
Submitted on January 6, 2014 to the Notre Dame Journal of Formal Logic
Volume ??, Number ??,

Deciding Unifiability and Computing Local Unifiers in
the Description Logic EL without Top Constructor

Franz Baader and Nguyen Thanh Binh and Stefan
Borgwardt and Barbara Morawska

Abstract Unification in Description Logics has been proposed as a novel infer-
ence service that can, for example, be used to detect redundancies in ontologies.
The inexpressive description logic EL is of particular interest in this context since,
on the one hand, several large biomedical ontologies are defined using EL. On
the other hand, unification in EL has been shown to be NP-complete, and thus
of considerably lower complexity than unification in other description logics of
similarly restricted expressive power.

However, EL allows the use of the top concept (>), which represents the
whole interpretation domain, whereas the large medical ontology SNOMED CT
makes no use of this feature. Surprisingly, removing the top concept from EL
makes the unification problem considerably harder. More precisely, we will show
that unification in EL without the top concept is PSPACE-complete. In addition
to the decision problem, we also consider the problem of actually computing
EL−>-unifiers.

1 Introduction

Description logics (DLs) [8] are a well-investigated family of logic-based knowledge
representation formalisms. They can be used to represent the relevant concepts of
an application domain using concept terms, which are built from concept names and
role names using certain concept constructors. The DL EL offers the constructors
conjunction (u), existential restriction (∃r.C), and the top concept (>). From a
semantic point of view, concept names and concept terms represent sets of individuals,
whereas roles represent binary relations between individuals. The top concept is
interpreted as the set of all individuals. For example, using the concept names Male,
Female, Person and the role names child, job, the concept of persons having a son, a
daughter, and a job can be represented by the EL-concept term

Person u ∃child.Male u ∃child.Female u ∃job.>.

Keywords: unification, description logics

1

http://www.nd.edu/~ndjfl

2 F. Baader, N. T. Binh, S. Borgwardt, and B. Morawska

In this example, the availability of the top concept in EL allows us to state that
the person has some job, without specifying any further to which concept this job
belongs.

Knowledge representation systems based on DLs provide their users with various
inference services that allow them to deduce implicit knowledge from the explicitly
represented knowledge. For instance, the subsumption algorithm allows one to
determine subconcept-superconcept relationships. For example, the concept term
∃job.> subsumes (i.e., is a superconcept of) the concept term ∃job.Boring since
anyone that has a boring job at least has some job. Two concept terms are called
equivalent if they subsume each other, i.e., if they are always interpreted as the same
set of individuals.

The DL EL has recently drawn considerable attention since, on the one hand,
important inference problems such as the subsumption problem are polynomial in EL
[1, 9]. On the other hand, though quite inexpressive, EL is used to define biomedical
ontologies. For example, the large medical ontology SNOMED CT1 can be expressed
in EL. Actually, if one takes a closer look at the concept definitions in SNOMED CT,
then one sees that they do not contain the top concept.

Unification in DLs has been proposed in [6] as a novel inference service that can,
for instance, be used to detect redundancies in ontologies. For example, assume that
one knowledge engineer defines the concept of female professors as

Person u Female u ∃job.Professor,

whereas another knowledge engineer represents this notion in a somewhat different
way, e.g., by using the concept term

Woman u ∃job.(Teacher u Researcher).

While these two concept terms are not equivalent, they are nevertheless meant to
represent the same concept. They can obviously be made equivalent by substituting
the concept name Professor by the concept term TeacheruResearcher and the concept
name Woman by the concept term Person u Female.

In general, unification is the problem of making two concept terms equivalent by
allowing some of the concept names, which are designated variables, to be replaced by
other concept terms. We call a substitution that makes two concept terms equivalent a
unifier of the two terms. Such a unifier proposes definitions for the concept names
that are used as variables. In our example, we know that, if we define Woman as
Personu Female and Professor as TeacheruResearcher, then the two concept terms
from above are equivalent w.r.t. these definitions.

In [6] it was shown that, for the DL FL0, which differs from EL by offering
value restrictions (∀r.C) in place of existential restrictions, deciding unifiability is an
EXPTIME-complete problem. In [3], we were able to show that unification in EL is of
considerably lower complexity: the decision problem is “only” NP-complete. The
original unification algorithm for EL introduced in [3] was a brutal “guess and then
test” NP-algorithm, but we have since then also developed more practical algorithms.
On the one hand, in [4] we describe a goal-oriented unification algorithm for EL, in
which nondeterministic decisions are only made if they are triggered by “unsolved
parts” of the unification problem. On the other hand, in [5], we present an algorithm
that is based on a reduction to satisfiability in propositional logic (SAT), and thus

Deciding Unifiability and Computing Unifiers in EL without Top 3

allows us to employ highly optimized state-of-the-art SAT solvers for implementing
an EL-unification algorithm.

One can additionally allow background knowledge of the application domain
to be encoded using so-called general concept inclusions (GCIs), which restrict
one concept to be a subconcept of another concept. For instance, we can use the
GCI Woman v Female to express the fact that every woman is female. Since
equivalence of concept terms is evaluated w.r.t. to this background knowledge, this
changes the unification problem considerably. We were able to show that unification
remains in NP if the GCIs satisfy a certain cycle restriction. For example, the
cyclic GCI ∃child.Human v Human satisfies this restriction, whereas the cyclic
GCI Human v ∃parent.Human does not. We again developed three algorithms that
generalize the ones for EL without GCIs [12, 13, 14]. These algorithms even decide
unification in the extension ELHR+ of EL that allows to specify additional domain
knowledge in the form of a role hierarchy (H) and transitive roles (R+).

In contrast to the above works, we here consider a DL that is even less expressive
than EL. The motivation for this is that, as mentioned above, SNOMED CT is not
formulated in EL, but rather in its sub-logic EL−>, which differs from EL in that
the use of the top concept is disallowed. We also do not consider GCIs since the
knowledge in SNOMED CT is expressed by so-called acyclic concept definitions,
which can be expressed in the unification problem itself [4], thereby eliminating the
need to take into account any background knowledge. If we employ EL-unification to
detect redundancies in (extensions of) SNOMED CT, then a unifier may introduce
concept terms that contain the top concept, and thus propose definitions for concept
names that are of a form that is not used in SNOMED CT.

Apart from this practical motivation for investigating unification in EL−>, we also
found it interesting to see how such a small change in the syntax of the logic influences
the unification problem. It turned out that the complexity of the problem increases
considerably (from NP to PSPACE). In addition, compared to EL-unification, quite
different methods had to be developed to actually solve EL−>-unification problems.
In particular, we will show that—similar to the case of FL0-unification—EL−>-
unification can be reduced to solving certain language equations. In contrast to the
case ofFL0-unification, these language equations can be solved in PSPACE rather than
EXPTIME, which we show by a reduction to the emptiness problem for alternating
automata on finite words.

This article extends the original conference paper [10] by providing detailed proofs
of all results and describing their relevance for the fields of unification modulo
equational theories and unification in modal logics. It also incorporates additional
results on the complexity of actually computing unifiers in EL−>originally published
in the workshop paper [11]. To determine unifiability in EL, it is enough to consider
local unifiers since every solvable EL-unification problem has a local unifier. Although
local unifiers may be of size exponential in the input unification problem, they can be
represented by an acyclic TBox (i.e., an acyclic collection of concept definitions) of
polynomial size [3]. For EL−>, we have to extend the definition of local unifiers in
order to ensure that every solvable unification problem has a local unifier. We will
show that, with respect to this new notion of locality, we can effectively compute local
unifiers for solvable unification problems, but these unifiers may be of exponential
size even if we use acyclic TBoxes in order to represent them.

4 F. Baader, N. T. Binh, S. Borgwardt, and B. Morawska

Table 1 Syntax and semantics of EL and EL−>

Name Syntax Semantics EL EL−>

concept name A AI ⊆ DI x x
role name r rI ⊆ DI ×DI x x
top-concept > >I = DI x
conjunction C uD (C uD)I = CI ∩DI x x
existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI} x x

subsumption C v D CI ⊆ DI x x
equivalence C ≡ D CI = DI x x

2 The Description Logics EL and EL−>

Description logics [8] are logic-based formalisms used to represent the knowledge
of an application domain in a structured way. Concepts of the domain are described
through concept terms that are built from atomic concepts (basically, unary predicates)
and roles (binary relations) using concept constructors. In this paper, we are concerned
with the description logic EL, which uses the constructors conjunction (u), existential
restriction (∃r. for every role r), and top concept (>), and its fragment EL−>, in
which the top concept is disallowed.

More formally, let NC and NR be two disjoint sets of concept names and role
names, respectively. The set of EL-concept terms is the smallest set containing NC

such that:

• > is an EL-concept term;
• if C and D are EL-concept terms, then so is C uD; and
• if C is an EL-concept term and r ∈ NR, then ∃r.C is an EL-concept term.

The set of EL−>-concept terms is defined in the same way, but using only the latter
two rules. Since EL−>-concept terms are special EL-concept terms, many definitions
and results transfer from EL to EL−>, and thus we only formulate them for EL. We
will explicitly mention it if this is not the case.

The semantics of concept terms is defined using interpretations I = (DI , ·I),
which consist of a nonempty domain DI and an interpretation function ·I that assigns
subsets of DI to every concept name and binary relations over DI to every role name.
This function is extended to EL-concept terms as shown in the semantics column of
Table 1. The concept term C is subsumed by the concept term D (written C v D)
iff CI ⊆ DI holds for all interpretations I; and C is equivalent to D (C ≡ D) iff
CI = DI for every interpretation I.

A concept definition is an expression of the form A ≡ C, where A is a concept
name and C is an arbitrary EL−>-concept term. An acyclic TBox T is a set of concept
definitions such that (i) every concept name occurs at most once on the left-hand
side of a concept definition in T , and (ii) no concept name is defined in terms of
itself, i.e., a concept name A does not occur in its own definition (either directly
or indirectly through other definitions). The unfolding of an EL−>-concept term C
w.r.t. an acyclic TBox T (denoted by CT) is the EL−>-concept term resulting from
exhaustively replacing all defined concept names occurring in C by their definitions
from T .

Deciding Unifiability and Computing Unifiers in EL without Top 5

2.1 Atoms For unification in EL, it suffices to look at unifiers that substitute variables
by conjunctions of so-called flat atoms that occur in the unification problem. A
concept term is called an atom iff it is a concept name A ∈ NC or an existential
restriction ∃r.D. Concept names and existential restrictions ∃r.D, where D is a
concept name or >, are called flat atoms. The set At(C) of atoms of a concept term
C is defined as follows:
• If C = >, then At(C) := ∅.
• If C is a concept name, then At(C) := {C}.
• If C = ∃r.D, then At(C) := {C} ∪At(D).
• If C = C1 u C2, then At(C) := At(C1) ∪At(C2).

For example, the concept term C = A u ∃r.(B u ∃r.>) has the set of atoms
At(C) = {A,∃r.(B u ∃r.>), B,∃r.>}.

Obviously, any concept termC is a conjunction of atomsC = C1u. . .uCn, where
the empty conjunction is > and all conjuncts > are removed from this conjunction if
it is nonempty. We call C1, . . . , Cn the top-level atoms of C. The concept term C is
called flat if all its top-level atoms are flat.

The following lemma gives a recursive characterization of subsumption in EL and
EL−> and turned out to be very useful for solving unification in these description
logics [4].

Lemma 1 Consider two concept termsC = A1u. . .uAku∃r1.C1u. . .u∃rm.Cm
and D = B1 u . . . u Bl u ∃s1.D1 u . . . u ∃sn.Dn, where A1, . . . , Ak, B1, . . . , Bl
are concept names. Then C v D iff {B1, . . . , Bl} ⊆ {A1, . . . , Ak} and for every
j ∈ {1, . . . , n} there exists an i ∈ {1, . . . ,m} such that ri = sj and Ci v Dj .

This means that we can check a subsumption C v D by testing whether for
every top-level atom D′ of D there is a top-level atom C ′ of C with C ′ v D′. A
subsumption C v D between two atoms C,D is then evaluated structurally, i.e.,
either (i) these atoms are the same concept name or (ii) they are of the formC = ∃r.C ′,
D = ∃r.D′ for some role name r and C ′ v D′ holds.

2.2 Particles For unification in EL−>, building unifiers from the flat atoms of a
unification problem is not enough. It will turn out that one may need to add so-called
particles to make sure that a variable is not substituted by the empty conjunction of
atoms, which is >.

Modulo equivalence, the subsumption relation is a partial order on concept terms.
In EL, the top concept > is the greatest element w.r.t. this order. If we disallow >,
however, there are many incomparable maximal concept terms. We will see below that
these are exactly the EL−>-concept terms of the form ∃r1.∃r2. . . .∃rn.A for n ≥ 0
role names r1, . . . , rn and a concept name A. We call such concept terms particles.
The set Part(C) of particles of an EL−>-concept term C is defined as follows:
• If C is a concept name, then Part(C) := {C}.
• If C = ∃r.D, then Part(C) := {∃r.M |M ∈ Part(D)}.
• If C = C1 u C2, then Part(C) := Part(C1) ∪ Part(C2).

