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Abstract. Translations to (first-order) Datalog have been used in a number of inferencing techniques for description logics
(DLs), yet the relationship between the semantic expressivities of function-free Horn logic and DL is understood only poorly.
Although Description Logic Programs (DLP) have been described as DLs in the “expressive intersection” of DL and Datalog,
it is unclear what an intersection of two syntactically incomparable logics is, even if both have a first-order logic semantics.
In this work, we offer a characterisation for DL fragments that can be expressed, in a concrete sense, in Datalog. We then
determine the largest such fragment for the DLALC, and provide an outlook on the extension of our methods to more expressive
DLs.

Keywords: Description logic programs, OWL RL, conservative extension, knowledge representation and reasoning

1. Introduction

Ontologies and rules are two major paradigms of
knowledge representation and reasoning. Both have
been successfully applied in many areas, ranging from
logic programming [5] over databases [1] to the Se-
mantic Web [14]. In spite of conceptual and technical
differences, both areas are overlapping in many places,
and the combination of their respective strengths is a
worthwhile and established field of research.

Ontological approaches are most commonly based
on the logical framework of description logics (DLs)

*Corresponding author.
**An earlier version of this paper, entitled “On the Semantic Re-

lationship between Datalog and Description Logics,” has been pub-
lished in the proceedings of the 4th International Conference on Web
Reasoning and Rule Systems (RR 2010), Springer 2010.

[3]. In particular, they are the basis for the Di-
rect Semantics of the OWL ontology language [34].
Technically, DLs are a family of fragments of first-
order logic, with different DLs obtained by includ-
ing or excluding expressive features in order to obtain
favourable decidability or complexity properties for
common reasoning tasks. Formulae of DL (called ax-
ioms) are commonly denoted in a variable-free syntax.
For example, the following set of DL axioms expresses
that every supervisor of a student is a professor (1),
every professor holds some PhD degree (2), and all
professors are either full or associate professors (3):

Student � ∀supervisor.Prof, (1)

Prof � ∃hasDegree.PhD, (2)

Prof � FullProf � AssociateProf. (3)
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This example corresponds to the following first-order
logic theory:

∀x.Student(x)→ (∀y.supervisor(x,y)→Prof(y)), (4)

∀x.Prof(x)→ ∃y.hasDegree(x, y) ∧ PhD(y), (5)

∀x.Prof(x)→ FullProf(x) ∨ AssociateProf(x). (6)

Rule-based approaches are rooted in deductive
databases [1] and logic programming [5]. The com-
mon core of these fields are function-free Horn logic
rules, known as Datalog in the context of deductive
databases. Datalog rules are one of the simplest forms
of logical rules. For example, the following example
states that students are supervised by professors as
above (7), and that a supervisor who reviews a paper
authored by her student has a conflict of interest (8):

Student(x) ∧ supervisor(x, y)→ Prof(y), (7)

hasAuthor(x,y) ∧ hasReviewer(x,z)

∧ supervisor(y, z)→ conflict(z). (8)

Such rules can be interpreted as implications under the
semantics of first-order logic or under a least (Her-
brand) model semantics that can be axiomatised in
second-order logic. Fortunately, both semantics en-
tail the same Datalog formulae [1], and in particular
the same ground facts. In this work, we will there-
fore study Datalog under a first-order semantics that is
compatible with DLs.

A natural question to ask is how DLs and Datalog –
viewed as decidable fragments of first-order logic – re-
late to each other. One direction of research explores
how either formalism could be extended with features
of the other. Approaches to extending the expressiv-
ity of DLs with first-order rules include AL-log [9],
CARIN [26], SWRL [15,16], DL+log [35], DL-safe
rules [31], and DL Rules [12,24].1 A dual approach is
to extended Datalog with typical DL features, in par-
ticular with existential quantification, which results in
formalisms such as Datalog± [6], ∀∃-rules [4], and var-
ious related fragments of existential rules; see [22,32]
for recent overviews.

