4. Petri Nets: Boundedness and Undecidability of Equivalence Problems

May 24-25, 2022

For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a **well partial order** (antisymmetric wqo).

For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a **well partial order** (antisymmetric wqo).

Dickson's Lemma

For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a **well partial order** (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $(a_i)_{i \in \mathbb{N}}$ ($a_j \in \mathbb{N}^k$ for each $j \in \mathbb{N}$), there is an infinite increasing subsequence, that is $a_{n_0} \leq a_{n_1} \leq a_{n_2} \leq \ldots$ with $n_0 < n_1 < n_2 < \ldots$

For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a **well partial order** (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $(a_i)_{i \in \mathbb{N}}$ ($a_j \in \mathbb{N}^k$ for each $j \in \mathbb{N}$), there is an infinite increasing subsequence, that is $a_{n_0} \leq a_{n_1} \leq a_{n_2} \leq \ldots$ with $n_0 < n_1 < n_2 < \ldots$

For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a **well partial order** (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $(a_i)_{i \in \mathbb{N}}$ ($a_j \in \mathbb{N}^k$ for each $j \in \mathbb{N}$), there is an infinite increasing subsequence, that is $a_{n_0} \leq a_{n_1} \leq a_{n_2} \leq \ldots$ with $n_0 < n_1 < n_2 < \ldots$

Proof.

$$A = \{a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, \ldots\}$$

 $\min A = a$ and there is an $n_0 \ge 0$, such that $a_{n_0} = a$

For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a **well partial order** (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $(a_i)_{i \in \mathbb{N}}$ ($a_j \in \mathbb{N}^k$ for each $j \in \mathbb{N}$), there is an infinite increasing subsequence, that is $a_{n_0} \leq a_{n_1} \leq a_{n_2} \leq \ldots$ with $n_0 < n_1 < n_2 < \ldots$

Proof.

For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a **well partial order** (antisymmetric wqo).

Dickson's Lemma

For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a **well partial order** (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $(a_i)_{i \in \mathbb{N}}$ ($a_j \in \mathbb{N}^k$ for each $j \in \mathbb{N}$), there is an infinite increasing subsequence, that is $a_{n_0} \leq a_{n_1} \leq a_{n_2} \leq \ldots$ with $n_0 < n_1 < n_2 < \ldots$

69/104

For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a **well partial order** (antisymmetric wqo).

Dickson's Lemma

For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a **well partial order** (antisymmetric wqo).

 $a_{n_0} \leq a_{n_1}$

Dickson's Lemma

For every infinite sequence $(a_i)_{i \in \mathbb{N}}$ ($a_j \in \mathbb{N}^k$ for each $j \in \mathbb{N}$), there is an infinite increasing subsequence, that is $a_{n_0} \leq a_{n_1} \leq a_{n_2} \leq \ldots$ with $n_0 < n_1 < n_2 < \ldots$

Proof. $a_{n_1-2} \ a_{n_1-1} \ a_{n_1} \ a_{n_1+1} \ a_{n_1+2} \ a_{n_1+3} \ a_{n_1+4} \ a_{n_1+5} \ a_{n_1+6} \ a_{n_1+7} \\ B = \{a_{n_0+1}, a_{n_0+2}, a_{n_0+3}, a_{n_0+4}, a_{n_0+5}, a_{n_0+6}, \ldots\} \\ \min B = b \text{ and there is an } n_1 \geq 0 \text{, such that } a_{n_1} = b$

and $n_0 < n_1$

For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a **well partial order** (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $(a_i)_{i \in \mathbb{N}}$ ($a_j \in \mathbb{N}^k$ for each $j \in \mathbb{N}$), there is an infinite increasing subsequence, that is $a_{n_0} \leq a_{n_1} \leq a_{n_2} \leq \ldots$ with $n_0 < n_1 < n_2 < \ldots$