For example, the particles of the concept A u ∃r.(B u ∃r.A), where A,B ∈ NC

and r ∈ NR, are A, ∃r.B, and ∃r.∃r.A. The next lemma states that particles are
indeed the maximal concept terms w.r.t. subsumption in EL−>, and that the particles
subsuming an EL−>-concept term C are exactly the particles of C.

6 F. Baader, N. T. Binh, S. Borgwardt, and B. Morawska

Lemma 2 Let C be an EL−>-concept term and B a particle.
1. If B v C, then B ≡ C.
2. B ∈ Part(C) iff C v B.

Proof We show both claims by induction on the length of B, i.e., the number of
existential restrictions it contains.

1. If B is a concept name and B v C, then Lemma 1 yields that B is the only
possible top-level atom of C, which implies that B ≡ C.

Otherwise, B = ∃r.B′ for a particle B′. Then every top-level atom of C
must be of the form ∃r.C ′ with B′ v C ′. Since the particle B′ is shorter
than B, induction yields B′ ≡ C ′ for every top-level atom ∃r.C ′ of C, which
implies B ≡ C by Lemma 1.

2. If B is a concept name, then B ∈ Part(C) is equivalent to the fact that B is a
top-level atom of C, which in turn is equivalent to C v B by Lemma 1.

Otherwise, B = ∃r.B′ for a particle B′. By definition, B ∈ Part(C) iff
there exists a top-level atom ∃r.C ′ of C with B′ ∈ Part(C ′). By induction,
this is equivalent to the existence of a top-level atom ∃r.C ′ of C with C ′ v B′.
By Lemma 1, this is equivalent to C v B.

3 Unification in EL and EL−>

To define unification in EL and EL−> simultaneously, let L ∈ {EL, EL−>}. When
defining unification in L, we assume that the set of concepts names is partitioned into
a set Nv of concept variables (which may be replaced by substitutions) and a set Nc of
concept constants (which must not be replaced by substitutions). An L-substitution σ
is a mapping from Nv into the set of all L-concept terms. This mapping is extended
to concept terms in the usual way, i.e., by replacing all occurrences of variables in the
term by their σ-images. An L-concept term is called ground if it contains no variables,
and an L-substitution σ is called ground if the concept terms σ(X) are ground for all
X ∈ Nv.

Unification tries to make concept terms equivalent by applying a substitution.

Definition 3 An L-unification problem is of the form Γ = {C1 ≡? D1, . . . ,
Cn ≡? Dn}, where C1, D1, . . . Cn, Dn are L-concept terms. The L-substitution σ is
an L-unifier of Γ iff it solves all the equations Ci ≡? Di in Γ, i.e., iff σ(Ci) ≡ σ(Di)
for i = 1, . . . , n. In this case, Γ is called L-unifiable.

We will often use the subsumption C v? D as an abbreviation for the equation
C uD ≡? C. Obviously, σ solves this equation iff σ(C) v σ(D).

Clearly, every EL−>-unification problem Γ is also an EL-unification problem.
Whether Γ is L-unifiable or not may depend, however, on whether L = EL or
L = EL−>. As an example, consider the problem Γ := {A v? X,B v? X}, where
A,B are distinct concept constants and X is a concept variable. Obviously, the
substitution that replaces X by > is an EL-unifier of Γ. However, Γ does not have an
EL−>-unifier. In fact, for such a unifier σ, the EL−>-concept term σ(X) would need
to satisfy A v σ(X) and B v σ(X). Since A and B are particles, Lemma 2 would
imply A ≡ σ(X) ≡ B and thus A ≡ B, which is not the case.

We may without loss of generality restrict our attention to flat L-unification prob-
lems, i.e., L-unification problems in which the right- and left-hand sides of the
equations are flat L-concept terms. Non-flat L-concept terms can be flattened by

Deciding Unifiability and Computing Unifiers in EL without Top 7

introducing new variables as abbreviations for subterms [4]. Given a flat unification
problem Γ, we denote by At(Γ) the set of all atoms of Γ, i.e., the union of all sets of
atoms of the concept terms occurring in Γ. By Var(Γ) we denote the variables that
occur in Γ and by NV(Γ) := At(Γ) \Var(Γ) the set of all non-variable atoms of Γ.

Although arbitrary L-substitutions σ are used in the definition of an L-unifier, it
is actually sufficient to consider ground L-substitutions σ such that all L-concept
descriptions σ(X) in the range of σ contain only concept and role names occurring
in Γ. It is an easy consequence of well-known results from unification theory [7],
that an L-unification problem Γ has an L-unifier iff it has such a ground L-unifier.
Thus, for simplicity we will assume in the following that NR is the set of role names
occurring in Γ and Nc is the set of concept constants occurring in Γ. Since we are
only interested in the substitution of variables occurring in Γ, we will also assume
that Nv = Var(Γ).

3.1 Connection to other unification problems Unification was originally not intro-
duced for Description Logics, but for equational theories [7]. In [26, 4] it was shown
that equivalence and unification in EL are the same as the word problem and unifi-
cation, respectively, in the equational theory bSLmO of bounded (meet-)semilattices
with monotone operators. The signature ΣbSLmO of this equational theory consists of
a binary function symbol ∧, a constant symbol 1, and finitely many unary function
symbols f1, . . . , fn. Terms can be built using these symbols and additional variable
symbols and free constant symbols. The signature ΣSLmO is obtained from ΣbSLmO by
dropping the constant 1.

Definition 4 The equational theory of bounded semilattices with monotone opera-
tors is defined by the following identities:

bSLmO := {x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∧ y = y ∧ x, x ∧ x = x, x ∧ 1 = x}
∪ {fi(x ∧ y) ∧ fi(y) = fi(x ∧ y) | 1 ≤ i ≤ n}

The equational theory SLmO of semilattices with monotone operators is obtained
from the above definition by dropping the identity x ∧ 1 = x.

Any EL-concept description C using only the roles r1, . . . , rn can be translated
into a term tC over the signature ΣbSLmO by replacing each concept constant A by a
free constant a, each concept variable X by a variable x, > by 1, u by ∧, and ∃ri
by fi. For example, the EL-concept description C = A u ∃r1.> u ∃r3.(X u B) is
translated into tC = a ∧ f1(1) ∧ f3(x ∧ b). Conversely, any term t over the signature
ΣbSLmO can be translated back into an EL-concept description Ct. The same holds
for EL−>-concept descriptions and terms over ΣSLmO. As shown in [26], the word
problem in the theory SLmO is the same as the equivalence problem for EL-concept
descriptions. Again, a similar result holds for EL−>.

Lemma 5 Let C,D be EL-concept descriptions using only the roles r1, . . . , rn.
Then C ≡ D holds iff tC =bSLmO tD. If C,D are EL−>-concept descriptions, then
this is also equivalent to tC =SLmO tD.

As an immediate consequence of this lemma, every EL- or EL−>-unification
problem can be translated into a unification problem modulo the corresponding
equational theory that, apart from the translation between concept descriptions and
terms, has the same unifiers.

8 F. Baader, N. T. Binh, S. Borgwardt, and B. Morawska

Thus, previous results for unification in EL imply that unification modulo bSLmO
is NP-complete, even if a certain restricted form of ground equations is added to the
equational theory (see [4, 14] for details). Correspondingly, the results we present in
this paper show that unification modulo SLmO is PSPACE-complete.

There is also a strong connection between description logics and modal logics, and
therefore between unification in these formalisms. In the basic multi-modal logic Km,
formulae are built from a set of propositional variables using the propositional connec-
tives >, ⊥, ∧, ∨, ¬,→,↔, and two unary connectives �ri and ♦ri for each relation
symbol ri from a fixed set {r1, . . . , rn} [16].

These formulae are interpreted over so-called Kripke models, which consist of a
set of worlds that are connected by binary relations corresponding to the symbols
r1, . . . , rn. Validity of a formula φ in a world w of such a model is defined inductively
on the structure of φ, where the validity of the atomic propositions in a world is fixed
by the given model. The definition of validity is extended to the propositional
connectives in the usual way. A formula of the form �riφ is said to be valid in a given
world w if φ is valid in all worlds connected to w via the binary relation associated
to ri. Dually, ♦riφ is valid in w if φ is valid in at least one world connected to w
by ri.

It was first observed in [25] that Km is a notational variant of the description logic
ALC. There is a bijective translation of formulae of Km into ALC-concept descrip-
tions and Kripke models can be characterized as description logic interpretations. In
this setting, the description logic EL corresponds to the syntactic fragment of Km that
is restricted to the connectives >, ∧, and ♦ri . Every EL-concept description C can be
translated into a modal formula φC by replacing every concept name by a proposi-
tional variable, u by ∧, and ∃ri by ♦ri . On the other hand, every modal formula φ
in this fragment of Km can be translated back into an EL-concept description Cφ
by applying the inverse transformation. In the same way, EL−> corresponds to the
∧-♦ri -fragment of Km.

It is an easy consequence of the results of [25] that two EL-concept descriptions
C and D are equivalent if their translations φC and φD are valid in the same Kripke
models. In Km, this is usually expressed as the validity of φC ↔ φD in every Kripke
model. Note, however, that in the sub-Boolean fragments of Km corresponding
to EL and EL−> this bi-implication cannot be expressed. In particular, in EL there
are no constructors directly corresponding to negation, disjunction, implication, or
bi-implication.

Traditionally, unification in modal logics is the problem of finding, for a given
modal formula φ, a substitution σ of the propositional variables by modal formulae
such that σ(φ) becomes valid in all Kripke models [16, 2]. A famous open problem is
the decidability of unification in K, the uni-modal version of Km with only one relation
symbol. Unification in several extensions of K has been shown to be undecidable
in [29]. For an overview of known results about unification in modal logics, see [2].

Following the translations between concepts and modal formulae described above,
unifiability of a set {C1 ≡? D1, . . . , Cm ≡? Dm} of equations over concept descrip-
tions in some DL is equivalent to the unifiability of φC1

↔ φD1
∧ · · · ∧φCm ↔ φDm

in the corresponding modal logic [2]. Note that some of the propositional variables in
the translated formula have to be viewed as constants, which are not allowed to be
replaced by substitutions. Again, for EL and EL−> this results in a formula which in
general cannot be expressed in the fragments of Km mentioned above. To the best of

Deciding Unifiability and Computing Unifiers in EL without Top 9

our knowledge, unification in such sub-Boolean modal logics has not been considered
in the modal logic literature.

On the other hand, a modal formula φ is unifiable if {Cφ ≡? >} is unifiable in the
corresponding DL. Consider now the >-∧-♦ri-fragment of Km, which corresponds
to EL. According to Lemma 1, we know that φ is unifiable iff it is a conjunction
of variables or >: if φ is of this form, it can be made valid by substituting every
variable by >; otherwise, for any substitution σ the concept description σ(Cφ) must
contain at least one atom, which cannot be contained in >. Thus, unification in the
>-∧-♦ri-fragment of Km is trivial. In the ∧-♦ri-fragment of Km, unification is even
more absurd since σ(Cφ) must always contain at least one atom, regardless of the
form of φ. This means that this modal logic does not have unifiable formulae.

This shows that in the above fragments of Km it does not make sense to consider
unification in the modal logic sense. If we consider instead the equational variant of
modal unification that corresponds to Definition 3, then unification in the >-∧-♦ri-
fragment of Km is NP-complete [4], and it is PSPACE-complete in the ∧-♦ri -fragment,
as we show in this article.

3.2 Locality of EL-unification The NP-algorithm for unification in EL introduced
in [3] is based on the fact that every unifiable EL-unification problem Γ has a so-
called local EL-unifier, which we define in the following.

Given an EL-unification problem Γ, an assignment is a function S mapping each
variable X ∈ Var(Γ) to a set S(X) ⊆ NV(Γ). Such an assignment S induces the
following relation >S , which is the transitive closure of the depends on relation

{(X,Y) ∈ Var(Γ)×Var(Γ) | Y occurs in an element of S(X)}.

We call the assignment S acyclic if >S is irreflexive (and thus a strict partial order).
Any acyclic assignment S induces a unique substitution γS , which can be defined by
induction along >S :

• If X is a minimal element of Var(Γ) w.r.t. >S , then γS(X) is the conjunction
of the elements of S(X), where the empty conjunction is >.
• Assume γS(Y) is defined for all Y <S X . If S(X) = {D1, . . . , Dn}, then
γS(X) := γS(D1) u . . . u γS(Dn).

A unifier γ of Γ is called a local EL-unifier of Γ if it is of the above form, i.e., if there
is an acyclic assignment S such that γ = γS (see Example 6).

In [3] it was shown that every unifiable EL-unification problem Γ has a local
EL-unifier. This gives rise to a simple NP-algorithm for deciding unification in EL:
First, guess an assignment S in polynomial time, and then check whether S is acyclic
and whether the induced substitution γS solves the unification problem. The former
property can clearly be tested in polynomial time in the size of S.

However, the substitution γS may be exponential in the size of S, which is basically
due to the fact that subterms are copied if variables occur several times in a set S(X).
In [4], this problem was solved by representing γS by the acyclic TBox

T S := {X ≡ D1 u · · · uDn | X ∈ Var(Γ), S(X) = {D1, . . . , Dn}},

which has the same size as S. It is easy to see that γS(X) = XT
S

, i.e., the substitution
of a variable X ∈ Var(Γ) under γS is simply the unfolding of X w.r.t. T S . Thus, to
check whether γS solves an equation C ≡? D from Γ, we have to decide whether

10 F. Baader, N. T. Binh, S. Borgwardt, and B. Morawska

CT
S

is equivalent to DT
S

. It has been shown that this problem can be solved in
polynomial time for any acyclic TBox in EL [1].

