4. Petri Nets: Boundedness and Undecidability of Equivalence Problems

May 24-25, 2022

Warm-up: Something Useful

For $k \in \mathbb{N},\left(\mathbb{N}^{k}, \leq\right)$ is a well partial order (antisymmetric wqo).

Warm-up: Something Useful

For $k \in \mathbb{N},\left(\mathbb{N}^{k}, \leq\right)$ is a well partial order (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $\left(a_{i}\right)_{i \in \mathbb{N}}\left(a_{j} \in \mathbb{N}^{k}\right.$ for each $\left.j \in \mathbb{N}\right)$, there is an infinite increasing subsequence, that is $a_{n_{0}} \leq a_{n_{1}} \leq a_{n_{2}} \leq \ldots$ with $n_{0}<n_{1}<n_{2}<\ldots$.

Warm-up: Something Useful

For $k \in \mathbb{N},\left(\mathbb{N}^{k}, \leq\right)$ is a well partial order (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $\left(a_{i}\right)_{i \in \mathbb{N}}\left(a_{j} \in \mathbb{N}^{k}\right.$ for each $\left.j \in \mathbb{N}\right)$, there is an infinite increasing subsequence, that is $a_{n_{0}} \leq a_{n_{1}} \leq a_{n_{2}} \leq \ldots$ with $n_{0}<n_{1}<n_{2}<\ldots$.

Proof.

a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}

Warm-up: Something Useful

For $k \in \mathbb{N},\left(\mathbb{N}^{k}, \leq\right)$ is a well partial order (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $\left(a_{i}\right)_{i \in \mathbb{N}}\left(a_{j} \in \mathbb{N}^{k}\right.$ for each $\left.j \in \mathbb{N}\right)$, there is an infinite increasing subsequence, that is $a_{n_{0}} \leq a_{n_{1}} \leq a_{n_{2}} \leq \ldots$ with $n_{0}<n_{1}<n_{2}<\ldots$.

Proof.

a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}

$A=\left\{a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, \ldots\right\}$

Warm-up: Something Useful

For $k \in \mathbb{N},\left(\mathbb{N}^{k}, \leq\right)$ is a well partial order (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $\left(a_{i}\right)_{i \in \mathbb{N}}\left(a_{j} \in \mathbb{N}^{k}\right.$ for each $\left.j \in \mathbb{N}\right)$, there is an infinite increasing subsequence, that is $a_{n_{0}} \leq a_{n_{1}} \leq a_{n_{2}} \leq \ldots$ with $n_{0}<n_{1}<n_{2}<\ldots$.

Proof.

a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}
A	$=\left\{a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, \ldots\right\}$								
$\min A$	$=a$ and there is an $n_{0} \geq 0$, such that $a_{n_{0}}=a$								

Warm-up: Something Useful

For $k \in \mathbb{N},\left(\mathbb{N}^{k}, \leq\right)$ is a well partial order (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $\left(a_{i}\right)_{i \in \mathbb{N}}\left(a_{j} \in \mathbb{N}^{k}\right.$ for each $\left.j \in \mathbb{N}\right)$, there is an infinite increasing subsequence, that is $a_{n_{0}} \leq a_{n_{1}} \leq a_{n_{2}} \leq \ldots$ with $n_{0}<n_{1}<n_{2}<\ldots$.

Proof.

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c|}
\hline a_{n_{0}-2} & a_{n_{0}-1} & a_{n_{0}} & a_{n_{0}+1} & a_{n_{0}+2} & a_{n_{0}+3} & a_{n_{0}+4} & a_{n_{0}+5} & a_{n_{0}+6} & a_{n_{0}+7} \\
\hline
\end{array}
$$

Warm-up: Something Useful

For $k \in \mathbb{N},\left(\mathbb{N}^{k}, \leq\right)$ is a well partial order (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $\left(a_{i}\right)_{i \in \mathbb{N}}\left(a_{j} \in \mathbb{N}^{k}\right.$ for each $\left.j \in \mathbb{N}\right)$, there is an infinite increasing subsequence, that is $a_{n_{0}} \leq a_{n_{1}} \leq a_{n_{2}} \leq \ldots$ with $n_{0}<n_{1}<n_{2}<\ldots$.

Proof.

Warm-up: Something Useful

For $k \in \mathbb{N},\left(\mathbb{N}^{k}, \leq\right)$ is a well partial order (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $\left(a_{i}\right)_{i \in \mathbb{N}}\left(a_{j} \in \mathbb{N}^{k}\right.$ for each $\left.j \in \mathbb{N}\right)$, there is an infinite increasing subsequence, that is $a_{n_{0}} \leq a_{n_{1}} \leq a_{n_{2}} \leq \ldots$ with $n_{0}<n_{1}<n_{2}<\ldots$.