Proof. $\begin{vmatrix} a_{n_1+1} & a_{n_1+2} & a_{n_1+3} & a_{n_1+4} & a_{n_1+5} & a_{n_1+6} & a_{n_1+7} \end{vmatrix}$ $C = \{a_{n_1+1}, a_{n_1+2}, a_{n_1+3}, a_{n_1+4}, a_{n_1+5}, a_{n_1+6}, \ldots\}$ $\min C = c$ and there is an $n_2 \ge n_1$, such that $a_{n_2} = c$ $a_{n_0} < a_{n_1} < a_{n_2} < \dots$ and $a_{n_0} < a_{n_1} < a_{n_2} < \dots$

For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a **well partial order** (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $(a_i)_{i \in \mathbb{N}}$ ($a_j \in \mathbb{N}^k$ for each $j \in \mathbb{N}$), there is an infinite increasing subsequence, that is $a_{n_0} \leq a_{n_1} \leq a_{n_2} \leq \ldots$ with $n_0 < n_1 < n_2 < \ldots$

For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a **well partial order** (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $(a_i)_{i \in \mathbb{N}}$ ($a_j \in \mathbb{N}^k$ for each $j \in \mathbb{N}$), there is an infinite increasing subsequence, that is $a_{n_0} \leq a_{n_1} \leq a_{n_2} \leq \ldots$ with $n_0 < n_1 < n_2 < \ldots$

For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a **well partial order** (antisymmetric wqo).

Dickson's Lemma

For every infinite sequence $(a_i)_{i \in \mathbb{N}}$ ($a_j \in \mathbb{N}^k$ for each $j \in \mathbb{N}$), there is an infinite increasing subsequence, that is $a_{n_0} \leq a_{n_1} \leq a_{n_2} \leq \ldots$ with $n_0 < n_1 < n_2 < \ldots$

For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a **well partial order** (antisymmetric wqo).

Dickson's Lemma

For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a **well partial order** (antisymmetric wqo).

Dickson's Lemma

For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a **well partial order** (antisymmetric wqo).

Dickson's Lemma

For $k \in \mathbb{N}$, (\mathbb{N}^k, \leq) is a **well partial order** (antisymmetric wqo).

Dickson's Lemma

Disclaimer

I will break with any conventions you may have heard of . . . (e. g., P/T nets or S/T nets, elementary net systems, net systems, Petri nets, . . . will all be called **Petri nets**)

(P,T,F,l) P,T disjoint and finite sets $F\subseteq (P\times T)\cup (T\times P)$ $l:T\to \Sigma \text{ ($\Sigma$ is an alphabet)}$

Definitions and Observations

Definition 4.1 (Net Structure)

Let Σ be an alphabet. A **(** Σ -labeled**)** net structure is a quadruple (P,T,F,l) with disjoint finite sets P of places and T of transitions, $F\subseteq (P\times T)\cup (T\times P)$, and $l:T\to \Sigma$.

For nodes $v \in P \cup T$, ${}^{ullet}v := \{u \mid (u,v) \in F\}$ and $v^{ullet} := \{w \mid (v,w) \in F\}.$

Definition 4.2 (Marking, Firing Rule)

For (labeled) net structure N=(P,T,F,l), we call a multiset m over P a **marking** of N. A transition $t\in T$ is **enabled under marking** m if ${}^{\bullet}t\leq m$. An enabled transition t under marking m may fire, producing the successor marking m' such that for all $p\in P$,

$$m(p) := \left\{ \begin{array}{ll} m(p) - 1 & \quad \text{if } p \in {}^{\bullet}t \setminus t^{\bullet} \\ m(p) + 1 & \quad \text{if } p \in t^{\bullet} \setminus {}^{\bullet}t \\ m(p) & \quad \text{otherwise.} \end{array} \right.$$

We also write $m \xrightarrow{t} m'$ or even $m \xrightarrow{l(t)} m'$.

Definitions and Observations

Definition 4.3 (Petri net, reachability graph)

A (Σ -labeled) Petri net is a quintuple $N=(P,T,F,l,m_0)$ where (P,T,F,l) is a labeled net structure and m_0 is a marking for it (initial marking).