This shows that the second test, i.e., whether γS solves Γ, can also be done in
polynomial time, which yields an NP-algorithm for deciding unification in EL.

3.3 Why this does not work for EL−> The EL-unifiers returned by the algorithm
sketched above need not be EL−>-unifiers since some of the sets S(X) in the guessed
assignment may be empty, in which case γS(X) = >. This suggests the following
simple modification of the above algorithm: require that the guessed assignment is
such that all sets S(X) are nonempty. If such an assignment S is acyclic, then the
induced substitution γS is actually an EL−>-substitution, and thus the substitutions
returned by the modified algorithm are indeed EL−>-unifiers. However, this modified
algorithm does not always detect EL−>-unifiability, i.e., it may return no substitution
although the input problem is EL−>-unifiable.

Example 6 Consider the flat EL-unification problem Γ that contains the three
equations

X ≡? Y uA, Y u ∃r.X ≡? ∃r.X, Z u ∃r.X ≡? ∃r.X.

The substitutions

σ0 := {X 7→ A, Y 7→ >, Z 7→ >},

σ1 := {X 7→ A, Y 7→ >, Z 7→ ∃r.A}

are the only local EL-unifiers of Γ. In fact, we have NV(Γ) = {A,∃r.X}, and
thus the only possible image for X in a local unifier σ is A (since having ∃r.X in
S(X) would make the assignment S acyclic). Since the first equation implies that
A = σ(X) v σ(Y), we know that σ(Y) can only be > or A. However, the second
equation prevents the second possibility. Finally, the third equation ensures that σ(Z)
is > or ∃r.A.

Note that Γ can also be seen as an EL−>-unification problem, but σ0 and σ1 both
contain >, and thus are not EL−>-unifiers. This shows that Γ does not have an EL−>-
unifier that is a local EL-unifier. Nevertheless, Γ has EL−>-unifiers. For example, the
substitution γ1 := {X 7→ A u ∃r.A, Y 7→ ∃r.A, Z 7→ ∃r.∃r.A} is such a unifier.

In this example, the top-level atoms of γ1(X), γ1(Y), γ1(Z) that are not of the
form γ(D) for some D ∈ NV(Γ) are all particles of γ(D) for some D ∈ NV(Γ).
This motivates the following modified definition of locality for EL−>.

Definition 7 The EL−>-unifier γ of Γ is a local EL−>-unifier of Γ if, for every
variable X , each top-level atom of γ(X) is

• of the form γ(D) for some D ∈ NV(Γ) or
• a particle of γ(D) for some D ∈ NV(Γ).

Note that this definition becomes equivalent to locality in EL if the second option
is left out. Since there are at most polynomially many assignments S for a given
EL-unification problem, there can only be polynomially many local EL-unifiers. In
EL−>, however, it is possible that there exist infinitely many local unifiers, as the next
example illustrates.

Deciding Unifiability and Computing Unifiers in EL without Top 11

Example 8 Consider the unification problem Γ from Example 6 and the following
EL−>-substitutions γn:

γn(X) := A u ∃r.A u · · · u ∃rn.A,
γn(Y) := ∃r.A u · · · u ∃rn.A,
γn(Z) := ∃rn+1.A,

where ∃rn.A is short for the concept term ∃r. . . . ∃r.A with n nested existential
restrictions.

It is easy to verify that each γn is an EL−>-unifier of Γ. Furthermore, every top-
level atom of γn(X), γn(Y), and γn(Z) is either A or a particle of γn(∃r.X). Note
that both A and ∃r.X are non-variable atoms of Γ. Thus, Γ has infinitely many local
EL−>-unifiers.

These unifiers are even incomparable w.r.t. the subsumption order on unifiers, i.e.,
for no two n,m ∈ N with n 6= m it holds that γn(W) v γm(W) for all variables W .
This is the case since the particles γn(Z) = ∃rn+1.A are incomparable.

In Section 4, we consider two problems: How to decide unifiability in EL−>and
how to actually compute an EL−>-unifier. It will turn out that, similarly to EL, it
actually suffices to search for local EL−>-unifiers. We will present an algorithm that
decides EL−>-unification in PSPACE and can be used to compute local EL−>-unifiers
of at most exponential size. The main idea underlying the algorithm is that one
starts with an EL-unifier, and then conjoins “appropriate” particles to the images of
the variables that are replaced by > by this unifier. It is, however, not so easy to
decide which particles can be added this way without turning the EL-unifier into an
EL−>-substitution that no longer solves the unification problem.

In Section 5, we will then provide corresponding hardness results. First, we
show that deciding EL−>-unification is PSPACE-hard and then present a series of
EL−>-unification problems whose local unifiers are always of exponential size.

4 Our EL−>-unification algorithm

For the remainder of this section, let Γ be a flat EL−>-unification problem. We
assume without loss of generality that Γ is a set of flat subsumptions of the
form C1 u . . . u Cn v? D, where C1, . . . , Cn, D are flat atoms. Every equation
C1 u . . . uCn ≡? D1 u . . . uDm in Γ can equivalently be expressed by n+m such
subsumptions.

4.1 Step 1: Guessing an EL-unifier The first step of the algorithm is to guess an EL-
unifier that is the starting point for constructing an EL−>-unifier. Recall that, if S is an
acyclic assignment, then D ∈ S(X) implies that the subsumption γS(X) v γS(D)
holds for the substitution γS induced by S. Thus, guessing the sets S(X) can
be seen as guessing subsumptions between variables and non-variable atoms of Γ.
In addition to guessing these subsumptions, our EL−>-unification algorithm also
guesses subsumptions between all other atoms of Γ. To be more precise, it guesses a
mapping τ : At(Γ)2 → {0, 1}, which specifies which subsumptions between atoms
of Γ should hold for the EL−>-unifier that it tries to generate: if τ(D1, D2) = 1 for
D1, D2 ∈ At(Γ), then this means that the search for a unifier is restricted (in this

12 F. Baader, N. T. Binh, S. Borgwardt, and B. Morawska

branch of the search tree) to substitutions γ satisfying γ(D1) v γ(D2). Any such
mapping τ also yields an assignment

Sτ (X) := {D ∈ NV(Γ) | τ(X,D) = 1},

and we require that this assignment is acyclic and induces an EL-unifier of Γ.

Definition 9 The mapping τ : At(Γ)2 → {0, 1} is called a subsumption mapping
for Γ if it satisfies the following three conditions:

1. It respects the properties of subsumption in EL:
(a) τ(D,D) = 1 for each D ∈ At(Γ).
(b) τ(A1, A2) = 0 for distinct concept constants A1, A2 ∈ At(Γ).
(c) τ(∃r.C1,∃s.C2) = 0 for distinct r, s ∈ NR with ∃r.C1,∃s.C2 ∈ At(Γ).
(d) τ(A,∃r.C) = τ(∃r.C,A) = 0 for each constant A ∈ At(Γ), role name

r and variable or constant C with ∃r.C ∈ At(Γ).
(e) If ∃r.C1,∃r.C2 ∈ At(Γ), then τ(∃r.C1,∃r.C2) = τ(C1, C2).
(f) For all atoms D1, D2, D3 ∈ At(Γ), if τ(D1, D2) = τ(D2, D3) = 1,

then τ(D1, D3) = 1.
2. It induces an EL-substitution, i.e., the assignment Sτ is acyclic and thus

induces a substitution γS
τ

, which we will simply denote by γτ .
3. It represents a unifier of Γ, i.e., it satisfies the following conditions for each

subsumption C1 u . . . u Cn v? D in Γ:
(a) If D is a non-variable atom, then there is at least one Ci such that

τ(Ci, D) = 1.
(b) If D is a variable and τ(D,C) = 1 for a non-variable atom C ∈ NV(Γ),

then there is at least one Ci with τ(Ci, C) = 1.

Though it is not necessary for the proof of correctness of our EL−>-unification
algorithm, it can be shown that the substitution γτ induced by a subsumption mapping
τ for Γ is indeed an EL-unifier of Γ.2 It should be noted that γτ need not be an EL−>-
unifier of Γ. In addition, γτ need not agree with τ on every subsumption between
atoms of Γ. The reason for this is that τ specifies subsumptions which should hold in
the EL−>-unifier of Γ to be constructed. To turn γτ into such an EL−>-unifier, we may
have to add certain particles, and these additions may invalidate subsumptions that
hold for γτ . However, we will ensure that no subsumption claimed by τ is invalidated.
It is clear that guessing τ and checking the above conditions can be done in NP.

4.2 Step 2: Simplifying the unification problem In this step, we use the guessed
subsumption mapping τ to turn Γ into a unification problem that has only variables on
the right-hand sides of subsumptions. More precisely, we define ∆Γ,τ := ∆Γ ∪∆τ ,
where

∆Γ := {C1 u . . . u Cn v? X ∈ Γ | X is a variable of Γ},

∆τ := {C v? X | X is a variable and C an atom of Γ with τ(C,X) = 1}.

Before we can formulate the connection between EL−>-unifiability of Γ and of ∆Γ,τ ,
we need to introduce some notation and show an auxiliary result. For an arbitrary
EL−>-substitution σ, we will in the following write Sτ ≤ Sσ if

Sτ (X) ⊆ Sσ(X) := {D ∈ NV(Γ) | σ(X) v σ(D)}

Deciding Unifiability and Computing Unifiers in EL without Top 13

holds for every variable X . We now show that under some conditions on the EL−>-
substitution σ (most importantly Sτ ≤ Sσ), we can infer σ(C) v σ(D) from
τ(C,D) = 1 for C ∈ At(Γ) and D ∈ NV(Γ).

Lemma 10 Let τ be a subsumption mapping for Γ and σ an EL−>-substitution
with Sτ ≤ Sσ . For all atoms C ∈ At(Γ) and D ∈ NV(Γ), the following holds:

1. If D is ground, then τ(C,D) = 1 implies σ(C) v σ(D).
2. If D = ∃r.Y for a variable Y and σ satisfies all subsumptions of the form
C ′ v? Y in ∆τ , then τ(C,D) = 1 implies σ(C) v σ(D).

Proof If C is a variable, then τ(C,D) = 1 implies D ∈ Sτ (C) ⊆ Sσ(C), and
thus σ(C) v σ(D) by the definition of Sσ, regardless of the form of D. Otherwise,
we consider the structure of D.

1. If D is a constant, then the Conditions 1(b) and 1(d) of Definition 9 yield
C = D, and the subsumption is clearly satisfied.

If D is of the form ∃r.D′ for a constant D′, then by the Conditions 1(c)–(e)
of Definition 9, C must be of the form ∃r.C ′ and τ(C ′, D′) = 1. It remains
to show that σ(C ′) v σ(D′) holds. Since D′ is a constant, we know that
either C ′ = D′, in which case we immediately have σ(C ′) v σ(D′), or C ′ is
a variable and D′ ∈ Sτ (C ′) ⊆ Sσ(C ′). In the latter case, the claim follows
from the definition of Sσ .

2. If D = ∃r.Y for a variable Y , then again C must be of the form ∃r.C ′
and τ(C ′, Y) = 1. But then C ′ v Y is a subsumption in ∆τ and we have
σ(C ′) v σ(Y), and thus σ(C) v σ(D), by assumption.

We can now show the following connection between the two unification problems Γ
and ∆Γ,τ .

Lemma 11 The following statements are equivalent:

• Γ is EL−>-unifiable.
• There is a subsumption mapping τ for Γ such that ∆Γ,τ has an EL−>-unifier
σ with Sτ ≤ Sσ .

Proof If Γ has a ground EL−>-unifier σ, we can define τ as τ(D1, D2) = 1 iff
σ(D1) v σ(D2) holds for D1, D2 ∈ At(Γ). It is easy to see that σ satisfies all the
subsumptions in ∆Γ,τ , and Sτ ≤ Sσ . Additionally, τ is a subsumption mapping:
• Conditions 1(a)–(f) of Definition 9 are obviously satisfied by the subsumption

relation.
• Conditions 3(a) and 3(b) of Definition 9 are satisfied, since σ is a unifier of Γ

and Lemma 1 holds.
• To show that Condition 2 holds, assume that there is a sequence X1, . . . , Xn

(n > 1) of variables such that X1 = Xn and σ(Xi) v σ(∃ri.Xi+1) for
each i ∈ {1, . . . , n − 1}. By the properties of subsumption, this would
imply σ(X1) v σ(∃r1. . . .∃rn−1.X1) = ∃r1. . . .∃rn−1.σ(X1), which is
impossible. Thus, Condition 2 of Definition 9 is also satisfied.

Conversely, let τ : At(Γ)2 → {0, 1} be a subsumption mapping for Γ and σ
be an EL−>-unifier of ∆Γ,τ with Sτ ≤ Sσ. We have to show that σ also satisfies
all discarded subsumptions of the form C1 u . . . u Cn v? D ∈ Γ, where D is a
non-variable atom of Γ.