Proof.

$$
\begin{aligned}
& \qquad \begin{array}{|l|c|c|c|c|c|c|}
\hline a_{n_{0}+1} & a_{n_{0}+2} & a_{n_{0}+3} & a_{n_{0}+4} & a_{n_{0}+5} & a_{n_{0}+6} & a_{n_{0}+7} \\
\hline
\end{array} \\
& \begin{array}{l}
B=\left\{a_{n_{0}+1}, a_{n_{0}+2}, a_{n_{0}+3}, a_{n_{0}+4}, a_{n_{0}+5}, a_{n_{0}+6}, \ldots\right\} \\
\min A=a \text { and there is an } n_{0} \geq 0, \text { such that } a_{n_{0}}=a
\end{array} \\
& a_{n_{0}} \quad \text { and } n_{0}
\end{aligned}
$$

Warm-up: Something Useful

For $k \in \mathbb{N},\left(\mathbb{N}^{k}, \leq\right)$ is a well partial order (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $\left(a_{i}\right)_{i \in \mathbb{N}}\left(a_{j} \in \mathbb{N}^{k}\right.$ for each $\left.j \in \mathbb{N}\right)$, there is an infinite increasing subsequence, that is $a_{n_{0}} \leq a_{n_{1}} \leq a_{n_{2}} \leq \ldots$ with $n_{0}<n_{1}<n_{2}<\ldots$.

Proof.

$$
\begin{aligned}
& \text { gの } \\
& \qquad \begin{array}{|l|l|l|l|l|l|l|}
\hline a_{n_{0}+1} & a_{n_{0}+2} & a_{n_{0}+3} & a_{n_{0}+4} & a_{n_{0}+5} & a_{n_{0}+6} & a_{n_{0}+7} \\
\hline
\end{array} \\
& \begin{array}{l}
B=\left\{a_{n_{0}+1}, a_{n_{0}+2}, a_{n_{0}+3}, a_{n_{0}+4}, a_{n_{0}+5}, a_{n_{0}+6}, \ldots\right\} \\
\min B=b \text { and there is an } n_{1}>n_{0} \text {, such that } a_{n_{1}}=b \\
a_{n_{0}} \quad \text { and } n_{0}
\end{array}
\end{aligned}
$$

Warm-up: Something Useful

For $k \in \mathbb{N},\left(\mathbb{N}^{k}, \leq\right)$ is a well partial order (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $\left(a_{i}\right)_{i \in \mathbb{N}}\left(a_{j} \in \mathbb{N}^{k}\right.$ for each $\left.j \in \mathbb{N}\right)$, there is an infinite increasing subsequence, that is $a_{n_{0}} \leq a_{n_{1}} \leq a_{n_{2}} \leq \ldots$ with $n_{0}<n_{1}<n_{2}<\ldots$.

Proof.

$$
\begin{aligned}
& \text { \& } \\
& \begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline a_{n_{1}-2} & a_{n_{1}-1} & a_{n_{1}} & a_{n_{1}+1} & a_{n_{1}+2} & a_{n_{1}+3} & a_{n_{1}+4} & a_{n_{1}+5} & a_{n_{1}+6} & a_{n_{1}+7} \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Warm-up: Something Useful

For $k \in \mathbb{N},\left(\mathbb{N}^{k}, \leq\right)$ is a well partial order (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $\left(a_{i}\right)_{i \in \mathbb{N}}\left(a_{j} \in \mathbb{N}^{k}\right.$ for each $\left.j \in \mathbb{N}\right)$, there is an infinite increasing subsequence, that is $a_{n_{0}} \leq a_{n_{1}} \leq a_{n_{2}} \leq \ldots$ with $n_{0}<n_{1}<n_{2}<\ldots$.

Proof.

$$
\begin{aligned}
& \text { @ᄋ } \\
& \qquad \begin{array}{|l|l|l|l|l|}
\hline a_{n_{1}+1} & a_{n_{1}+2} & a_{n_{1}+3} & a_{n_{1}+4} & a_{n_{1}+5} \\
C=\left\{a_{n_{1}+1}, a_{n_{1}+2}, a_{n_{1}+3}, a_{n_{1}+4}, a_{n_{1}+5}, a_{n_{1}+6}, \ldots\right\} \\
m_{n_{1}+7} \\
\min C & =c \text { and there is an } n_{2} \geq n_{1}, \text { such that } a_{n_{2}}=c \\
a_{n_{0}} \leq a_{n_{1}} \leq a_{n_{2}} \leq \ldots \text { and } n_{0}<n_{1}<n_{2}<\ldots
\end{array}
\end{aligned}
$$

Warm-up: Something Useful

For $k \in \mathbb{N},\left(\mathbb{N}^{k}, \leq\right)$ is a well partial order (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $\left(a_{i}\right)_{i \in \mathbb{N}}\left(a_{j} \in \mathbb{N}^{k}\right.$ for each $\left.j \in \mathbb{N}\right)$, there is an infinite increasing subsequence, that is $a_{n_{0}} \leq a_{n_{1}} \leq a_{n_{2}} \leq \ldots$ with $n_{0}<n_{1}<n_{2}<\ldots$.

Proof.

Warm-up: Something Useful

For $k \in \mathbb{N},\left(\mathbb{N}^{k}, \leq\right)$ is a well partial order (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $\left(a_{i}\right)_{i \in \mathbb{N}}\left(a_{j} \in \mathbb{N}^{k}\right.$ for each $\left.j \in \mathbb{N}\right)$, there is an infinite increasing subsequence, that is $a_{n_{0}} \leq a_{n_{1}} \leq a_{n_{2}} \leq \ldots$ with $n_{0}<n_{1}<n_{2}<\ldots$.

Proof.