The set of **reachable markings of** N $[N\rangle$ is defined inductively by (1) $m_0 \in [N\rangle$ and (2) $m \in [N\rangle$ and $m \xrightarrow{t} m'$ implies $m' \in [N\rangle$.

The **reachability graph of** N $\mathcal{R}(N)$ is induced by the set of reachable markings [N] as the set of nodes and $(\stackrel{t}{\rightarrow})_{t\in T}$ forming the edge relation.

We sometimes needs $[N,m\rangle$ for arbitrary markings m of N to be the set of reachable markings of N where m_0 is replaced by m. **Special case:** $[N,m_0\rangle=[N\rangle$.

Given a Petri net $N=(P,T,F,l,m_0)$, is $[N\rangle$ finite?

Given a Petri net $N=(P,T,F,l,m_0)$, is $[N\rangle$ finite?

Definition 4.4 (Bounded Petri net)

Let $k \in \mathbb{N}$. A Petri net $N = (P, T, F, l, m_0)$ is k-bounded if for all $m \in [N]$ and all places $p \in P$, $m(p) \le k$. N is **bounded** if there is a k, such that N is k-bounded. If no such k exists, N is **unbounded**.

Bounded and Unbounded Nets

Bounded and Unbounded Nets

Given a Petri net $N=(P,T,F,l,m_0)$, is $[N\rangle$ finite?

Definition 4.4 (Bounded Petri net)

Let $k \in \mathbb{N}$. A Petri net $N = (P, T, F, l, m_0)$ is k-bounded if for all $m \in [N]$ and all places $p \in P$, $m(p) \le k$. N is **bounded** if there is a k, such that N is k-bounded. If no such k exists, N is **unbounded**.

Lemma 4.5

The following statements are equivalent for Petri nets $N = (P, T, F, l, m_0)$:

- 1. [N] is infinite.
- 2. N is unbounded.
- 3. There are markings m_1, m_2 of N, such that (a) $m_1 \in [N\rangle$, (b) $m_2 \in [N, m_1\rangle$, (c) $m_1 \le m_2$, and (d) $m_1(p) < m_2(p)$ for some $p \in P$.

For Petri net $N=(P,T,F,l,m_0)$, let m_1,m_2 be markings, such that

 m_0

For Petri net $N=(P,T,F,l,m_0)$, let m_1,m_2 be markings, such that (a) $m_1\in[N\rangle$,

 $m_0 \longrightarrow \cdots \longrightarrow m_1$

For Petri net $N=(P,T,F,l,m_0)$, let m_1,m_2 be markings, such that (a) $m_1\in[N\rangle$, (b) $m_2\in[N,m_1\rangle$,

 $m_0 \longrightarrow \cdots \longrightarrow m_1 \longrightarrow \cdots \longrightarrow m_2$

For Petri net $N=(P,T,F,l,m_0)$, let m_1,m_2 be markings, such that (a) $m_1\in[N\rangle$, (b) $m_2\in[N,m_1\rangle$, (c) $m_1\leq m_2$, and (d) $m_1(p)< m_2(p)$ for some $p\in P$.

 $m_0 \longrightarrow \cdots \longrightarrow m_1 \longrightarrow \cdots \longrightarrow m_2$

For Petri net $N=(P,T,F,l,m_0)$, let m_1,m_2 be markings, such that (a) $m_1\in [N\rangle$, (b) $m_2\in [N,m_1\rangle$, (c) $m_1\leq m_2$, and (d) $m_1(p)< m_2(p)$ for some $p\in P$. $m_2=m_1+s$ for some non-empty marking s! In particular, s(p)>0 $m_0\longrightarrow \cdots\longrightarrow m_1\longrightarrow \cdots\longrightarrow m_2$

For Petri net $N=(P,T,F,l,m_0)$, let m_1,m_2 be markings, such that (a) $m_1\in [N\rangle$, (b) $m_2\in [N,m_1\rangle$, (c) $m_1\leq m_2$, and (d) $m_1(p)< m_2(p)$ for some $p\in P$. $m_2=m_1+s$ for some non-empty marking s! In particular, s(p)>0 $m_0\longrightarrow \cdots\longrightarrow m_1\longrightarrow \cdots\longrightarrow m_2$

Lemma 4.6 (Monotonicity)

For Petri net $N=(P,T,F,l,m_0)$, $t\in T$, and markings m,m',s of N, $m\xrightarrow{t} m'$ implies $m+s\xrightarrow{t} m'+s$.

