Foundations of Logic Programming Tutorial 1 (on October 18th)

Lukas Schweizer

WS 2018

Exercise 1.1:

Define in Prolog a predicate for multiplication. (You may want to use the predicate add defined on Slide 10, Lecture 1.) Give the output for the following queries:

- ?-mul $(\mathrm{s}(\mathrm{s}(0)), \mathrm{s}(\mathrm{s}(\mathrm{s}(0))), \mathrm{Z})$.
- ? $-\mathrm{mul}(\mathrm{s}(\mathrm{s}(0)), \mathrm{s}(\mathrm{s}(0)), \mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(0))))))$.

Exercise 1.2:

Now use your definition from Exercise 1.2 to define the factorial function.

- Example: ? - fact($(\mathrm{s}(\mathrm{s}(\mathrm{s}(0))), \mathrm{F})$ has the result $\mathrm{F}=\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(0))))))$.

Exercise 1.3:

Define a predicate palindrome (L) which checks if the list L is a palindrome, i.e. the reverse of L is identical to L.

- Example: ? - palindrome([a,b,c,b,a]) has result yes.

Exercise 1.4:

Compute the substitution composition $\theta \eta \tau$, where W, X, Y, Z are variables and

$$
\theta=\{y / a(X, Z), Z / Y\} \quad \eta=\{Y / X, X / f(W)\} \quad \tau=\{W / g(a), X / Z, Z / b\}
$$

Exercise 1.5:

Use the Martelli-Montanari algorithm step by step to unify the following pairs of terms with variables X, Y, and Z. For each step indicate which rule you have used.
a) $f(g(X), g(c), Y)$ and $f(g(g(Y)), X, a)$
b) $f(b, x, x, y)$ and $f(b, g(Y), g(g(Z)), g(a))$
c) $f(X, g(Z), g(Z))$ and $f(h(Y), Y, g(h(X)))$

Give the corresponding most general unifier (mgu) or give the reason why the terms are not unifiable.