Warm-up: Something Useful

For $k \in \mathbb{N},\left(\mathbb{N}^{k}, \leq\right)$ is a well partial order (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $\left(a_{i}\right)_{i \in \mathbb{N}}\left(a_{j} \in \mathbb{N}^{k}\right.$ for each $\left.j \in \mathbb{N}\right)$, there is an infinite increasing subsequence, that is $a_{n_{0}} \leq a_{n_{1}} \leq a_{n_{2}} \leq \ldots$ with $n_{0}<n_{1}<n_{2}<\ldots$.

Proof.

Warm-up: Something Useful

For $k \in \mathbb{N},\left(\mathbb{N}^{k}, \leq\right)$ is a well partial order (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $\left(a_{i}\right)_{i \in \mathbb{N}}\left(a_{j} \in \mathbb{N}^{k}\right.$ for each $\left.j \in \mathbb{N}\right)$, there is an infinite increasing subsequence, that is $a_{n_{0}} \leq a_{n_{1}} \leq a_{n_{2}} \leq \ldots$ with $n_{0}<n_{1}<n_{2}<\ldots$.

Proof.

Warm-up: Something Useful

For $k \in \mathbb{N},\left(\mathbb{N}^{k}, \leq\right)$ is a well partial order (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $\left(a_{i}\right)_{i \in \mathbb{N}}\left(a_{j} \in \mathbb{N}^{k}\right.$ for each $\left.j \in \mathbb{N}\right)$, there is an infinite increasing subsequence, that is $a_{n_{0}} \leq a_{n_{1}} \leq a_{n_{2}} \leq \ldots$ with $n_{0}<n_{1}<n_{2}<\ldots$.

Proof.

Warm-up: Something Useful

For $k \in \mathbb{N},\left(\mathbb{N}^{k}, \leq\right)$ is a well partial order (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $\left(a_{i}\right)_{i \in \mathbb{N}}\left(a_{j} \in \mathbb{N}^{k}\right.$ for each $\left.j \in \mathbb{N}\right)$, there is an infinite increasing subsequence, that is $a_{n_{0}} \leq a_{n_{1}} \leq a_{n_{2}} \leq \ldots$ with $n_{0}<n_{1}<n_{2}<\ldots$.

Proof.

Warm-up: Something Useful

For $k \in \mathbb{N},\left(\mathbb{N}^{k}, \leq\right)$ is a well partial order (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $\left(a_{i}\right)_{i \in \mathbb{N}}\left(a_{j} \in \mathbb{N}^{k}\right.$ for each $\left.j \in \mathbb{N}\right)$, there is an infinite increasing subsequence, that is $a_{n_{0}} \leq a_{n_{1}} \leq a_{n_{2}} \leq \ldots$ with $n_{0}<n_{1}<n_{2}<\ldots$.

Proof.

Disclaimer

I will break with any conventions you may have heard of ...
(e. g., P/T nets or S / T nets, elementary net systems, net systems, Petri nets, ... will all be called Petri nets)

Net Structure

Net Structure

Net Structure

Net Structure

Net Structure

Net Structure

Net Structure

Net Structure

(P, T, F, l)
P, T disjoint and finite sets
$F \subseteq(P \times T) \cup(T \times P)$
$l: T \rightarrow \Sigma$ (Σ is an alphabet $)$

Markings and the Token Game

$N=\left(P, T, F, l, m_{0}\right)$
P, T disjoint and finite sets
$F \subseteq(P \times T) \cup(T \times P)$
$l: T \rightarrow \Sigma(\Sigma$ is an alphabet $)$ $m_{0}: P \rightarrow \mathbb{N}$ (multiset)

Markings and the Token Game

$N=\left(P, T, F, l, m_{0}\right)$
P, T disjoint and finite sets
$F \subseteq(P \times T) \cup(T \times P)$
$l: T \rightarrow \Sigma(\Sigma$ is an alphabet $)$ $m_{0}: P \rightarrow \mathbb{N}$ (multiset)

Markings and the Token Game

$N=\left(P, T, F, l, m_{0}\right)$
P, T disjoint and finite sets
$F \subseteq(P \times T) \cup(T \times P)$
$l: T \rightarrow \Sigma(\Sigma$ is an alphabet $)$ $m_{0}: P \rightarrow \mathbb{N}$ (multiset)

Markings and the Token Game

$N=\left(P, T, F, l, m_{0}\right)$
P, T disjoint and finite sets
$F \subseteq(P \times T) \cup(T \times P)$
$l: T \rightarrow \Sigma(\Sigma$ is an alphabet $)$ $m_{0}: P \rightarrow \mathbb{N}$ (multiset)

Markings and the Token Game

$N=\left(P, T, F, l, m_{0}\right)$
P, T disjoint and finite sets
$F \subseteq(P \times T) \cup(T \times P)$
$l: T \rightarrow \Sigma(\Sigma$ is an alphabet $)$ $m_{0}: P \rightarrow \mathbb{N}$ (multiset)

Markings and the Token Game

$N=\left(P, T, F, l, m_{0}\right)$
P, T disjoint and finite sets
$F \subseteq(P \times T) \cup(T \times P)$
$l: T \rightarrow \Sigma(\Sigma$ is an alphabet $)$ $m_{0}: P \rightarrow \mathbb{N}$ (multiset)

Markings and the Token Game

$N=\left(P, T, F, l, m_{0}\right)$
P, T disjoint and finite sets
$F \subseteq(P \times T) \cup(T \times P)$
$l: T \rightarrow \Sigma(\Sigma$ is an alphabet $)$ $m_{0}: P \rightarrow \mathbb{N}$ (multiset)

Definitions and Observations

Definition 4.1 (Net Structure)

Let Σ be an alphabet. A (Σ-labeled) net structure is a quadruple (P, T, F, l) with disjoint finite sets P of places and T of transitions, $F \subseteq(P \times T) \cup(T \times P)$, and $l: T \rightarrow \Sigma$.