For Petri net $N=(P,T,F,l,m_0)$, let m_1,m_2 be markings, such that (a) $m_1 \in [N\rangle$, (b) $m_2 \in [N,m_1\rangle$, (c) $m_1 \leq m_2$, and (d) $m_1(p) < m_2(p)$ for some $p \in P$. $m_2 = m_1 + s$ for some non-empty marking s! In particular, s(p) > 0

$$m_0 \longrightarrow \cdots \longrightarrow m_1 \xrightarrow{\sigma} m_2$$

Lemma 4.6 (Monotonicity)

For Petri net $N=(P,T,F,l,m_0)$, $t\in T$, and markings m,m',s of N, $m\xrightarrow{t} m'$ implies $m+s\xrightarrow{t} m'+s$.

For every $k \in \mathbb{N}$, repeat transition sequence σ k+1 times, reaching a marking m^k with $m^k(p) > k$.

For Petri net $N=(P,T,F,l,m_0)$, let m_1,m_2 be markings, such that (a) $m_1 \in [N\rangle$, (b) $m_2 \in [N,m_1\rangle$, (c) $m_1 \leq m_2$, and (d) $m_1(p) < m_2(p)$ for some $p \in P$. $m_2 = m_1 + s$ for some non-empty marking s! In particular, s(p) > 0

$$m_0 \longrightarrow \cdots \longrightarrow m_1 \xrightarrow{\sigma} m_2$$

Lemma 4.6 (Monotonicity)

For Petri net $N=(P,T,F,l,m_0)$, $t\in T$, and markings m,m',s of N, $m\xrightarrow{t} m'$ implies $m+s\xrightarrow{t} m'+s$.

For every $k \in \mathbb{N}$, repeat transition sequence σ k+1 times, reaching a marking m^k with $m^k(p) > k$.

Thus. N is unbounded.

Let $N=(P,T,F,l,m_0)$ be a Petri net, such that $[N\rangle$ is infinite.

1. As [N] is infinite, $\mathcal{R}(G)$ is infinite.

- 1. As [N] is infinite, $\mathcal{R}(G)$ is infinite.
- 2. For every $m \in [N)$, the number of successors of m in $\mathcal{R}(G)$ is bounded by |T|.

- 1. As [N] is infinite, $\mathcal{R}(G)$ is infinite.
- 2. For every $m \in [N)$, the number of successors of m in $\mathcal{R}(G)$ is bounded by |T|.
- 3. Hence, there is an infinite simple path $m_0 \to m_1 \to m_2 \to \dots$ (by König's Lemma)

- 1. As [N] is infinite, $\mathcal{R}(G)$ is infinite.
- 2. For every $m \in [N)$, the number of successors of m in $\mathcal{R}(G)$ is bounded by |T|.
- 3. Hence, there is an infinite simple path $m_0 \to m_1 \to m_2 \to \dots$ (by König's Lemma)
- 4. $m_0m_1m_2...$ is an infinite sequence of markings or, equivalently vectors from $\mathbb{N}^{|P|}$.

- 1. As [N] is infinite, $\mathcal{R}(G)$ is infinite.
- 2. For every $m \in [N)$, the number of successors of m in $\mathcal{R}(G)$ is bounded by |T|.
- 3. Hence, there is an infinite simple path $m_0 \to m_1 \to m_2 \to \dots$ (by König's Lemma)
- 4. $m_0m_1m_2...$ is an infinite sequence of markings or, equivalently vectors from $\mathbb{N}^{|P|}$.
- 5. Due to Dickson's Lemma, there is an infinite chain $n_0 < n_1 < n_2 < \dots$ of indices, such that $m_{n_0} \le m_{n_1} \le m_{n_2} \le \dots$