14 F. Baader, N. T. Binh, S. Borgwardt, and B. Morawska

By Condition 3(a) of Definition 9, there is an index i ∈ {1, . . . , n} with
τ(Ci, D) = 1. Since σ satisfies all the subsumptions in ∆τ , we can apply Lemma 10
and get σ(Ci) v σ(D). Thus, σ satisfies all subsumptions of Γ.

For the problem of actually computing local EL−>-unifiers of Γ, we also need to
consider locality of the unifiers of ∆Γ,τ . Fortunately, it can easily be seen from the
second part of the proof of Lemma 11 that any local EL−>-unifier σ of ∆Γ,τ with
Sτ ≤ Sσ is also a local EL−>-unifier of Γ since every non-variable atom in ∆Γ,τ

must also occur in Γ.

Lemma 12 Let τ be a subsumption mapping for Γ and σ a local EL−>-unifier of
∆Γ,τ with Sτ ≤ Sσ . Then σ is also a local EL−>-unifier of Γ.

The converse of this lemma does not hold. However, our aim is not to construct
local EL−>-unifiers of ∆Γ,τ from local EL−>-unifiers of Γ, but only the other way
around. Thus, in the following we need to solve the problem of computing local
EL−>-unifiers σ of ∆Γ,τ that satisfy the additional condition Sτ ≤ Sσ. For the
following steps, we fix a subsumption mapping τ for Γ.

4.3 Step 3: Translating to linear language inclusions In this step, we characterize
which particles can be added in order to turn γτ into an EL−>-unifier σ of ∆Γ,τ

satisfying Sτ ≤ Sσ. Recall that particles are of the form ∃r1. · · · ∃rn.A for n ≥ 0
role names r1, . . . , rn and a concept name A. We write such a particle as ∃w.A,
where w = r1 · · · rn is viewed as a word over the alphabet NR of all role names, i.e.,
an element of N∗R. If n = 0, then w is the empty word ε and ∃ε.A is just A.

Admissible words (particles) are determined by solutions of a system of linear
language inclusions.

Definition 13 Let {X1, . . . , Xn} be a finite set of indeterminates. A linear lan-
guage inclusion over these indeterminates is an expression of the form

Xi ⊆ L0 ∪ L1X1 ∪ . . . ∪ LnXn, (1)

where i ∈ {1, . . . , n} and eachLj (j ∈ {0, . . . , n}) is a subset of NR∪{ε}. A solution
θ of such an inclusion assigns sets of words θ(Xi) ⊆ N∗R to the indeterminates Xi

such that θ(Xi) ⊆ L0 ∪ L1θ(X1) ∪ . . . ∪ Lnθ(Xn).
We will often use the abbreviations θ(LiXi) := Liθ(Xi) and θ(L0) := L0.

The unification problem ∆Γ,τ induces a finite system IΓ,τ of such inclusions. The
indeterminates of IΓ,τ are of the form XA, where X ∈ Nv and A ∈ Nc. For each
constant A ∈ Nc and each subsumption s of the form C1 u . . . u Cn v? X in ∆Γ,τ ,
we add the following linear inclusion IA(s) to IΓ,τ :

XA ⊆ fA(C1) ∪ . . . ∪ fA(Cn), where

fA(C) :=


{r}fA(C ′) if C = ∃r.C ′
YA if C = Y ∈ Nv

{ε} if C = A
∅ if C ∈ Nc \ {A}

All the inclusions IA(s) for s ∈ ∆Γ,τ are linear language inclusions since ∆Γ,τ

only contains flat atoms. For example, the subsumption

∃s.A uB u ∃r.X u Y uA v? X

Deciding Unifiability and Computing Unifiers in EL without Top 15

for constants A,B, role names r, s and variables X,Y is translated into the two
inclusions

XA ⊆ {ε, s} ∪ {r}XA ∪ YA and

XB ⊆ {ε} ∪ {r}XB ∪ YB
if A and B are the only constants that occur in Γ.

We call a solution θ of IΓ,τ admissible if, for every variable X ∈ Nv, there is a
constant A ∈ Nc such that θ(XA) is nonempty. This condition will ensure that we
can add enough particles to turn γτ into an EL−>-substitution. In order to obtain a
substitution at all, only finitely many particles can be added. Thus, we are interested
in finite solutions of IΓ,τ , i.e., solutions θ such that all the sets θ(XA) are finite.

Theorem 14 ∆Γ,τ has an EL−>-unifier σ with Sτ ≤ Sσ iff IΓ,τ has a finite,
admissible solution.

We prove the two directions of this equivalence separately.

Lemma 15 If ∆Γ,τ has an EL−>-unifier σ with Sτ ≤ Sσ, then IΓ,τ has a finite,
admissible solution.

Proof Let σ be a ground EL−>-unifier of ∆Γ,τ with Sτ ≤ Sσ . We define a solution
θ of IΓ,τ as follows: for each variable X and constant A, we set

θ(XA) := {w ∈ N∗R | ∃w.A ∈ Part(σ(X))}.

To check that θ is a solution of IΓ,τ , consider the inclusion IA(s) for some s of the
form C1 u . . . u Cn v? X in ∆Γ,τ and a word w ∈ θ(XA). By Lemma 2, we have
σ(X) v ∃w.A, and thus Lemma 1 implies that there is a Ci such that σ(Ci) v ∃w.A.
Hence, ∃w.A is a particle of σ(Ci). We show that this implies that w ∈ θ(fA(Ci))
by considering the structure of Ci.
• If Ci is a constant, then it must be A, since ∃w.A is one of its particles. Then
w = ε and thus, w ∈ fA(Ci) = {ε} = θ(fA(Ci)).
• If Ci = Y is a variable, then w ∈ θ(YA) = θ(fA(Ci)) by definition.
• If Ci is of the form ∃r.C ′ for a role name r and a constant or variable C ′,

then w must be of the form rw′ for w′ ∈ N∗R and ∃w′.A must be a particle of
σ(C ′). Applying the considerations from cases (i) and (ii) to C ′ and w′ yields
w′ ∈ θ(fA(C ′)) and thus, w = rw′ ∈ {r}θ(fA(C ′)) = θ(fA(Ci)).

In all of the above cases, we have w ∈ θ(fA(Ci)), which implies that θ satisfies IA(s)
since w was an arbitrary element of θ(XA). Furthermore, θ is finite, since σ(X) can
have only finitely many particles. Additionally, since σ is a ground EL−>-substitution,
for every variable X there is at least one particle ∃w.A ∈ Part(σ(X)) for some
constant A and word w, and thus θ(XA) is nonempty. This shows that θ is also
admissible.

It remains to show the other direction of Theorem 14, i.e., how to construct an
EL−>-unifier of ∆Γ,τ from a solution of IΓ,τ . Recall that we want to compute local
EL−>-unifiers of ∆Γ,τ . For this reason, we will prove a stronger result, which uses a
corresponding notion of locality for solutions of IΓ,τ .

Definition 16 Let I be a finite set of linear language inclusions over the indeter-
minates X1, . . . , Xn. A solution θ of I is called local if for all i ∈ {1, . . . , n} and

16 F. Baader, N. T. Binh, S. Borgwardt, and B. Morawska

all words w ∈ θ(Xi) \ {ε} there is an inclusion Y ⊆ L0 ∪ L1X1 ∪ . . . ∪ LnXn in I
such that w ∈ L0 or w ∈ (Lj \ {ε})θ(Xj) for some j ∈ {1, . . . , n}.

Note that in a solution θ of I any word w that violates this condition can safely be
removed from θ. Thus, whenever I has a finite, admissible solution, then it also has a
local one.

Lemma 17 If IΓ,τ has a finite, local, admissible solution, then ∆Γ,τ has a local
EL−>-unifier σ with Sτ ≤ Sσ .

Proof Let θ be a finite, local, admissible solution of IΓ,τ . We now define an EL−>-
substitution σ by induction on the dependency order > := >Sτ induced by Sτ (see
Sections 3.2 and 4.1). Let X be a variable and assume that σ(Y) has already been
defined for all variables Y with X > Y . We set

σ(X) :=
l

D∈Sτ (X)

σ(D) u
l

A∈Nc

l

w∈θ(XA)

∃w.A.

Since θ is finite and admissible, σ is actually an EL−>-substitution. The property
Sτ ≤ Sσ follows from the fact that, for each D ∈ Sτ (X), the atom σ(D) is a
top-level atom of σ(X), and thus σ(X) v σ(D) holds. It remains to show that σ is a
local EL−>-unifier of ∆Γ,τ .

We first show that σ satisfies all subsumptions in ∆Γ,τ using induction on the strict
partial order > on the variables. Let X be a variable and let σ satisfy all subsumptions
D1 u . . . u Dm v? Y in ∆Γ,τ for all variables Y with X > Y . We consider an
arbitrary subsumption s of the form C1 u . . . u Cn v? X in ∆Γ,τ . This of course
includes the subsumptions from ∆τ , but in that case we always have n = 1. We have
to show that every top-level atom of σ(X) subsumes some σ(Ci). Recall that there
are two kinds of top-level atoms of σ(X).

If D ∈ Sτ (X), then τ(X,D) = 1 and σ(D) is a top-level atom of σ(X).
If s ∈ ∆Γ, then Condition 3(b) of Definition 9 implies that there is a Ci with
τ(Ci, D) = 1. But also in the case that s ∈ ∆τ , we know that s is of the form
C1 v X and τ(C1, X) = 1 holds. By Condition 1(f), we deduce that τ(Ci, D) = 1
holds for i = 1. By definition of the order >, the non-variable atom D can only
contain a variable Y with X > Y . By the induction hypothesis, σ satisfies all sub-
sumptions from ∆τ having variables smaller than X w.r.t. > on the right-hand side.
Thus, we can apply Lemma 10 to conclude that σ(Ci) v σ(D) holds.

The other top-level atoms of σ(X) that we have to consider are of the form ∃w.A
for A ∈ Nc and w ∈ θ(XA). Since θ is a solution of IΓ,τ , it satisfies the inclusion
IA(s), which implies that there is a Ci such that w ∈ θ(fA(Ci)). We consider the
following cases:

1. If Ci is a concept constant, then it must be A since otherwise we would have
w ∈ θ(∅) = ∅. Thus, we have w ∈ θ({ε}) = {ε}, i.e., w = ε, which implies
that σ(Ci) = A = ∃w.A.

2. In the case that Ci = Y is a variable, we have w ∈ θ(YA). Thus, ∃w.A is a
top-level atom of σ(Y) = σ(Ci), which implies σ(Ci) v ∃w.A.

3. In the remaining case that Ci = ∃r.C ′ for a role name r and a variable
or constant C ′, we have w ∈ θ({r}fA(C ′)). Thus, w is of the form
rw′ for w′ ∈ θ(fA(C ′)). Applying the considerations from cases 1 and
2 to C ′ and w′ yields the subsumption σ(C ′) v ∃w′.A, which implies
σ(Ci) = ∃r.σ(C ′) v ∃r.∃w′.A = ∃w.A.

Deciding Unifiability and Computing Unifiers in EL without Top 17

Finally, to show that σ is a local EL−>-unifier, we again consider all top-level
atoms of σ(X), for each variable X . For the top-level atoms of the form σ(D) for
D ∈ Sτ (X), we immediately have D ∈ NV(Γ) since Sτ (X) ⊆ NV(Γ). Now
consider a top-level particle ∃w.A of σ(X). If w = ε, then A is a non-variable atom
of Γ since we assumed that all elements of Nc occur in Γ. Otherwise,w ∈ θ(XA)\{ε}
and, by locality of θ, there is a subsumption of the form C1 u . . .uCn v? X in ∆Γ,τ

and an index i ∈ {1, . . . , n} such that w ∈ θ(fA(Ci)) and Ci is neither a variable
nor a constant.

Thus, Ci is of the form ∃r.C ′, where C ′ is either the constant A or a variable. Con-
sequently, either w ∈ {r} or w ∈ {r}θ(C ′A). In the former case, ∃w.A = ∃r.A = Ci
is a ground atom of Γ. In the latter case, we have w = rw′ for some w′ ∈ θ(C ′A).
By definition of σ, this implies σ(C ′) v ∃w′.A, which yields σ(Ci) v ∃w.A. By
Lemma 2, ∃w.A is a particle of σ(Ci). Since Ci ∈ NV(Γ), the particle ∃w.A fulfills
the condition for locality of σ.

This concludes the proof of Theorem 14, which shows that solvability of ∆Γ,τ with
a unifier σ that satisfies Sτ ≤ Sσ can be reduced to solvability of IΓ,τ with a finite,
admissible solution θ. However, we are also interested in the size of the computed
unifier σ in terms of the size of the solution θ. We will denote the size of something
by ‖ · ‖, which is basically the number of symbols it takes to write it down, where we
assume that every role name r ∈ NR is of size 1 and auxiliary symbols like (, }, and
∃ are of size 0.

For a solution θ of IΓ,τ , we define

‖θ‖ :=
∑
A∈Nc

∑
X∈Nv

∑
w∈θ(XA)

(|w|+ 1),

where |w| is the length of a word w ∈ N∗R. Similarly, we measure the size ‖C‖
of an EL−>-concept term C by the number of distinct occurrences of concept and
role names in C and the size of a set of concept terms is the sum of the sizes of its
elements. The size of Γ = {C1 v? D1, . . . , Cn v? Dn} is the sum of the sizes of
C1, D1, . . . , Cn, Dn. Finally, the size ‖σ‖ of a substitution σ is the sum of the sizes
of σ(X) for all X ∈ Nv.