For nodes $v \in P \cup T, \bullet v:=\{u \mid(u, v) \in F\}$ and $v^{\bullet}:=\{w \mid(v, w) \in F\}$.

Definition 4.2 (Marking, Firing Rule)

For (labeled) net structure $N=(P, T, F, l)$, we call a multiset m over P a marking of N. A transition $t \in T$ is enabled under marking m if ${ }^{\bullet} t \leq m$. An enabled transition t under marking m may fire, producing the successor marking m^{\prime} such that for all $p \in P$,

$$
m(p):=\left\{\begin{array}{cl}
m(p)-1 & \text { if } p \in \bullet t \backslash t^{\bullet} \\
m(p)+1 & \text { if } p \in t^{\bullet} \backslash \bullet t \\
m(p) & \text { otherwise }
\end{array}\right.
$$

We also write $m \xrightarrow{t} m^{\prime}$ or even $m \xrightarrow{l(t)} m^{\prime}$.

Definitions and Observations

Definition 4.3 (Petri net, reachability graph)

A (Σ-labeled) Petri net is a quintuple $N=\left(P, T, F, l, m_{0}\right)$ where (P, T, F, l) is a labeled net structure and m_{0} is a marking for it (initial marking).
The set of reachable markings of $N[N\rangle$ is defined inductively by (1) $m_{0} \in[N\rangle$ and (2) $m \in[N\rangle$ and $m \xrightarrow{t} m^{\prime}$ implies $m^{\prime} \in[N\rangle$.
The reachability graph of $N \mathcal{R}(N)$ is induced by the set of reachable markings $[N\rangle$ as the set of nodes and $(\xrightarrow{t})_{t \in T}$ forming the edge relation.

We sometimes needs $[N, m\rangle$ for arbitrary markings m of N to be the set of reachable markings of N where m_{0} is replaced by m. Special case: $\left[N, m_{0}\right\rangle=[N\rangle$.

The Boundedness Problem

The Boundedness Problem

Given a Petri net $N=\left(P, T, F, l, m_{0}\right)$, is $[N\rangle$ finite?

The Boundedness Problem

Given a Petri net $N=\left(P, T, F, l, m_{0}\right)$, is $[N\rangle$ finite?

Definition 4.4 (Bounded Petri net)

Let $k \in \mathbb{N}$. A Petri net $N=\left(P, T, F, l, m_{0}\right)$ is k-bounded if for all $m \in[N\rangle$ and all places $p \in P, m(p) \leq k . N$ is bounded if there is a k, such that N is k-bounded. If no such k exists, N is unbounded.

Bounded and Unbounded Nets

Bounded and Unbounded Nets

The Boundedness Problem

Given a Petri net $N=\left(P, T, F, l, m_{0}\right)$, is $[N\rangle$ finite?

Definition 4.4 (Bounded Petri net)

Let $k \in \mathbb{N}$. A Petri net $N=\left(P, T, F, l, m_{0}\right)$ is k-bounded if for all $m \in[N\rangle$ and all places $p \in P, m(p) \leq k . N$ is bounded if there is a k, such that N is k-bounded. If no such k exists, N is unbounded.

Lemma 4.5

The following statements are equivalent for Petri nets $N=\left(P, T, F, l, m_{0}\right)$:

1. $[N\rangle$ is infinite.
2. N is unbounded.
3. There are markings m_{1}, m_{2} of N, such that
(a) $m_{1} \in[N\rangle$, (b) $m_{2} \in\left[N, m_{1}\right\rangle$, (c) $m_{1} \leq m_{2}$, and (d) $m_{1}(p)<m_{2}(p)$ for some $p \in P$.

From 3 to 2

For Petri net $N=\left(P, T, F, l, m_{0}\right)$, let m_{1}, m_{2} be markings, such that

From 3 to 2

For Petri net $N=\left(P, T, F, l, m_{0}\right)$, let m_{1}, m_{2} be markings, such that (a) $m_{1} \in[N\rangle$,

$$
m_{0} \longrightarrow \cdots m_{1}
$$

From 3 to 2

For Petri net $N=\left(P, T, F, l, m_{0}\right)$, let m_{1}, m_{2} be markings, such that (a) $m_{1} \in[N\rangle$, (b) $m_{2} \in\left[N, m_{1}\right\rangle$,

$$
m_{0} \longrightarrow \cdots m_{1} \longrightarrow \cdots m_{2}
$$

From 3 to 2

For Petri net $N=\left(P, T, F, l, m_{0}\right)$, let m_{1}, m_{2} be markings, such that
(a) $m_{1} \in[N\rangle$, (b) $m_{2} \in\left[N, m_{1}\right\rangle$, (c) $m_{1} \leq m_{2}$, and (d) $m_{1}(p)<m_{2}(p)$ for some $p \in P$.