- 1. As [N] is infinite, $\mathcal{R}(G)$ is infinite.
- 2. For every $m \in [N)$, the number of successors of m in $\mathcal{R}(G)$ is bounded by |T|.
- 3. Hence, there is an infinite simple path $m_0 \to m_1 \to m_2 \to \dots$ (by König's Lemma)
- 4. $m_0m_1m_2...$ is an infinite sequence of markings or, equivalently vectors from $\mathbb{N}^{|P|}$.
- 5. Due to Dickson's Lemma, there is an infinite chain $n_0 < n_1 < n_2 < \dots$ of indices, such that $m_{n_0} \le m_{n_1} \le m_{n_2} \le \dots$
- 6. Set $m_1 = m_{n_0}$ and $m_2 = m_{n_1}$.

- 1. As [N] is infinite, $\mathcal{R}(G)$ is infinite.
- 2. For every $m \in [N)$, the number of successors of m in $\mathcal{R}(G)$ is bounded by |T|.
- 3. Hence, there is an infinite simple path $m_0 \to m_1 \to m_2 \to \dots$ (by König's Lemma)
- 4. $m_0m_1m_2\dots$ is an infinite sequence of markings or, equivalently vectors from $\mathbb{N}^{|P|}$.
- 5. Due to Dickson's Lemma, there is an infinite chain $n_0 < n_1 < n_2 < \dots$ of indices, such that $m_{n_0} \le m_{n_1} \le m_{n_2} \le \dots$
- 6. Set $m_1 = m_{n_0}$ and $m_2 = m_{n_1}$.
- 7. By construction (a) $m_1 \in [N\rangle$, (b) $m_2 \in [N, m_1\rangle$, and (c) $m_1 \leq m_2$.

- 1. As [N] is infinite, $\mathcal{R}(G)$ is infinite.
- 2. For every $m \in [N)$, the number of successors of m in $\mathcal{R}(G)$ is bounded by |T|.
- 3. Hence, there is an infinite simple path $m_0 \to m_1 \to m_2 \to \dots$ (by König's Lemma)
- 4. $m_0m_1m_2\dots$ is an infinite sequence of markings or, equivalently vectors from $\mathbb{N}^{|P|}$.
- 5. Due to Dickson's Lemma, there is an infinite chain $n_0 < n_1 < n_2 < \dots$ of indices, such that $m_{n_0} \le m_{n_1} \le m_{n_2} \le \dots$
- 6. Set $m_1 = m_{n_0}$ and $m_2 = m_{n_1}$.
- 7. By construction (a) $m_1 \in [N\rangle$, (b) $m_2 \in [N, m_1\rangle$, and (c) $m_1 \leq m_2$.
- 8. As m_1 and m_2 stem from a simple path, there is at least one place $p \in P$ with $m_2(p) > m_1(p)$.

Theorem: Boundedness is Decidable

Start constructing $\mathcal{R}(N)$ by BFS:

- either the construction terminates (bounded), or
- a marking m_2 is constructed with a respective marking $m_1 \leq m_2$ earlier on a path from m_0 , such that $m_1(p) < m_2(p)$ for some $p \in P$ (unbounded).

Theorem: Boundedness is Decidable

Start constructing $\mathcal{R}(N)$ by BFS:

- either the construction terminates (bounded), or
- a marking m_2 is constructed with a respective marking $m_1 \leq m_2$ earlier on a path from m_0 , such that $m_1(p) < m_2(p)$ for some $p \in P$ (unbounded).

Many more decidable problems:

- Reachability
- Coverability
- Deadlock-freedom
- Liveness
- Language inclusion/equivalence (?)
- Bisimilarity (?)

Theorem: Boundedness is Decidable

Start constructing $\mathcal{R}(N)$ by BFS:

- either the construction terminates (bounded), or
- a marking m_2 is constructed with a respective marking $m_1 \leq m_2$ earlier on a path from m_0 , such that $m_1(p) < m_2(p)$ for some $p \in P$ (unbounded).

Many more decidable problems:

- Reachability
- Coverability
- Deadlock-freedom
- Liveness
- Language inclusion/equivalence (?)
- Bisimilarity (?)