To analyze the size of the unifier constructed in Lemma 17, we need another
auxiliary definition. For a variable X ∈ Var(Γ), we consider all sequences
X = Xn > · · · > X1 where X1 is minimal w.r.t. > := >Sτ . The length of such a
sequence is the number of variables it contains, i.e., n. The height of X is defined as
the maximal length of all these sequences. This means that the height of a minimal
variable is 1 and the height is bounded by |Var(Γ)| since Sτ is acyclic.

Lemma 18 Let θ be a finite, local, admissible solution of IΓ,τ and σ be the local
EL−>-unifier constructed from θ as described in Lemma 17. Then for every X ∈ Nv

of height n we have

‖σ(X)‖ ≤ n‖Γ‖n + ‖θ‖

(
n−1∑
i=0

‖Γ‖i
)
.

Proof We prove the claim by induction on >. Let X be a minimal variable w.r.t. >.
Since all non-variable atoms in Sτ (X) are ground and occur in Γ, the size of σ(X) is
bounded by ‖Sτ (X)‖+ ‖θ‖ ≤ ‖Γ‖+ ‖θ‖.

18 F. Baader, N. T. Binh, S. Borgwardt, and B. Morawska

If X is a variable of height n > 1, then the height of all variables Y < X
must be smaller than n. Since all non-variable atoms D ∈ Sτ (X) contain only
variables smaller than X w.r.t. >, by induction we can bound the size of each σ(D)
for D ∈ Sτ (X) by

n‖Γ‖n−1 + ‖θ‖

(
n−2∑
i=0

‖Γ‖i
)
,

where the additional ‖Γ‖n−1 is a very loose bound for the additional role name in the
case of D = ∃r.Y , assuming without loss of generality that Γ is non-empty. Since
there are at most ‖Γ‖ elements in Sτ (X), the size of σ(X) is thus bounded by

‖Γ‖

(
n‖Γ‖n−1 + ‖θ‖

(
n−2∑
i=0

‖Γ‖i
))

+ ‖θ‖ = n‖Γ‖n + ‖θ‖

(
n−1∑
i=0

‖Γ‖i
)
,

which concludes the proof.

Since the height of any variable is bounded by |Γ|, this lemma bounds the overall size
of σ by

‖Γ‖‖Γ‖+1 + ‖θ‖

‖Γ‖−1∑
i=0

‖Γ‖i
 ≤ (‖θ‖+ 1)‖Γ‖‖Γ‖+1.

The goal of the next step is to construct a solution θ of size exponential in the size
of Γ, which then yields an exponential upper bound on the size of the constructed
unifier.

4.4 Step 4: Constructing local solutions In this step, we show how to test whether
the system IΓ,τ of linear language inclusions has a finite, admissible solution or not,
and construct a local one if it does. The main idea is to consider the greatest solution
of IΓ,τ .

To be more precise, given a system of linear language inclusions I, we can order
the solutions of I by defining θ1 ⊆ θ2 iff θ1(X) ⊆ θ2(X) for all indeterminates X of
I. Since θ∅, which assigns the empty set to each indeterminate of I, is a solution of
I and solutions are closed under argument-wise union, the following clearly defines
the (unique) greatest solution θ∗ of I w.r.t. this order:

θ∗(X) :=
⋃

θ solution of I

θ(X).

Lemma 19 Let X be an indeterminate in I and θ∗ the maximal solution of I. If
θ∗(X) is nonempty, then there is a finite solution θ of I such that θ(X) is nonempty.

Proof Let w ∈ θ∗(X). We construct the finite solution θ of I by keeping only the
words of length at most |w|: for all indeterminates Y occurring in I we define

θ(Y) := {u ∈ θ∗(Y) | |u| ≤ |w|}.
By definition, we have w ∈ θ(X). To show that θ is indeed a solution of I, consider
an arbitrary inclusion Y ⊆ L0∪L1X1∪ . . .∪LnXn in I , and assume that u ∈ θ(Y).
We must show that u ∈ L0∪L1θ(X1)∪ . . .∪Lnθ(Xn). Since u ∈ θ∗(Y) and θ∗ is a
solution of I, we have (i) u ∈ L0 or (ii) u ∈ Liθ∗(Xi) for some i, 1 ≤ i ≤ n. In the
first case, we are done. In the second case, u = αu′ for some α ∈ Li ⊆ NR∪{ε} and
u′ ∈ θ∗(Xi). Since |u′| ≤ |u| ≤ |w|, we have u′ ∈ θ(Xi), and thus u ∈ Liθ(Xi).

Deciding Unifiability and Computing Unifiers in EL without Top 19

Lemma 20 There is a finite, admissible solution of IΓ,τ iff the maximal solution
θ∗ of IΓ,τ is admissible.

Proof If IΓ,τ has a finite, admissible solution θ, then the maximal solution of IΓ,τ

contains this solution, and is thus also admissible.
Conversely, if θ∗ is admissible, then (by Lemma 19) for each X ∈ Var(Γ) there

is a constant A(X) and a finite solution θX of IΓ,τ such that θX(XA(X)) 6= ∅.
The union of these solutions θX for X ∈ Var(Γ) is the desired finite, admissible
solution.

Given this lemma, it remains to show how we can test admissibility of the maximal
solution θ∗ of IΓ,τ . For this purpose, it is obviously sufficient to be able to test,
for each indeterminate XA in IΓ,τ , whether θ∗(XA) is empty or not. We will do
this by representing the languages θ∗(XA) using alternating finite automata with
ε-transitions (ε-AFA), which are a special case of two-way alternating finite automata,
and testing these automata for emptiness. As shown in [21], the emptiness problem
for two-way alternating finite automata (and thus also for ε-AFA) is in PSPACE.

Alternating finite automata can make two kinds of transitions: nondeterministic
transitions that “guess” the next state of the automaton; and “universal” transitions that
force the automaton to explore every possible successor state. One can imagine these
universal transitions as the splitting of the automaton into several copies, each of which
goes into one possible successor state and continues the computation independently.

Definition 21 An alternating finite automaton with ε-transitions (ε-AFA) is a tuple
A = (Q∃, Q∀,Σ, q0, δ, F), consisting of
• two finite, disjoint sets Q∃, Q∀ of (existential/universal) states (we will write
Q for Q∃ ∪Q∀),
• a finite alphabet Σ of input symbols,
• an initial state q0 ∈ Q,
• a transition function δ : Q× (Σ ∪ {ε})→ P(Q) and
• a set F ⊆ Q of final states.

A configuration of A is a pair (q, w), where q ∈ Q and w ∈ Σ∗. The transition
function δ induces the following transition relation `A between configurations:
(q, w) `A (q′, w′) iff either

• w = w′ and q′ ∈ δ(q, ε) (ε-transition) or
• w = αw′ and q′ ∈ δ(q, α) for some α ∈ Σ (α-transition).

Note that the second kind of transition is only possible if w 6= ε, i.e., there is still a
part of the input word left to read.

A run of A is a finite, directed, nonempty tree labeled by configurations of A that
satisfies the following conditions:
• If (q, w) is the label of some node and q ∈ Q∃, then the node has exactly one

successor labeled by a configuration (q′, w′) with (q, w) `A (q′, w′).
• If (q, w) is the label of some node and q ∈ Q∀, then for all configurations

(q′, w′) with (q, w) `A (q′, w′) there is exactly one successor of the node
labeled by (q′, w′).

An ε-path is a path in this tree that consists only of ε-transitions. A run is called
successful iff for every leaf one of the following conditions holds. If (q, w) is the
label of the leaf, then either

20 F. Baader, N. T. Binh, S. Borgwardt, and B. Morawska

• q ∈ F and w = ε, or
• q ∈ Q∀ and there is no configuration (q′, w′) with (q, w) ` (q′, w′).

An input word w ∈ Σ∗ is accepted by A iff there is a successful run of A with root
label (q0, w). The language recognized byA is denoted by L(A) and contains exactly
the words accepted by A.

Our goal is to define an ε-AFA AX that recognizes exactly θ∗(X) for one indeter-
minate X of a set I of linear language inclusions. The automaton checks whether the
word w is an element of θ∗(X) using the following ideas. Starting from the indeter-
minate X , the automaton splits into several copies that check the restrictions imposed
by all the inclusions of the form X ⊆ L0 ∪ L1X1 ∪ . . . ∪ LnXn. Each of these
copies nondeterministically guesses which of the sets L0, L1θ

∗(X1), . . . , Lnθ
∗(Xn)

contains w. If a copy guesses w to be in θ∗(Xi), this corresponds to an ε-transition
and is only possible of Li contains ε. We will describe below how we use counters to
detect if a sequence of such ε-transitions visits the same variable twice and why this
should not prevent the automaton from accepting a word.

In the following, let I be a finite set of linear language inclusions. We denote by
Ind(I) the set of all indeterminates occurring in I.

Definition 22 Let X ∈ Ind(I). The ε-AFA AX = (Q∃, Q∀,Σ, q0, δ, F) is de-
fined as follows:
• Q∃ :=

(
I × {0, . . . , |Ind(I)|}

)
∪ {f0},

• Q∀ :=
(
Ind(I)× {0, . . . , |Ind(I)|}

)
∪ {f1},

• q0 := (X, 0),
• F := {f0},
• δ(fi, α) := ∅ for every i ∈ {0, 1} and α ∈ Σ ∪ {ε},
• δ((Y, λ), ε) := {(i, λ) | i : Y ⊆ . . . ∈ I} and δ((Y, λ), α) := ∅ for all
Y ∈ Ind(I), λ ∈ {0, . . . , |Ind(I)|}, and α ∈ Σ,
• For all inclusions i of the form Y ⊆ L0 ∪ L1X1 ∪ . . . ∪ LnXn in I,
λ ∈ {0, . . . , |Ind(I)|} and α ∈ Σ,

δ((i, λ), ε) := {g(Xi, λ) | i ∈ {1, . . . , n}, ε ∈ Li} ∪

{
{f0} if ε ∈ L0,
∅ otherwise,

δ((i, λ), α) := {(Xi, 0) | i ∈ {1, . . . , n}, α ∈ Li} ∪

{
{f0} if α ∈ L0,
∅ otherwise.

The auxiliary function g is defined as follows:

g(Xi, λ) :=

{
(Xi, λ+ 1) if λ < |Ind(I)|,
f1 otherwise.

In the case where there is one inclusion i of the formX ⊆ L0∪L1X1∪. . .∪LnXn

in I for which there is a symbol α ∈ Σ with ε /∈ Li and α /∈ Li for all i ∈ {0, . . . , n},
there is no valid α- or ε-transition from the (existential) state (i, λ). Thus, AX will
accept no word starting with α. This is consistent with the restriction imposed by i on
θ∗(X), since θ∗(X) can never contain a word starting with α.

The second component of the states is used to detect ε-cycles. Every time the
automaton makes an ε-transition, it increases the counter λ in the second component
of its state. This counts the number of consecutive states of the form (X,λ) connected

Deciding Unifiability and Computing Unifiers in EL without Top 21

((Y, 0), s)

((i3, 0), s)

(f0, ε)

s

ε

((i2, 0), s)

((X, 1), s)

((i1, 1), s)

((Y, 2), s)

((i3, 2), s)

(f0, ε)

s

ε

((i2, 2), s)

(f1, s)

ε

ε

ε

ε

ε

ε

Figure 1 A successful run of the automaton AY .

only by ε-transitions. If λ grows larger than |Ind(I)|, some indeterminate must have
occurred twice, i.e., there must have been an ε-cycle. The automaton then goes to
f1, i.e., it accepts everything that follows. Intuitively, if the automaton has already
checked the restrictions imposed on a particular indeterminate, then it does not need
to check them again. Thus, in a successful run everything that lies below the second
occurrence of an indeterminate on the same ε-path can be ignored. The use of this
cycle detection mechanism is illustrated in the following example.

Example 23 Let I consist of the three inclusions

i1 : X ⊆ {r} ∪ {ε}Y, i2 : Y ⊆ {ε}X, and i3 : Y ⊆ {s}.

Consider Figure 1, which shows the only successful run of AY accepting s ∈ θ∗(Y).
Intuitively, the automaton starts by asking whether s can be an element of θ∗(Y).

From i3 it can derive no contradiction, while from i2 it derives the information that this
is possible only if s is also an element of θ∗(X). It then proceeds to the inclusion i1,
which again redirects it to Y . In essence, at this point it has the following information:
s can be an element of θ∗(Y) only if s is an element of θ∗(Y). Thus, the automaton
can affirm the question, since θ∗ is the maximal solution and will certainly contain a
word if there is no reason against it.

Since ε-AFA only accept if there is a finite successful run, the restriction on
the length of ε-paths is necessary. Otherwise, all runs starting in the configuration
((Y, 0), s) would have to be infinite.

In the following, we show that the automata introduced in Definition 22 actually
accept the maximal solution of I.

Theorem 24 Let X ∈ Ind(I) and θ∗ be the maximal solution of I. Then
L(AX) = θ∗(X).

Again, we prove the two directions of this equality separately.

Lemma 25 Let X ∈ Ind(I) and θ∗ be the maximal solution of I. Then
θ∗(X) ⊆ L(AX).