$$
m_{0} \longrightarrow \cdots m_{1} \longrightarrow \cdots m_{2}
$$

From 3 to 2

For Petri net $N=\left(P, T, F, l, m_{0}\right)$, let m_{1}, m_{2} be markings, such that
(a) $m_{1} \in[N\rangle$, (b) $m_{2} \in\left[N, m_{1}\right\rangle$, (c) $m_{1} \leq m_{2}$, and (d) $m_{1}(p)<m_{2}(p)$ for some $p \in P$.
$m_{2}=m_{1}+s$ for some non-empty marking s ! In particular, $s(p)>0$

$$
m_{0} \longrightarrow \cdots \longrightarrow m_{1} \longrightarrow m_{2}
$$

From 3 to 2

For Petri net $N=\left(P, T, F, l, m_{0}\right)$, let m_{1}, m_{2} be markings, such that
(a) $m_{1} \in[N\rangle$, (b) $m_{2} \in\left[N, m_{1}\right\rangle$, (c) $m_{1} \leq m_{2}$, and (d) $m_{1}(p)<m_{2}(p)$ for some $p \in P$. $m_{2}=m_{1}+s$ for some non-empty marking s ! In particular, $s(p)>0$

$$
m_{0} \longrightarrow \cdots m_{1} \longrightarrow \cdots m_{2}
$$

Lemma 4.6 (Monotonicity)

For Petri net $N=\left(P, T, F, l, m_{0}\right), t \in T$, and markings m, m^{\prime}, s of $N, m \xrightarrow{t} m^{\prime}$ implies $m+s \xrightarrow{t} m^{\prime}+s$.

From 3 to 2

For Petri net $N=\left(P, T, F, l, m_{0}\right)$, let m_{1}, m_{2} be markings, such that (a) $m_{1} \in[N\rangle$, (b) $m_{2} \in\left[N, m_{1}\right\rangle$, (c) $m_{1} \leq m_{2}$, and (d) $m_{1}(p)<m_{2}(p)$ for some $p \in P$. $m_{2}=m_{1}+s$ for some non-empty marking s ! In particular, $s(p)>0$

Lemma 4.6 (Monotonicity)

For Petri net $N=\left(P, T, F, l, m_{0}\right), t \in T$, and markings m, m^{\prime}, s of $N, m \xrightarrow{t} m^{\prime}$ implies $m+s \xrightarrow{t} m^{\prime}+s$.

For every $k \in \mathbb{N}$, repeat transition sequence $\sigma k+1$ times, reaching a marking m^{k} with $m^{k}(p)>k$.

From 3 to 2

For Petri net $N=\left(P, T, F, l, m_{0}\right)$, let m_{1}, m_{2} be markings, such that
(a) $m_{1} \in[N\rangle$, (b) $m_{2} \in\left[N, m_{1}\right\rangle$, (c) $m_{1} \leq m_{2}$, and (d) $m_{1}(p)<m_{2}(p)$ for some $p \in P$. $m_{2}=m_{1}+s$ for some non-empty marking s ! In particular, $s(p)>0$

Lemma 4.6 (Monotonicity)

For Petri net $N=\left(P, T, F, l, m_{0}\right), t \in T$, and markings m, m^{\prime}, s of $N, m \xrightarrow{t} m^{\prime}$ implies $m+s \xrightarrow{t} m^{\prime}+s$.

For every $k \in \mathbb{N}$, repeat transition sequence $\sigma k+1$ times, reaching a marking m^{k} with $m^{k}(p)>k$.

Thus, N is unbounded.

From 1 to 3

Let $N=\left(P, T, F, l, m_{0}\right)$ be a Petri net, such that $[N\rangle$ is infinite.

1. As $[N\rangle$ is infinite, $\mathcal{R}(G)$ is infinite.

From 1 to 3

Let $N=\left(P, T, F, l, m_{0}\right)$ be a Petri net, such that $[N\rangle$ is infinite.

1. As $[N\rangle$ is infinite, $\mathcal{R}(G)$ is infinite.
2. For every $m \in[N\rangle$, the number of successors of m in $\mathcal{R}(G)$ is bounded by $|T|$.

From 1 to 3

Let $N=\left(P, T, F, l, m_{0}\right)$ be a Petri net, such that $[N\rangle$ is infinite.

1. As $[N\rangle$ is infinite, $\mathcal{R}(G)$ is infinite.
2. For every $m \in[N\rangle$, the number of successors of m in $\mathcal{R}(G)$ is bounded by $|T|$.
3. Hence, there is an infinite simple path $m_{0} \rightarrow m_{1} \rightarrow m_{2} \rightarrow \ldots$ (by König's Lemma)

From 1 to 3

Let $N=\left(P, T, F, l, m_{0}\right)$ be a Petri net, such that $[N\rangle$ is infinite.