Yes to both (?), but not for labeled Petri nets!

The Equivalence Problem(s)

The (prefix) language $\mathcal{L}(N)$ of a labeled Petri net $N=(P,T,F,l,m_0)$ is the set of all words $w\in \Sigma^*$, such that $w=\varepsilon$ or $m_0\xrightarrow[]{t_1}\xrightarrow[]{t_2}\cdots\xrightarrow[]{t_{|w|}}$ such that $l^*(t_1t_2\dots t_{|w|})=w$.

Two Petri nets N_1, N_2 are language equivalent if $\mathcal{L}(N_1) = \mathcal{L}(N_2)$.

Theorem 4.1: Language equivalence is undecidable for labeled Petri nets.

We reduce from the halting problem of Minsky machines with two counters.

Petri nets are not Turing-complete!

→ weak simulation of Turing machines/Minsky machines

Minsky Machines

A **Minsky machine** is a pair $\langle P, \{c_1, c_2, \dots, c_k\} \rangle$, where c_1, \dots, c_k are counters and P is a finite sequence of commands $l_1 l_2 \dots l_n$, such that $l_n = \text{HALT}$ and l_i $(i = 1, \dots, n-1)$ is

- 1. $i: c_j := c_j + 1$; goto k, or
- 2. i: if c_j =0 then goto k_1 else c_j := c_j -1; goto k_2

Minsky Machines

A Minsky machine is a pair $\langle P, \{c_1, c_2, \dots, c_k\} \rangle$, where c_1, \dots, c_k are counters and P is a finite sequence of commands $l_1 l_2 \dots l_n$, such that $l_n = \text{HALT}$ and l_i $(i = 1, \dots, n-1)$ is

- 1. $i: c_j := c_j + 1$; goto k, or
- 2. i: if c_j =0 then goto k_1 else c_j := c_j -1; goto k_2

Example 4.7

We consider two counter c_1 and c_2 .

- 1: if c_2 =0 then goto 3 else c_2 := c_2 -1; goto 2
- 2: $c_1 := c_1 + 1$; goto 1
- 3: HALT

If c_1 and c_2 are initialized with m and n, then the program halts with value m+n in c_1 .

Constructing a Petri Net

For Minsky machine $\mathcal{M} = \langle l_1 l_2 \dots l_m, \{c_1, \dots, c_n\} \rangle$, $N(\mathcal{M}) = (\{l_1, \dots, l_m, c_1, \dots, c_n\}, T, F, l, m_0)$ where for each $i \in \{1, \dots, m-1\}$: $l_i=i$: $c_j:=c_j+1$; goto l_k : $l_i=i$: if $c_j=0$ then goto k_1 else $c_j:=c_j-1$; goto k_2 :

Constructing a Petri Net

For Minsky machine $\mathcal{M} = \langle l_1 l_2 \dots l_m, \{c_1, \dots, c_n\} \rangle$, $N(\mathcal{M}) = (\{l_1, \dots, l_m, c_1, \dots, c_n\}, T, F, l, m_0)$ where for each $i \in \{1, \dots, m-1\}$: $l_i=i$: $c_j:=c_j+1$; goto l_k : $l_i=i$: if $c_j=0$ then goto k_1 else $c_j:=c_j-1$; goto k_2 :

The labeling can be arbitrary but injective.

Constructing a Petri Net

For Minsky machine $\mathcal{M}=\langle l_1l_2\dots l_m,\{c_1,\dots,c_n\}\rangle$, $N(\mathcal{M})=(\{l_1,\dots,l_m,c_1,\dots,c_n\},T,F,l,m_0)$ where for each $i\in\{1,\dots,m-1\}$: $l_i=i\colon c_j:=c_j+1;$ goto $l_k\colon l_i=i\colon if\ c_j=0$ then goto k_1 else $k_2:=k_1$ goto $k_2:=k_2$.

The labeling can be arbitrary but injective.