22 F. Baader, N. T. Binh, S. Borgwardt, and B. Morawska

Proof Let w ∈ θ∗(X). We construct a run of AX on w as follows. For every node
v, we maintain the invariant P (v) that u ∈ θ∗(Y) holds if the node is labeled by
((Y, . . .), u) or ((i, . . .), u) for some inclusion i ∈ I with Y on the left-hand side.

The root v0 is labeled by ((X, 0), w) and satisfies P (v0) by assumption. Let now
v be a node of the run that already satisfies P (v).
• If the label of v is ((Y, λ), u), then P (v) implies u ∈ θ∗(Y). For every i ∈ I

having Y on the right hand side, we introduce a successor vi of v that is
labeled by ((i, λ), u). Obviously, P (vi) follows directly from P (v).
• If the label of v is ((i, λ), u) for an inclusion

i : Y ⊆ L0 ∪ L1X1 ∪ . . . ∪ LnXn

in I, then P (v) yields u ∈ θ∗(Y). Since θ∗ is a solution of I, either u ∈ L0

or u ∈ Liθ∗(Xi) for some i ∈ {1, . . . , n}. In the first case, we introduce a
successor v′ of v that is labeled by (f0, ε). Otherwise, there is α ∈ Li such
that u = αu′ with u′ ∈ θ∗(Xi). We introduce a single successor v′ of v that
is labeled as follows.

– If α = ε and λ < |Ind(I)|, then we label v′ by ((Xi, λ+ 1), u′). Since
u′ ∈ θ∗(Xi), P (v′) is satisfied.

– If α = ε and λ = |Ind(I)|, then we label v′ by (f1, u
′).

– If α ∈ Σ, then we label v′ by ((Xi, 0), u′). P (v′) is again satisfied by
the same reason as above.

It is easily verified that all introduced transitions are valid w.r.t. `AX . Furthermore,
the label of any leaf is either (f0, ε) or contains an universal state without possible
successors w.r.t. `AX , i.e., either f1 or a state containing an indeterminate Y that
does not occur on the left-hand side of any inclusion in I.

The constructed tree is finite, since every ε-path is terminated by f1 after finitely
many steps. Thus, we have constructed a successful run of AX , which implies
w ∈ L(AX).

As we want to compute finite, local, admissible solutions of IΓ,τ , we do not simply
prove the other direction of Theorem 24, but a stronger result which also considers an
adequate notion of locality for runs of our ε-AFA.

Definition 26 Let A be an ε-AFA. A successful run of A is called local if it has at
least one leaf labeled by (q, ε) for some state q of A. We denote by Llocal(A) the set
of all words accepted by A via local, successful runs.

By definition, in any successful run with a leaf labeled by (q, ε), we know that q is
either a final state or a universal state without ε-successors.

Lemma 27 Let A be an ε-AFA. Then L(A) is nonempty iff Llocal(A) is nonempty.

Proof The “if”-direction is trivial. For the other direction, consider a successful
run R of A that is not local. All leaves of this run are labeled by configurations
(q, w) with w 6= ε. Thus, the states q have to be universal states without successors.
However, since such states accept any word, it is easy to change R into a local run.
We simply identify the shortest word w that occurs in the label of a leaf. Since R is
a run, w is the shortest word occurring in it and all other words in R must have the
suffix w. Thus, we can remove the suffix w from all configurations in R and obtain a
successful run that accepts a shorter word. This new run is local since it must contain
at least one leaf labeled by (q, ε) for some state q.

Deciding Unifiability and Computing Unifiers in EL without Top 23

This construction also shows that runs accepting minimal words, i.e., words for which
no prefix is accepted by A, are always local. This is an important property of locality
in ε-AFA, which will turn out to be useful. We can now proceed to show (a modified
version of) the remaining direction of Theorem 24.

Lemma 28 If w ∈ Llocal(AX), then there is a finite, local solution θ of I such
that w ∈ θ(X) and every w′ ∈ θ(Y) for some Y ∈ Ind(I) is a suffix of w.

Proof. If w ∈ Llocal(AX), then there is a successful local run R of AX on w. Let
V denote the set of nodes of R. We restrict the set of nodes to a subset V ′ ⊆ V as
follows. Intuitively, since we used the restriction on the length of ε-paths only to
detect if one indeterminate has occurred twice, we now remove the unnecessary parts
from R, i.e., the parts of R below the second occurrence of an indeterminate on an
ε-path.

Formally, for every leaf of R labeled by (f1, u) for some word u ∈ Σ∗, there must
be an ε-path with nodes labeled by

((X1, 0), u), ((X2, 1), u), . . . , ((X|Ind(I)|+1, |Ind(I)|), u), (f1, u)

that ends in this leaf. We consider the smallest j ∈ {1, . . . , |Ind(I)|+ 1} that marks
the second occurrence of an indeterminate on this path. We remove the node labeled
by ((Xj , j − 1), u) and all nodes below it from V . After we have done this for every
leaf labeled by f1, the set V ′ no longer contains a node with an outgoing edge to f1.

We now define the solution θR by

θR(Y) := {u ∈ Σ∗ | ∃v ∈ V ′ : v is labeled by ((Y, . . .), u)}

for all Y ∈ Ind(I). To show that this actually defines a solution of I , we consider an
inclusion

i : Y ⊆ L0 ∪ L1X1 ∪ . . . ∪ LnXn

from I and a word u ∈ θR(Y). There is a node v ∈ V ′ labeled by ((Y, λ), u) for
some λ ∈ {0, . . . , |Ind(I)|}. This node must have a successor v′ ∈ V ′ labeled by
((i, λ), u), which in turn has a single successor v′′ ∈ V . We make a case distinction
on the label (q, u′) of v′′.
• If u = u′, then q ∈ δ((i, λ), ε). Then either q = f0, which implies u = ε ∈ L0

since R is successful, or q = g(Xi, λ) for some i ∈ {1, . . . , n} with ε ∈ Li.
In the second case, λ < |Ind(I)| by construction of V ′. If v′′ ∈ V ′, then

q = (Xi, λ + 1) implies that u ∈ θR(Xi) = {ε}θR(Xi) ⊆ LiθR(Xi). If
v′′ /∈ V ′, there is an ancestor ṽ ∈ V ′ of v′′ with label ((Xi, λ

′), u) and λ′ ≤ λ
since v′′ marks the second occurrence of an indeterminate on an ε-path. In
this case, we also have u ∈ θR(Xi) ⊆ LiθR(Xi).
• If u = αu′ for α ∈ Σ, then q ∈ δ((i, λ), α). Either q = f0 and α ∈ L0, which

implies u′ = ε, since R is successful. In this case, we have u = α ∈ L0. The
other possibility is that q = (Xi, 0) for some i ∈ {1, . . . , n} with α ∈ Li. In
this case, v′′ must be an element of V ′, and thus u′ ∈ θR(Xi), which implies
u = αu′ ∈ {α}θR(Xi) ⊆ LiθR(Xi).

In every case, u is also contained in the substitution of the right-hand side of i under
θR. Thus, θR is a solution of I.

Since V ′ is a subset of the finite set of nodes of R, θR is finite. By definition of
the transition relation of AX , the run R, and thus also θR, contains only suffixes of

24 F. Baader, N. T. Binh, S. Borgwardt, and B. Morawska

w. Furthermore, w ∈ θR(X) since the root node of R is labeled by ((X, 0), w) and
contained in V ′. It remains to show that θR is local.

Since R is local, there is a leaf of R that is labeled by (q, ε) for some state q of
AX . We now consider the path p leading from the root of R to this leaf. Its root
is labeled by ((X, 0), w), while its leaf is labeled by (q, ε). Thus, every suffix of w
must occur along this path. To show locality, it thus suffices to show that every word
occurring along p satisfies the conditions for locality of θR. We will show this by
backwards induction along p.

We begin the induction at the leaf of p, which is labeled by (q, ε). The word ε
vacuously fulfills the conditions for locality of θR. Let now v′ be a node of p labeled
by (q′, u′) for a state q′ and a suffix u′ of w that fulfills the conditions for locality
of θR. If v′ is the root node, we are done. Otherwise, we show the same for the
predecessor v of v′, which also lies on the path p. Let (q, u) be the label of v and
consider the following cases:

• If u = u′, then u fulfills the condition for locality of θR, since u′ does.
• Otherwise, u = αu′ for some α ∈ Σ and q must be of the form (i, λ) for some

inclusion i : Y ⊆ L0 ∪ L1X1 ∪ . . . LnXn in I. Then the label (q′, u′) of v′

can only have one of the following forms:
– If q′ = f0, then α ∈ L0. Since R is successful, we then have u′ = ε and
u = α ∈ L0.

– Otherwise, q′ = (Xi, 0) for some i ∈ {1, . . . , n} and α ∈ Li. But then
u′ ∈ θR(Xi) by definition of θR, and thus

u = αu′ ∈ {α}θR(Xi) ⊆ (Li \ {ε})θR(Xi).

Thus, the word u fulfills the condition of locality since it is contained in the
right-hand side of i under θR.

The proof of this lemma works for any word w accepted by a (possibly non-local) run
of AX . The only difference is that the constructed finite solution θ of I that contains
w need not be local. Since every finite solution of I is contained in the maximal
solution θ∗, this, together with Lemma 27, concludes the proof of Theorem 24. We
can now show the main results of this section.

Theorem 29 The problem of deciding unifiability in EL−> is in PSPACE.

Proof We show that the problem is in NPSPACE, which is equal to PSPACE by
Savitch’s theorem [24].

Let Γ be a flat EL−>-unification problem. By Lemma 11, Theorem 14, and
Lemma 20, we know that Γ is EL−>-unifiable iff there is a subsumption mapping τ
for Γ such that the maximal solution θ∗ of IΓ,τ is admissible.

Thus, we first guess a mapping τ : At(Γ)2 → {0, 1} and test whether τ is a
subsumption mapping for Γ. Guessing τ can clearly be done in NPSPACE. For a
given mapping τ , the test whether it is a subsumption mapping for Γ can be done in
polynomial time.

From τ we can first construct ∆Γ,τ and then IΓ,τ in polynomial time. Given IΓ,τ ,
we then construct the (polynomially many) ε-AFA AXA , and test them for emptiness.
Since emptiness of two-way alternating finite automata (where in addition to normal
and ε-transitions also backwards transitions are allowed) can be tested in PSPACE
[21], this can be achieved within PSPACE.

Deciding Unifiability and Computing Unifiers in EL without Top 25

Given the results of these emptiness tests, we can then check in polynomial time
whether, for each concept variable X of Γ there is a concept constant A of Γ such
that θ∗(XA) = L(AXA) 6= ∅. If this is the case, then θ∗ is admissible, and thus Γ is
EL−>-unifiable.

We now modify this decision procedure such that it outputs a local EL−>-unifier
for any solvable EL−>-unification problem. However, since we actually have to
output the unifier, the complexity of the algorithm is higher than for just deciding
the existence of a unifier; more precisely, we need exponential time in the size of the
input unification problem.

The algorithm uses the well-known reduction from any alternating automaton to
an equivalent nondeterministic automaton of exponential size [15, 17]. Additionally,
it employs a polynomial-time algorithm to find shortest paths in a directed graph,
e.g., Dijkstra’s algorithm [18]. This will be used to find a successful run of the
nondeterministic automaton.

Theorem 30 Given a solvable EL−>-unification problem Γ, we can construct a
local EL−>-unifier of Γ of at most exponential size in time exponential in the size of Γ.

Proof We start by enumerating all possible subsumption mappings τ . This can be
done in exponential time since the size of τ is polynomial in the size of Γ. Since Γ is
unifiable in EL−>, we will find one τ such that for each variable X there is a constant
A(X) for which the automaton A(X) := AXA(X)

accepts a non-empty language.
As detailed in the proof of Theorem 29, we can find A(X) and construct A(X) in
polynomial space—and therefore in exponential time—in the size of Γ.

For each X , we now construct a nondeterministic automaton B(X) that is equiv-
alent to A(X) [15]. This automaton has as state set the powerset of the original
state set. A set can be reached from another if these sets are compatible with the
reachability in the alternating automaton. This means that for every universal state,
all successor states must be in the successor state set; for an existential state, there
must be one successor in the set. The final states of B(X) are those sets that contain
only final states of A(X) or universal states without successors. The size of B(X) is
at most exponential in the size of A(X), and thus exponential in the size of Γ.

We now search for a successful run r of B(X) of minimal length, i.e., a shortest
path in the transition graph of B(X) that starts in the initial state {(XA(X), 0)} and
leads to a final state. Such a path can be found in exponential time using, e.g.,
Dijkstra’s algorithm [18]. It is clear that r is of size at most exponential in Γ and it
accepts a word wX that is of length exponential in Γ.

From the state sets occurring in r a corresponding tree-shaped run R of A(X) can
be reconstructed by the following procedure. We start with a single root node that is
labeled by ((XA(X), 0), wX) and iteratively construct the layers of R of increasing
depth. For each existential state in a state set of r, there must be a successor in the
next state set. Similarly, for every universal state all its successors can be found in the
next state set. Thus, for each configuration occurring in the current tree, we can find a
valid transition of A(X) and can add the corresponding child nodes to the tree. Since
r is finite, this construction terminates. The result is a successful runR ofA(X) since
r ends in a state set containing only final states or universal states without successors.
Since the accepted word is of minimal length, R is local (see the proof of Lemma 27).