1. As $[N\rangle$ is infinite, $\mathcal{R}(G)$ is infinite.
2. For every $m \in[N\rangle$, the number of successors of m in $\mathcal{R}(G)$ is bounded by $|T|$.
3. Hence, there is an infinite simple path $m_{0} \rightarrow m_{1} \rightarrow m_{2} \rightarrow \ldots$ (by König's Lemma)
4. $m_{0} m_{1} m_{2} \ldots$ is an infinite sequence of markings or, equivalently vectors from $\mathbb{N}^{|P|}$.

From 1 to 3

Let $N=\left(P, T, F, l, m_{0}\right)$ be a Petri net, such that $[N\rangle$ is infinite.

1. As $[N\rangle$ is infinite, $\mathcal{R}(G)$ is infinite.
2. For every $m \in[N\rangle$, the number of successors of m in $\mathcal{R}(G)$ is bounded by $|T|$.
3. Hence, there is an infinite simple path $m_{0} \rightarrow m_{1} \rightarrow m_{2} \rightarrow \ldots$ (by König's Lemma)
4. $m_{0} m_{1} m_{2} \ldots$ is an infinite sequence of markings or, equivalently vectors from $\mathbb{N}^{|P|}$.
5. Due to Dickson's Lemma, there is an infinite chain $n_{0}<n_{1}<n_{2}<\ldots$ of indices, such that $m_{n_{0}} \leq m_{n_{1}} \leq m_{n_{2}} \leq \ldots$

From 1 to 3

Let $N=\left(P, T, F, l, m_{0}\right)$ be a Petri net, such that $[N\rangle$ is infinite.

1. As $[N\rangle$ is infinite, $\mathcal{R}(G)$ is infinite.
2. For every $m \in[N\rangle$, the number of successors of m in $\mathcal{R}(G)$ is bounded by $|T|$.
3. Hence, there is an infinite simple path $m_{0} \rightarrow m_{1} \rightarrow m_{2} \rightarrow \ldots$ (by König's Lemma)
4. $m_{0} m_{1} m_{2} \ldots$ is an infinite sequence of markings or, equivalently vectors from $\mathbb{N}^{|P|}$.
5. Due to Dickson's Lemma, there is an infinite chain $n_{0}<n_{1}<n_{2}<\ldots$ of indices, such that $m_{n_{0}} \leq m_{n_{1}} \leq m_{n_{2}} \leq \ldots$
6. Set $m_{1}=m_{n_{0}}$ and $m_{2}=m_{n_{1}}$.

From 1 to 3

Let $N=\left(P, T, F, l, m_{0}\right)$ be a Petri net, such that $[N\rangle$ is infinite.

1. As $[N\rangle$ is infinite, $\mathcal{R}(G)$ is infinite.
2. For every $m \in[N\rangle$, the number of successors of m in $\mathcal{R}(G)$ is bounded by $|T|$.
3. Hence, there is an infinite simple path $m_{0} \rightarrow m_{1} \rightarrow m_{2} \rightarrow \ldots$ (by König's Lemma)
4. $m_{0} m_{1} m_{2} \ldots$ is an infinite sequence of markings or, equivalently vectors from $\mathbb{N}^{|P|}$.
5. Due to Dickson's Lemma, there is an infinite chain $n_{0}<n_{1}<n_{2}<\ldots$ of indices, such that $m_{n_{0}} \leq m_{n_{1}} \leq m_{n_{2}} \leq \ldots$
6. Set $m_{1}=m_{n_{0}}$ and $m_{2}=m_{n_{1}}$.
7. By construction (a) $m_{1} \in[N\rangle$, (b) $m_{2} \in\left[N, m_{1}\right\rangle$, and (c) $m_{1} \leq m_{2}$.

From 1 to 3

Let $N=\left(P, T, F, l, m_{0}\right)$ be a Petri net, such that $[N\rangle$ is infinite.

1. As $[N\rangle$ is infinite, $\mathcal{R}(G)$ is infinite.
2. For every $m \in[N\rangle$, the number of successors of m in $\mathcal{R}(G)$ is bounded by $|T|$.
3. Hence, there is an infinite simple path $m_{0} \rightarrow m_{1} \rightarrow m_{2} \rightarrow \ldots$ (by König's Lemma)
4. $m_{0} m_{1} m_{2} \ldots$ is an infinite sequence of markings or, equivalently vectors from $\mathbb{N}^{|P|}$.
5. Due to Dickson's Lemma, there is an infinite chain $n_{0}<n_{1}<n_{2}<\ldots$ of indices, such that $m_{n_{0}} \leq m_{n_{1}} \leq m_{n_{2}} \leq \ldots$.
6. Set $m_{1}=m_{n_{0}}$ and $m_{2}=m_{n_{1}}$.
7. By construction (a) $m_{1} \in[N\rangle$, (b) $m_{2} \in\left[N, m_{1}\right\rangle$, and (c) $m_{1} \leq m_{2}$.
8. As m_{1} and m_{2} stem from a simple path, there is at least one place $p \in P$ with $m_{2}(p)>m_{1}(p)$.

Theorem: Boundedness is Decidable

Start constructing $\mathcal{R}(N)$ by BFS:

- either the construction terminates (bounded), or
- a marking m_{2} is constructed with a respective marking $m_{1} \leq m_{2}$ earlier on a path from m_{0}, such that $m_{1}(p)<m_{2}(p)$ for some $p \in P$ (unbounded).