For input $x_1, \ldots, x_n \in \mathbb{N}$, define $m_0 = \{c_1 \mapsto x_1, \ldots, c_n \mapsto x_n, l_1 \mapsto 1\}$.

Petri Net Construction by Example

Undecidability of Language Equivalence: The Reduction

Undecidability of Bisimilarity: The Reduction

The Coverability Graph

Definition 4.8 (ω -marking)

For a net (P,T,F), $m:P\to\mathbb{N}\cup\{\omega\}$ is called an ω -marking.

Note, $\omega > n$ and $\omega + / - n = \omega$ for all $n \in \mathbb{N}$.

For directed graph G=(V,E) and $v\in V$, defined $v\Downarrow$ to be the smallest set, such that (1) $v\in v\Downarrow$ and (2) if $w\in v\Downarrow$ and $u\to w$, then $u\in v\Downarrow$.

Definition 4.9

Let $N=(P,T,F,m_0,l)$ be a (labeled) Petri net. The coverability graph (of N) is the graph $\mathcal{C}(N)=(V,E)$, such that

- 1. $m_0 \in V$;
- 2. if $m \in V$ and $m \xrightarrow{t} m'$, then $\omega(m') \in V$ and $(m, \omega(m')) \in E$ such that for all $p \in P$,

$$\omega(m')(p) = \left\{ \begin{array}{ll} \omega & \text{if } m'' \in m \Downarrow \text{with } m''(p) < m'(p) \\ m'(p) & \text{otherwise.} \end{array} \right.$$

Properties of the Coverability Graph

Theorem 4.2: The coverability graph C(N) of a Petri net N is finite.

→ follows the same argument as for the decidability proof of the boundedness problem.

Properties of the Coverability Graph

Theorem 4.3: The coverability problem — given a Petri net N and a marking m, is there a reachable marking m', such that $m \leq m'$? — is decidable.

- 1. Construct C(N)
- 2. Check if there is an ω -marking m^{ω} with $m \leq m^{\omega}$
- 3. Consider the path $m_0 \xrightarrow{t_1} \dots \xrightarrow{t_n} m^\omega$ and the marking m' reached after firing the sequence $t_1 \dots t_n$
- 4. If $m \leq m'$, witness found.
- 5. If $m \not \leq m'$, then there is at least one ω in m^{ω} and there are markings on the path from m_0 to m^{ω} that led to the addition of ω
- 6. Repeat the respective firing sequences until a covering marking is reached.
- 7. Hence, it is sufficient to check only m^{ω} .
- 8. If m is not coverable, then there is no marking m' in the coverability graph with $m \leq m'$.

Equivalence of Unlabeled Nets

Theorem 4.4: Bisimilarity and language equivalence of Petri nets is decidable for unlabeled Petri nets.

- Given are $N_1=(P_1,T_1,F_1,m_0^1,l_1)$ and $N_2=(P_2,T_2,F_2,m_0^2,l_2)$ ($P_1\cap P_2=\emptyset=T_1\cap T_2$).
- Construct $N_1 + N_2 = (P_1 \cup P_2, T_1 \cup T_2, F_1 \cup F_2, m_0^1 + m_0^2).$
- Each transition $t \in T_1 \cup T_2$ is duplicated to t' with the same in-/outputs and label as t.
- Add a fresh place p and add $\{p\} \times (T_1 \cup T_2)$ and $\{t' \mid t' \text{ is a duplicate}\} \times \{p\}$ to the arc relation.
- For each label $a \in \Sigma$, add places p_1^a, p_2^a and for $t \in T_i$ with $l_i(t) = a$, add arcs $(t, p_j^a), (p_j^a, u')$ for transition duplicate u' with $l_j(u) = a$.
- If the nets are language equivalent, then every transition firing of $t \in T_i$ can be reproduced in N_j by u', such that $l_i(t) = l_i(u)$.
- If the nets are not language equivalent, then there is a shortest word w of $L(N_i) \setminus L(N_j)$. After firing the last transition of w in N_i , no duplicate can be fired in N_j .
- ullet Unlabledness is important to not leave N_j the chance to use more clever a-labeled transitions. 102/104