26 F. Baader, N. T. Binh, S. Borgwardt, and B. Morawska

Thus, for every variable X of Γ we can find a word wX ∈ Llocal(A(X)) which is
of length at most exponential in the size of Γ. By Lemma 28, we can construct a finite,
local solution θX of IΓ,τ with wX ∈ θX(XA(X)) that contains only suffixes of wX .
Thus, θX is of size exponential in the size of Γ since it contains at most exponentially
many words of size at most exponential in the size of Γ.

The union θ of all the solutions θX is still a solution of IΓ,τ . It is finite since it
is a finite union of finite solutions. It is also admissible since for every X the set
θ(XA(X)) is non-empty and it is local since all contained words satisfy the conditions
on locality by locality of the component solutions θX . Finally, θ is of size exponential
in the size of Γ since it is the union of the polynomially many solutions θX . By
Lemmata 12, 17, and 18, we can now construct a local EL−>-unifier of Γ of size
exponential in the size of Γ.

5 Hardness

In this section, we provide the corresponding hardness results to Theorems 29 and 30.
We first reduce the intersection emptiness problem for deterministic finite automata
(DFA) to a unification problem in EL−>. The intersection emptiness problem for DFA
is PSPACE-complete [19, 22]. Afterwards we will use this reduction to construct a
series of solvable EL−>-unification problems that only have local EL−>-unifiers of
exponential size.

An alternating finite automaton (AFA)A = (Q∃, Q∀,Σ, q0, δ, F) is an ε-AFA with
a restricted transition function δ : Q× Σ→ P(Q) that does not allow ε-transitions.
The semantics of these automata is the same as for ε-AFA, except that the relation
`A is restricted to non-ε-transitions. The automaton is called nondeterministic finite
automaton (NFA) if Q∀ = ∅ and is then written as (Q,Σ, q0, δ, F). It is called deter-
ministic finite automaton (DFA) if it is an NFA and for each q ∈ Q and α ∈ Σ, the
set δ(q, α) has the cardinality 0 or 1. The transition function is then equivalently ex-
pressed as the partial function δ′ : Q×Σ→ Q where δ′(q, α) = q′ iff δ(q, α) = {q′}.
This definition implies that any DFA has at most one run on any given word.

First, we define a translation from a given DFA A = (Q,Σ, q0, δ, F) to a set
of subsumptions ΓA. In the following, we only consider automata that accept a
nonempty language. For such DFAs we can assume without loss of generality that
there is no state q ∈ Q that cannot be reached from q0 or from which F cannot be
reached. In fact, such states can be removed from A without changing the accepted
language.

For every state q ∈ Q, we introduce a variable Xq . There is only one constant, A,
and we define NR := Σ. The set ΓA is defined as follows:

ΓA := {Lq v? Xq | q ∈ Q \ F} ∪ {A u Lq v? Xq | q ∈ F}, where

Lq :=
l

α∈Σ
δ(q,α) is defined

∃α.Xδ(q,α).

Note that the left-hand sides of the subsumptions in ΓA are indeed EL−>-concept
terms, i.e., the conjunctions on the left-hand sides are nonempty. In fact, every state
q ∈ Q is either a final state or a final state is reachable by a nonempty path from q. In
the first case, A occurs in the conjunction, and in the second, there must be an α ∈ Σ
such that δ(q, α) is defined, in which case ∃α.Xδ(q,α) occurs in the conjunction.

Deciding Unifiability and Computing Unifiers in EL without Top 27

Lemma 31 Let q ∈ Q, w ∈ Σ∗ and γ be a ground EL−>-unifier of ΓA with
γ(Xq) v ∃w.A. Then w ∈ L(Aq), where Aq := (Q,Σ, q, δ, F) is obtained from A
by making q the initial state.

Proof We prove this by induction on the length of w. If |w| = 0, then γ(Xq) v A.
Thus, A must be a top-level conjunct of γ(Xq). Since γ is a unifier of ΓA, this can
only be the case if q ∈ F . Thus, w = ε is accepted by Aq .

Let now w = α′w′ with α′ ∈ Σ, w′ ∈ Σ∗. Since γ is a unifier of ΓA,
l

α∈Σ
δ(q,α) is defined

∃α.γ(Xδ(q,α)) v ∃α′w′.A.

By Lemma 1, we must have γ(Xδ(q,α′)) v ∃w′.A or some state q for which δ(q, α′)
is defined. By induction, we know that w′ is accepted by Aδ(q,α′). Thus, w = α′w′

is accepted by Aq .

Together with Lemma 2, this lemma implies that, for every ground EL−>-unifier
γ of ΓA, the language {w ∈ Σ∗ | ∃w.A ∈ Part(γ(Xq0))} is contained in L(A).
Conversely, we will show that for every word w accepted by A we can construct a
unifier γw with ∃w.A ∈ Part(γw(Xq0)).

For the construction of γw, we consider every q ∈ Q and try to find a word uq
of minimal length that is accepted by Aq. Such a word always exists since we have
assumed that we can reach F from every state. Taking arbitrary such words is not
sufficient, however. They need to be related in the following sense.

Lemma 32 There exists a mapping from the states q ∈ Q to words uq ∈ L(Aq)
such that that either q ∈ F and uq = ε or there is a symbol α ∈ Σ such that δ(q, α)
is defined and uq = αuδ(q,α).

Proof We construct the words uq using induction on the length n of a shortest word
accepted by Aq . If n = 0, then q must be a final state. In this case, we set uq := ε.

Now, let q be a state such that a shortest word wq accepted byAq has length n > 0.
Then wq = αw′ for α ∈ Σ and w′ ∈ Σ∗ and the transition δ(q, α) = q′ is defined.
The length of a shortest word accepted by Aq′ must be smaller than n, since w′ is
accepted by Aq′ . By induction, uq′ ∈ L(Aq′) has already been defined and we have
αuq′ ∈ L(Aq). Since αuq′ cannot be shorter than wq = αw′, it must also be of
length n. We now define uq := αuq′ .

We can now proceed with the definition of γw for a word w ∈ Σ∗ that is accepted
by A. The unique successful run of A on w = α1 . . . αn yields a sequence of states
q0, q1, . . . , qn with qn ∈ F and δ(qi, αi+1) = qi+1 for every i ∈ {0, . . . , n− 1}. We
define the substitution γw as follows:

γw(Xq) := ∃uq.A u
l

i∈Iq

∃αi+1 . . . αn.A,

where Iq := {i ∈ {0, . . . , n− 1} | qi = q}. For every q ∈ Q, we include at least the
conjunct ∃uq.A in γw(Xq), and thus γw is in fact an EL−>-substitution.

Lemma 33 If w ∈ L(A), then γw is an EL−>-unifier of ΓA and we have
γw(Xq0) v ∃w.A.

28 F. Baader, N. T. Binh, S. Borgwardt, and B. Morawska

Proof Let the unique successful run of A on w = α1 . . . αn be given by the
sequence q0q1 . . . qn of states with qn ∈ F and δ(qi, αi+1) = qi+1 for every
i ∈ {0, . . . , n− 1}, and let γw be defined as above.

We have to show that γw satisfies the subsumption constraint introduced for every
state q ∈ Q, i.e., l

α∈Σ
δ(q,α) is defined

∃α.γw(Xδ(q,α)) v γw(Xq)

if q /∈ F and
A u

l

α∈Σ
δ(q,α) is defined

∃α.γw(Xδ(q,α)) v γw(Xq)

if q ∈ F . To do this, we consider every top-level atom of γw(Xq) and show that it
subsumes the left-hand side of the above subsumption.
• Consider the conjunct ∃uq.A. If uq = ε, then q ∈ F and A occurs on the

left-hand side of the subsumption, which is thus satisfied. Otherwise, by
construction there is a transition δ(q, α) = q′ with uq = αuq′ . Since ∃u′q.A
is a top-level conjunct of γw(Xq′), we have γ(Xq′) v ∃uq′ .A, and thus
∃α.γw(Xq′) v ∃uq.A.
• Let i ∈ Iq, i.e., qi = q, and consider the conjunct ∃αi+1 . . . αn.A. Since we

have δ(qi, αi+1) = qi+1 and ∃αi+2 . . . αn.A is a conjunct of γw(Xqi+1), we
know that ∃αi+1.γw(Xqi+1

) v ∃αi+1 . . . αn.A.

This shows that γw is a ground EL−>-unifier of ΓA. Furthermore, 0 ∈ Iq0 implies
that the particle ∃α1 . . . αn.A = ∃w.A is a top-level conjunct of γw(Xq0), i.e.,
γw(Xq0) v ∃w.A.

The intersection emptiness problem considers finitely many DFAs A1, . . . ,Ak, and
asks whether L(A1) ∩ . . . ∩ L(Ak) 6= ∅. Since this problem is trivially solvable
in polynomial time in case L(Ai) = ∅ for some i, 1 ≤ i ≤ k, we can assume that
the languages L(Ai) are all nonempty. Thus, we can also assume without loss of
generality that the automata Ai = (Qi,Σ, q0,i, δi, Fi) have pairwise disjoint sets of
states Qi and are reduced in the sense introduced above, i.e., there is no state that
cannot be reached from the initial state or from which no final state can be reached.

The flat EL−>-unification problem Γ is now defined as follows:

Γ :=
⋃

i∈{1,...,k}

(
ΓAi ∪ {Xq0,i v? Y }

)
,

where Y is a new variable not contained in ΓAi for i = 1, . . . , k.

Lemma 34 Γ is unifiable in EL−> iff L(A1) ∩ . . . ∩ L(Ak) 6= ∅.

Proof If Γ is unifiable in EL−>, then it has a ground EL−>-unifier γ. Thus, there
must be a particle ∃w.A with w ∈ Σ∗ and ∃w.A ∈ Part(γ(Y)). This implies that
γ(Xq0,i) v γ(Y) v ∃w.A, and thus Lemma 31 yields w ∈ L(Ai,q0,i) = L(Ai) for
each i ∈ {1, . . . , k}. Thus, the intersection of the languages L(Ai) is nonempty.

Conversely, let w ∈ L(A1) ∩ . . . ∩ L(Ak). By Lemma 33, we have for each of
the unification problems ΓAi an EL−>-unifier γw,i such that γw,i(Xq0,i) v ∃w.A.
Since the automata have disjoint state sets, the unification problems ΓAi do not share
variables. Thus, we can combine the unifiers γw,i into an EL−>-substitution γ by

Deciding Unifiability and Computing Unifiers in EL without Top 29

defining γ(Y) := ∃w.A and γ(Xq) := γw,i(Xq) for each i ∈ {1, . . . , k} and q ∈ Qi.
Obviously, this is an EL−>-unifier of Γ since it satisfies the additional subsumptions
Xq0,i v? Y .

Since the intersection emptiness problem for DFAs is PSPACE-hard [19, 22], this
lemma immediately yields our final theorem:

Theorem 35 The problem of deciding unifiability in EL−> is PSPACE-hard.

This concludes our complexity analysis of the unification problem in EL−>.

Corollary 36 The problem of deciding unifiability in EL−> is PSPACE-complete.

The above construction also allows us to derive a lower bound on the size of
local EL−>-unifiers corresponding to the upper bound shown in Theorem 30: We can
construct a series of solvable EL−>-unification problems such that the size of any
EL−>-unifier is at least exponential in the size of the problem. The reason is that these
unifiers must contain particles of exponential size. Since a particle is just a nesting
of existential restrictions, exponential size also implies exponential depth. Here the
depth of a concept description is the maximal nesting of existential restrictions, i.e.,
given an EL−>-concept description C, its depth d(C) is defined as (i) 0 if C is a
concept name, (ii) the maximum of d(D) and d(D′) ifC = DuD′; and (iii) d(D)+1
if C = ∃r.D.

Example 37 We consider the proof of PSPACE-completeness of the intersection
emptiness problem for DFA [22]. For any deterministic Turing machineM with
polynomial space bound, the proof constructs several DFA Ai (i = 1, . . . , k) of size
polynomial in the size ofM. The number k of these automata is also polynomial in
the size ofM. These automata have the property that an input word u is accepted
byM iff there is a successful run r ofM on u such that wr ∈

⋂k
i=1 L(Ai). Here,

the word wr is a representation of the run r that is constructed by concatenating the
content of the tape ofM for each step of the run, i.e., it may be exponentially long.
This means that the intersection

⋂k
i=1 L(Ai) contains exactly the representations of

all successful runs ofM.
For each n ∈ N, consider the following (n + 2)-space bounded deterministic

Turing machine Mn with input alphabet {0, 1}. First, the machine Mn checks
whether the input is equal to 0n. If it is not,Mn rejects the word. Otherwise, it views
0n as the binary representation of the number 0 and then iteratively increases this
number by 1 until it reaches 1n.Mn can be defined in such a way that it works only
on the input tape section (and the two adjoining tape cells) and is of size polynomial
in n. It accepts only the word u = 0n and has only one successful run rn on this word.
The length of the representation wrn of rn is exponential in n sinceMn enumerates
exponentially many binary numbers.