Theorem: Boundedness is Decidable

Start constructing $\mathcal{R}(N)$ by BFS:

- either the construction terminates (bounded), or
- a marking m_{2} is constructed with a respective marking $m_{1} \leq m_{2}$ earlier on a path from m_{0}, such that $m_{1}(p)<m_{2}(p)$ for some $p \in P$ (unbounded).

Many more decidable problems:

- Reachability
- Coverability
- Deadlock-freedom
- Liveness
- Language inclusion/equivalence (?)
- Bisimilarity (?)

Theorem: Boundedness is Decidable

Start constructing $\mathcal{R}(N)$ by BFS:

- either the construction terminates (bounded), or
- a marking m_{2} is constructed with a respective marking $m_{1} \leq m_{2}$ earlier on a path from m_{0}, such that $m_{1}(p)<m_{2}(p)$ for some $p \in P$ (unbounded).

Many more decidable problems:

- Reachability
- Coverability
- Deadlock-freedom
- Liveness
- Language inclusion/equivalence (?)
- Bisimilarity (?)

Yes to both (?), but not for labeled Petri nets!

The Equivalence Problem(s)

The (prefix) language $\mathcal{L}(N)$ of a labeled Petri net $N=\left(P, T, F, l, m_{0}\right)$ is the set of all words $w \in \Sigma^{*}$, such that $w=\varepsilon$ or $m_{0} \xrightarrow{t_{1}} \xrightarrow{t_{2}} \cdots \xrightarrow{t_{|w|}}$ such that $l^{*}\left(t_{1} t_{2} \ldots t_{|w|}\right)=w$.
Two Petri nets N_{1}, N_{2} are language equivalent if $\mathcal{L}\left(N_{1}\right)=\mathcal{L}\left(N_{2}\right)$.
Theorem 4.1: Language equivalence is undecidable for labeled Petri nets.
We reduce from the halting problem of Minsky machines with two counters.
Petri nets are not Turing-complete!
\rightsquigarrow weak simulation of Turing machines/Minsky machines

Minsky Machines

A Minsky machine is a pair $\left\langle P,\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}\right\rangle$, where c_{1}, \ldots, c_{k} are counters and P is a finite sequence of commands $l_{1} l_{2} \ldots l_{n}$, such that $l_{n}=$ HALT and $l_{i}(i=1, \ldots, n-1)$ is

1. $i: c_{j}:=c_{j}+1$; goto k, or
2. i : if $c_{j}=0$ then goto k_{1} else $c_{j}:=c_{j}-1$; goto k_{2}

Minsky Machines

A Minsky machine is a pair $\left\langle P,\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}\right\rangle$, where c_{1}, \ldots, c_{k} are counters and P is a finite sequence of commands $l_{1} l_{2} \ldots l_{n}$, such that $l_{n}=$ HALT and $l_{i}(i=1, \ldots, n-1)$ is

1. $i: \quad c_{j}:=c_{j}+1$; goto k, or
2. i : if $c_{j}=0$ then goto k_{1} else $c_{j}:=c_{j}-1$; goto k_{2}

Example 4.7

We consider two counter c_{1} and c_{2}.
1: if $c_{2}=0$ then goto 3 else $c_{2}:=c_{2}-1$; goto 2
2: $c_{1}:=c_{1}+1$; goto 1
3: HALT
If c_{1} and c_{2} are initialized with m and n, then the program halts with value $m+n$ in c_{1}.

Constructing a Petri Net

For Minsky machine $\mathcal{M}=\left\langle l_{1} l_{2} \ldots l_{m},\left\{c_{1}, \ldots, c_{n}\right\}\right\rangle$,
$N(\mathcal{M})=\left(\left\{l_{1}, \ldots, l_{m}, c_{1}, \ldots, c_{n}\right\}, T, F, l, m_{0}\right)$ where for each $i \in\{1, \ldots, m-1\}$:
$l_{i}=i: \quad c_{j}:=c_{j}+1$; goto $l_{k}: \quad l_{i}=i$: if $c_{j}=0$ then goto k_{1} else $c_{j}:=c_{j}-1$; goto k_{2} :

Constructing a Petri Net

For Minsky machine $\mathcal{M}=\left\langle l_{1} l_{2} \ldots l_{m},\left\{c_{1}, \ldots, c_{n}\right\}\right\rangle$,
$N(\mathcal{M})=\left(\left\{l_{1}, \ldots, l_{m}, c_{1}, \ldots, c_{n}\right\}, T, F, l, m_{0}\right)$ where for each $i \in\{1, \ldots, m-1\}$:
$l_{i}=i: \quad c_{j}:=c_{j}+1$; goto $l_{k}: \quad l_{i}=i$: if $c_{j}=0$ then goto k_{1} else $c_{j}:=c_{j}-1$; goto k_{2} :

The labeling can be arbitrary but injective.

