ. The multiset of these solutions is denoted evalG(P), where we omit G if
clear from the context.

Q: What is evalG(eg:s eg:p eg:o) over the empty graph G = ∅?
A: The empty multiset ∅ of solutions!

Q: What is evalG(eg:s eg:p eg:o) over the graph G = {eg:s eg:p eg:o}?
A: The multiset {µ0} that contains the unique solution mapping with domain ∅ (the
maximally partial function).

Terminology: Queries that cannot yield bindings for any variable are called
Boolean queries, since they admit only two solutions: {} (“false”) and {µ0} (“true”).

Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 15 of 22

Finding BGP solutions

How hard is it to compute solutions to BGPs?

Observation: It is easy to check if a given mapping of bnodes and variables produces a
solution:

• Simply verify that the mapped triples are contained in the given graph

• Can be done in quadratic time (# triples in pattern × # edges in graph)

In other words: the problem (as a decision problem) is in NP. It turns out, this is the best
we can do:

Theorem 4.12: Determining if a BGP has solution mappings over a graph is NP-
complete.

Proof: Inclusion: guess mapping for bnodes and variables; check if guess was correct.

Hardness: by reduction from 3-colourability of graphs

Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 16 of 22

From 3-colourability to BGP matching

The problem of graph 3-colourability (3Col) is defined as follows:
Given: An undirected graph G
Question: Can the vertices of G be assigned colours red, green and blue so that
no two adjacent vertices have the same colour?

It is known that this problem is NP-complete (and in particular NP-hard).

We can find a polynomial many-one reduction from 3Col to BGP matching:

• A given graph G is mapped to a BGP PG by introducing, for each undirected edge
e−f in G, two triples ?e <edge> ?f and ?f <edge> ?e.

• We consider the RDF graph C given by

<red> <edge> <green>, <blue> .

<green> <edge> <red>, <blue> .

<blue> <edge> <green>, <red> .

Then PG has a solution mapping over C if and only if G is 3-colourable. �

Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 17 of 22

Finding BGP solutions using joins

Real graph databases do not find solutions by guessing mappings until they found one
that works: they retrieve solutions for triple patterns and combine them with joins.

Definition 4.13: Two solution mappings µ1 and µ2 are compatible if µ1(x) = µ2(x)
for all variable names x ∈ dom(µ1) ∩ dom(µ2), where dom is the domain on which
a (partial) function is defined. In this case, µ1] µ2 is the mapping defined as

µ1] µ2(x) =

µ1(x) if x ∈ dom(µ1)

µ2(x) if x ∈ dom(µ2)

undefined otherwise

Definition 4.14: The join of two multisets Ω1 and Ω2 of solution mappings is the
multiset Join(Ω1, Ω2) = {µ1] µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, and µ1 and µ2 are compatible}.
The multiplicity cardΩ(µ) of each solution µ ∈ Ω = Join(Ω1, Ω2) is given as
cardΩ(µ) =

∑
µ1∈Ω1,µ2∈Ω2,µ1]µ2=µ cardΩ1 (µ1) × cardΩ2 (µ2).

Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 18 of 22

Finding BGP solutions using joins

Theorem 4.15: Let G be an RDF graph, and let P = P1 ∪ P2 be a bnode-
free BGP that is a disjoint union of two BGPs P1 and P2. Then evalG(P) =

Join(evalG(P1), evalG(P2)). Therefore, evalG(P) is the join of the solution multisets
of all individual triple patterns in P.

Proof: Since P contains no bnodes, solutions are defined without considering mappings
“σ” and the multiplicity of any solution will therefore be 1.

“⊆” Consider µ ∈ evalG(P).
• Let µi be the restriction of µ to variables in Pi (i = 1, 2)
• Then µi ∈ evalG(Pi) and µ1 and µ2 are compatible
• Therefore µ1] µ2 = µ ∈ Join(evalG(P1), evalG(P2))

“⊇” Consider µ ∈ Join(evalG(P1), evalG(P2)).
• Then there are compatible µi ∈ evalG(Pi) with µ1] µ2 = µ

• By construction, µ1(P1) = µ(P1) ⊆ G and µ2(P2) = µ(P2) ⊆ G
• Hence µ1(P1) ∪ µ2(P2) = µ(P1) ∪ µ(P2) = µ(P1 ∪ P2) ⊆ G, as claimed �

Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 19 of 22

Finding BGP solutions . . . in practice

Theorem 4.15 does not work if the patterns contains blank nodes! (see exercise)

In practice, we can treat bnodes like variables that are projected away later on (leading
to increased multiplicities).

Real graph databases compute joins in highly optimised ways:

• Efficient data structures for finding compatible solutions to triple patterns (e.g.,
hash maps, tries, ordered lists, . . .)

• Query planners for optimising order of joins (goal: small intermediate results)

• Streaming joins: returning first results before join is complete

• Sometimes: multi-way joins (joining more than two triple patterns at once)

. . . but they still compute BGP solutions by joining partial solutions and hoping for an
overall match

In the worst case, any known algorithm needs exponential time.

Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 20 of 22

Outline of plan

So far we have:

• seen some examples of simple SPARQL queries,

• introduced the syntax for basic graph patterns (BGPs),

• defined the semantics of BGPs and the complexity of computing it

SPARQL includes many further features . . . (too many to discuss all in detail).

Here is the plan:

1. Property paths: making connections through graphs

2. Filters: expressing further conditions on terms and triples

3. Selection and solution set modifiers: changing the output

4. Everything else: union, optional, bind, values, subqueries, aggregates, . . .

Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 21 of 22

Summary

SPARQL, the main query language for RDF, is based on matching graph patters

Basic Graph Pattern matching is already rather complex (NP-complete), but can be
implemented using joins

What’s next?

• Wikidata as a working example to try out our knowledge

• More SPARQL query features

• Further background on SPARQL complexity and semantics

Markus Krötzsch, 6th Nov 2018 Knowledge Graphs slide 22 of 22