For this deterministic Turing machine Mn, we can now construct k DFA Ai
(i = 1, . . . , k) with {wrn} =

⋂k
i=1 L(Ai), where k and the size of the automata are

bounded by a polynomial in n [22]. The equality {wrn} =
⋂k
i=1 L(Ai) holds since

by construction
⋂k
i=1 L(Ai) contains exactly the representations of all successful

runs ofMn.
Following the proof of Lemma 34, we now construct a flat unification problem

Γn of size polynomial in n that is unifiable in EL−> iff the intersection
⋂k
i=1 L(Ai)

30 F. Baader, N. T. Binh, S. Borgwardt, and B. Morawska

is non-empty. We now consider any local EL−>-unifier γ of Γn, which must exist
since this intersection contains the word wrn . By Lemmata 31 and 33, wrn is the only
word such that γ(Xq0,i) v ∃wrn .A holds for all i = 1, . . . , k. Since γ must satisfy
Xq0,i v? Y for each i = 1, . . . , n and γ(Y) must contain at least one particle, this
particle can only be ∃wrn .A. This particle is of size exponential in n, which shows
that every local EL−>-unifier of Γn is of size at least exponential in the size of Γn and
also of depth at least exponential in the size of Γn.

We thus have the following tight complexity bounds for the problem of computing
a local EL−>-unifier for a flat EL−>-unification problem.

Corollary 38 The depth of the concept terms in the image of the local EL−>-unifiers
of an EL−>-unification problem may grow exponentially in the size of the problem. On
the other hand, given a solvable EL−>-unification problem, we can always compute a
local EL−>-unifier of at most exponential size and depth in exponential time.

The reason that we stress the exponential depth of the constructed EL−>-unifiers
rather than just the exponential size is that, already in EL, local unifiers may have
exponential size. However, as detailed in Section 3.2, local EL-unifiers can be encoded
by acyclic TBoxes of polynomial size such that the substitution can be computed
as the unfolding w.r.t. this acyclic TBox. The depth of such an unfolding is always
linear in the number of defined concept names, and thus the depth of a concept term
in a local EL-unifier is always linear in the number of variables of the unification
problem. However, in EL−>we cannot compress local unifiers into an acyclic TBoxes
in the same way since any acyclic TBox encoding of the local EL−>-unifiers from
Example 37 would still have to be of exponential size, as they contain particles of
exponential depth.

6 Conclusion

Unification in EL was introduced in [3] as an inference service that can support
the detection of redundancies in large biomedical ontologies, which are frequently
written in this DL. Motivated by the fact that the large medical ontology SNOMED CT
actually does not use the top concept available in EL, we have in this paper investigated
unification in EL−>, which is obtained from EL by removing the top concept. More
precisely, SNOMED CT is an acyclic EL−>-TBox,3 rather than a collection of EL−>-
concept terms. However, as shown in [4], acyclic TBoxes can be easily handled
by a unification algorithm for concept terms. Furthermore, unification in EL−> is
equivalent to unification modulo the equational theory SLmO and can be used to
decide unification in the fragment of the modal logic Km that is restricted to the
connectives ∧ and ♦ri .

Surprisingly, it turned out that the complexity of unification in EL−> (PSPACE) is
considerably higher than of unification in EL (NP). From a theoretical point of view,
this result is interesting since it provides us with a natural example where reducing the
expressiveness of a given DL results in an increase of the complexity of the unifiability
problem. A corresponding complexity increase also occurs when we consider the
problem of computing local unifiers. For EL, local unifiers are of polynomial size
if represented by acyclic TBoxes. We have shown that a local EL−>-unifier can be
constructed by adding particles to an EL-unifier that has a polynomial representation

Deciding Unifiability and Computing Unifiers in EL without Top 31

as an acyclic TBox. These particles may, however, be of exponential length, which
cannot be compressed using acyclic TBoxes.

Apart from its theoretical interest, the results of this paper also have practical
implications. Whereas a practically rather efficient unification algorithm for EL can
readily be obtained by a translation into SAT [5], it is not so clear how to turn the
PSPACE algorithm for EL−>-unification introduced in this paper into a practically
useful algorithm. One possibility could be to use a SAT modulo theories (SMT)
approach [23]. The idea is that the SAT solver is used to generate all possible
subsumption mappings for Γ, and that the theory solver tests the system IΓ,τ induced
by τ for the existence of a finite, admissible solution. The theory solver basically has
to solve a series of reachability tests between sets of states of our ε-AFA. How well
this works will mainly depend on whether we can develop such a theory solver that
efficiently solves these reachability problems and satisfies well all the requirements
imposed by the SMT approach.

Regarding the complexity of unification in more expressive DLs, not much is
known. Allowing for a cycle-restricted form of general TBoxes in EL does not affect
the complexity [14]. If we add negation to EL, then we obtain the well-known DL
ALC, which corresponds to the basic (multi-)modal logic Km [25]. Decidability of
unification in K is a long-standing open problem. Undecidability of unification in some
extensions of K (for example, by the universal modality) was shown in [29]. These
undecidability results also imply undecidability of unification in some expressive DLs
(e.g., in SHIQ [20]).

Notes

1. See http://www.ihtsdo.org/snomed-ct/ for more information about SNOMED CT.

2. In [5], nearly the same conditions as in Definition 9 were expressed as propositional
clauses to show that EL-unifiability is in NP. There it was shown in Proposition 3.7 that
γτ is actually an EL-unifier of Γ.

3. Note that the right-identity rules in SNOMED CT [27] are actually not expressed using
complex role inclusion axioms, but through the SEP-triplet encoding [28]. Thus, complex
role inclusion axioms are not relevant here.

References

[1] Franz Baader. Terminological cycles in a description logic with existential restrictions.
In Georg Gottlob and Toby Walsh, editors, Proc. of the 18th Int. Joint Conf. on Artificial
Intelligence (IJCAI’03), pages 325–330. Morgan Kaufmann, 2003. 2, 10

[2] Franz Baader and Silvio Ghilardi. Unification in modal and description logics. Logic
Journal of the IGPL, 19(6):705–730, 2011. 8

[3] Franz Baader and Barbara Morawska. Unification in the description logic EL. In Ralf
Treinen, editor, Proc. of the 20th Int. Conf. on Rewriting Techniques and Applications
(RTA’09), volume 5595 of Lecture Notes in Computer Science, pages 350–364. Springer-
Verlag, 2009. 2, 3, 9, 30

32 F. Baader, N. T. Binh, S. Borgwardt, and B. Morawska

[4] Franz Baader and Barbara Morawska. Unification in the description logic EL. Logical
Methods in Computer Science, 6(3), 2010. 2, 3, 5, 7, 8, 9, 30

[5] Franz Baader and Barbara Morawska. SAT encoding of unification in EL. In Christian G.
Fermüller and Andrei Voronkov, editors, Proc. of the 17th Int. Conf. on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR’10), volume 6397 of Lecture
Notes in Computer Science, pages 97–111. Springer-Verlag, 2010. 2, 31

[6] Franz Baader and Paliath Narendran. Unification of concept terms in description logics.
J. of Symbolic Computation, 31(3):277–305, 2001. 2

[7] Franz Baader and Wayne Snyder. Unification theory. In John Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, pages 445–532. The MIT Press,
2001. 7

[8] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003. 1, 4

[9] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In
Leslie Pack Kaelbling and Alessandro Saffiotti, editors, Proc. of the 19th Int. Joint
Conf. on Artificial Intelligence (IJCAI’05), pages 364–369. Morgan Kaufmann, 2005. 2

[10] Franz Baader, Nguyen Thanh Binh, Stefan Borgwardt, and Barbara Morawska. Uni-
fication in the description logic EL without the top concept. In Nikolaj Bjørner and
Viorica Sofronie-Stokkermans, editors, Proc. of the 23rd Int. Conf. on Automated Deduc-
tion (CADE’11), volume 6803 of Lecture Notes in Artificial Intelligence, pages 70–84.
Springer-Verlag, 2011. 3

[11] Franz Baader, Nguyen Thanh Binh, Stefan Borgwardt, and Barbara Morawska. Comput-
ing local unifiers in the description logic EL without the top concept. In Franz Baader,
Barbara Morawska, and Jan Otop, editors, Proc. of the 25th Int. Workshop on Unification
(UNIF’11), pages 2–8, 2011. 3

[12] Franz Baader, Stefan Borgwardt, and Barbara Morawska. A goal-oriented algorithm
for unification in ELHR+ w.r.t. cycle-restricted ontologies. In Michael Thielscher
and Dongmo Zhang, editors, Proc. of the 25th Australasian Joint Conf. on Artificial
Intelligence (AI’12), volume 7691 of Lecture Notes in Artificial Intelligence, pages
493–504. Springer-Verlag, 2012. 3

[13] Franz Baader, Stefan Borgwardt, and Barbara Morawska. SAT-encoding of unification in
ELHR+ w.r.t. cycle-restricted ontologies. In Bernhard Gramlich, Dale Miller, and Uli
Sattler, editors, Proc. of the 6th Int. Joint Conf. on Automated Reasoning (IJCAR’12),
volume 7364 of Lecture Notes in Artificial Intelligence, pages 30–44. Springer-Verlag,
2012. 3

[14] Franz Baader, Stefan Borgwardt, and Barbara Morawska. Extending unification in EL
towards general TBoxes. In Gerhard Brewka, Thomas Eiter, and Sheila A. McIlraith,
editors, Proc. of the 13th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR’12), pages 568–572. AAAI Press, 2012. Short paper. 3, 8, 31

[15] Jean-Camille Birget. State-complexity of finite-state devices, state compressibility and
incompressibility. Theory of Computing Systems, 26:237–269, 1993. 25

[16] Patrick Blackburn, Johan van Benthem, and Frank Wolter, editors. Handbook of Modal

Deciding Unifiability and Computing Unifiers in EL without Top 33

Logic. Elsevier, 2006. 8

[17] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. Journal of
the ACM, 28(1):114–133, 1981. 25

[18] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959. 25

[19] Michael R. Garey and David S. Johnson. Computers and Intractability — A guide to
NP-completeness. W. H. Freeman and Company, San Francisco (CA, USA), 1979. 26, 29

[20] Ian Horrocks, Ulrike Sattler, and Stefan Tobies. Practical reasoning for very expressive
description logics. Logic Journal of the Interest Group in Pure and Applied Logic, 8(3):
239–264, 2000. 31

[21] Tao Jiang and B. Ravikumar. A note on the space complexity of some decision problems
for finite automata. Information Processing Letters, 40:25–31, 1991. 19, 24

[22] Dexter Kozen. Lower bounds for natural proof systems. Annual IEEE Symposium on
Foundations of Computer Science, 0:254–266, 1977. 26, 29

[23] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT modulo
theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006. 31

[24] Walter J. Savitch. Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences, 4(2):177–192, 1970. 24

[25] Klaus Schild. A correspondence theory for terminological logics: Preliminary report. In
Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pages 466–471,
1991. 8, 31

[26] Viorica Sofronie-Stokkermansmans. Locality and subsumption testing in EL and some
of its extensions. In Carlos Areces and Robert Goldblatt, editors, Advances in Modal
Logic 7 (AiML’08), pages 315–339. College Publications, 2008. 7

[27] Kent A. Spackman. Managing clinical terminology hierarchies using algorithmic calcula-
tion of subsumption: Experience with SNOMED-RT. Journal of the American Medical
Informatics Association, 2000. Fall Symposium Special Issue. 31

[28] Boontawee Suntisrivaraporn, Franz Baader, Stefan Schulz, and Kent Spackman. Replac-
ing SEP-triplets in SNOMED CT using tractable description logic operators. In Riccardo
Bellazzi, Ameen Abu-Hanna, and Jim Hunter, editors, Proc. of the 11th Conf. on Artificial
Intelligence in Medicine (AIME’07), volume 4594 of Lecture Notes in Computer Science,
pages 287–291. Springer-Verlag, 2007. 31

[29] Frank Wolter and Michael Zakharyaschev. Undecidability of the unification and admissi-
bility problems for modal and description logics. ACM Transactions on Computational
Logic, 9(4), 2008. 8, 31

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft under grant BA
1122/14-1.

34 F. Baader, N. T. Binh, S. Borgwardt, and B. Morawska

Faculty of Computer Science
Technische Universität Dresden
01062 Dresden
GERMANY
baader@tcs.inf.tu-dresden.de

Department of Computer Science
ETH Zürich
CNB F
8092 Zürich
SWITZERLAND
thannguy@inf.ethz.ch

Faculty of Computer Science
Technische Universität Dresden
01062 Dresden
GERMANY
stefborg@tcs.inf.tu-dresden.de

Faculty of Computer Science
Technische Universität Dresden
01062 Dresden
GERMANY
morawska@tcs.inf.tu-dresden.de

mailto:baader@tcs.inf.tu-dresden.de
mailto:thannguy@inf.ethz.ch
mailto:stefborg@tcs.inf.tu-dresden.de
mailto:morawska@tcs.inf.tu-dresden.de

	Introduction
	The Description Logics EL and EL-T
	Atoms
	Particles

	Unification in EL and EL-T
	Connection to other unification problems
	Locality of EL-unification
	Why this does not work for EL-T

	Our EL-T-unification algorithm
	Step 1: Guessing an EL-unifier
	Step 2: Simplifying the unification problem
	Step 3: Translating to linear language inclusions
	Step 4: Constructing local solutions

	Hardness
	Conclusion
	Notes
	References
	Acknowledgments
	Author's addresses