Constructing a Petri Net

For Minsky machine $\mathcal{M}=\left\langle l_{1} l_{2} \ldots l_{m},\left\{c_{1}, \ldots, c_{n}\right\}\right\rangle$,
$N(\mathcal{M})=\left(\left\{l_{1}, \ldots, l_{m}, c_{1}, \ldots, c_{n}\right\}, T, F, l, m_{0}\right)$ where for each $i \in\{1, \ldots, m-1\}$:
$l_{i}=i: \quad c_{j}:=c_{j}+1$; goto $l_{k}: \quad l_{i}=i$: if $c_{j}=0$ then goto k_{1} else $c_{j}:=c_{j}-1$; goto k_{2} :

The labeling can be arbitrary but injective.
For input $x_{1}, \ldots, x_{n} \in \mathbb{N}$, define $m_{0}=\left\{c_{1} \mapsto x_{1}, \ldots, c_{n} \mapsto x_{n}, l_{1} \mapsto 1\right\}$.

Petri Net Construction by Example

Undecidability of Language Equivalence: The Reduction

Undecidability of Bisimilarity: The Reduction

The Coverability Graph

Definition 4.8 (ω-marking)

For a net $(P, T, F), m: P \rightarrow \mathbb{N} \cup\{\omega\}$ is called an ω-marking.
Note, $\omega>n$ and $\omega+/-n=\omega$ for all $n \in \mathbb{N}$.
For directed graph $G=(V, E)$ and $v \in V$, defined $v \Downarrow$ to be the smallest set, such that (1) $v \in v \Downarrow$ and (2) if $w \in v \Downarrow$ and $u \rightarrow w$, then $u \in v \Downarrow$.

Definition 4.9

Let $N=\left(P, T, F, m_{0}, l\right)$ be a (labeled) Petri net. The coverability graph (of N) is the graph $\mathcal{C}(N)=(V, E)$, such that

1. $m_{0} \in V$;
2. if $m \in V$ and $m \xrightarrow{t} m^{\prime}$, then $\omega\left(m^{\prime}\right) \in V$ and $\left(m, \omega\left(m^{\prime}\right)\right) \in E$ such that for all $p \in P$,

$$
\omega\left(m^{\prime}\right)(p)=\left\{\begin{array}{cl}
\omega & \text { if } m^{\prime \prime} \in m \Downarrow \text { with } m^{\prime \prime}(p)<m^{\prime}(p) \\
m^{\prime}(p) & \text { otherwise }
\end{array}\right.
$$

Properties of the Coverability Graph

Theorem 4.2: The coverability graph $\mathcal{C}(N)$ of a Petri net N is finite.
\rightsquigarrow follows the same argument as for the decidability proof of the boundedness problem.

Properties of the Coverability Graph

Theorem 4.3: The coverability problem - given a Petri net N and a marking m, is there a reachable marking m^{\prime}, such that $m \leq m^{\prime}$? - is decidable.

1. Construct $C(N)$
2. Check if there is an ω-marking m^{ω} with $m \leq m^{\omega}$
3. Consider the path $m_{0} \xrightarrow{t_{1}} \ldots \xrightarrow{t_{n}} m^{\omega}$ and the marking m^{\prime} reached after firing the sequence $t_{1} \ldots t_{n}$
4. If $m \leq m^{\prime}$, witness found.
5. If $m \not \leq m^{\prime}$, then there is at least one ω in m^{ω} and there are markings on the path from m_{0} to m^{ω} that led to the addition of ω
6. Repeat the respective firing sequences until a covering marking is reached.
7. Hence, it is sufficient to check only m^{ω}.
8. If m is not coverable, then there is no marking m^{\prime} in the coverability graph with $m \leq m^{\prime}$.

Equivalence of Unlabeled Nets

Theorem 4.4: Bisimilarity and language equivalence of Petri nets is decidable for unlabeled Petri nets.

- Given are $N_{1}=\left(P_{1}, T_{1}, F_{1}, m_{0}^{1}, l_{1}\right)$ and $N_{2}=\left(P_{2}, T_{2}, F_{2}, m_{0}^{2}, l_{2}\right)\left(P_{1} \cap P_{2}=\emptyset=T_{1} \cap T_{2}\right)$.
- Construct $N_{1}+N_{2}=\left(P_{1} \cup P_{2}, T_{1} \cup T_{2}, F_{1} \cup F_{2}, m_{0}^{1}+m_{0}^{2}\right)$.
- Each transition $t \in T_{1} \cup T_{2}$ is duplicated to t^{\prime} with the same in-/outputs and label as t.
- Add a fresh place p and add $\{p\} \times\left(T_{1} \cup T_{2}\right)$ and $\left\{t^{\prime} \mid t^{\prime}\right.$ is a duplicate $\} \times\{p\}$ to the arc relation.
- For each label $a \in \Sigma$, add places p_{1}^{a}, p_{2}^{a} and for $t \in T_{i}$ with $l_{i}(t)=a$, add arcs $\left(t, p_{j}^{a}\right),\left(p_{j}^{a}, u^{\prime}\right)$ for transition duplicate u^{\prime} with $l_{j}(u)=a$.
- If the nets are language equivalent, then every transition firing of $t \in T_{i}$ can be reproduced in N_{j} by u^{\prime}, such that $l_{i}(t)=l_{j}(u)$.
- If the nets are not language equivalent, then there is a shortest word w of $L\left(N_{i}\right) \backslash L\left(N_{j}\right)$. After firing the last transition of w in N_{i}, no duplicate can be fired in N_{j}.
- Unlabledness is important to not leave N_{j} the chance to use more clever a-labeled transitions. $102 / 104$