These manifold research activities are based on the
observation that DL and Datalog have distinct mod-
elling capabilities that are not easily reconciled in a
single formalism without sacrificing useful computa-
tional properties. For example, DLs feature existential

1Similar approaches exist for extending DLs with non-monotonic
features from logic programming [10,11,29,30,35] which are inter-
esting in their own right but not closely related to this work.

quantification (2) and disjunction (3), while Datalog
can capture dependency structures that are not express-
ible in DL axioms (8). However, DL and Datalog also
have some overlapping expressivity. Formulae (1) and
(7), e.g., are semantically equivalent. DLP (“Descrip-
tion Logic Programs”) has been proposed as a family
of DLs that can be faithfully expressed in first-order
Horn-logic, and in particular in Datalog [13,36]. This
bears computational advantages since rule-based rea-
soning methods can be applied, and indeed DLP in its
simplest form became the basis of the W3C standard
OWL RL [28].
This raises the core question of this paper:

What is an appropriate exact definition of the “se-
mantic intersection” of DL and Datalog, i.e., of a
provably maximal logic that can be expressed in
both?

Unfortunately, this question as such leaves room for in-
terpretation. Due to the incomparable syntax, we can-
not consider a syntactic intersection of both logics.
Also when transforming DL syntax to first-order logic,
the result is normally not in the form of Datalog rules,
even for DL axioms that are easily expressible in such
form. Neither (1) nor (4), e.g., are equal to (7) above.

Thus one needs to consider semantic criteria for
defining the “intersection” of DL and Datalog. This,
however, can lead to a language definition for which
checking membership is of very high computational
complexity. Indeed, every inconsistent ontology is se-
mantically equivalent to an inconsistent set of Datalog
rules.2 So checking whether some DL ontology is se-
mantically equivalent, or even merely equisatisfiable,
to some set of Datalog rules is at least as hard as check-
ing satisfiability for a DL knowledge base, i.e., typi-
cally at least ExpTime-hard.

On the other hand, restricting to DL knowledge
bases that are equisatisfiable to some set of Datalog
rules may still be insufficient to characterise the “inter-
section” of DL and Datalog. For example, it is well-
known that other tractable DLs such as EL++ can also
be translated into equisatisfiable sets of Datalog rules
[18,20,25]. The union of DLP and EL++ is not a DL
for which standard reasoning tasks are tractable (see
[25] for some discussion), so DLP and EL++ may
merely be two among several tractable subsets of the
“expressive intersection” of DL and Datalog, without
actually capturing the essence of this slogan.Indeed,

2We generally allow rules with head ⊥, interpreted as false. Thus
Datalog rules can be inconsistent.
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tractability was not among the original design goals of
DLP, although it is now considered a major practical
advantage that motivated the use in OWL RL.

Could the union of DLP and EL++ then be con-
sidered as an extended version of DLP? Possibly yes,
since it is contained in the DL Horn-SHIQ and
the even more expressive Horn-SHOIQ for which
satisfiability-preserving Datalog transformations are
known [17,33]. However, for EL++ and DLP there
exist modular (i.e., axiom-by-axiom) translations into
Datalog. Opposed to this, the known Datalog transfor-
mation for Horn-SHIQ from [17] needs to process
the whole knowledge base in an exponential compila-
tion process to obtain the Datalog output.

The Horn-SHOIQ transformation described in
[33] is “more modular” and time polynomial, but
a closer look reveals that the signature used by the
knowledge base needs to be fixed and known before-
hand, whence this translation does not allow for ax-
ioms being translated independently from each other if
the signature is not bounded.

How can we be sure that there is no simpler trans-
formation given that both data complexity and com-
bined complexity3 of Datalog, Horn-SHIQ, and
Horn-SHOIQ agree? The answer is given in Propo-
sition 4.4 later on. In any case, it is obvious from this
discussion that the design principles for DLP – but also
for EL and Horn-DLs – are not sufficiently well ar-
ticulated to clarify the conceptual distinction between
those formalisms.

This paper thus approaches an explicit characterisa-
tion of a maximal DLP-type logic. After introducing
our basic definitions for description logics and Datalog
in Section 2, we discuss what it means for a logical the-
ory to be “expressible” in Datalog. To do this, we first
develop concrete requirements for such a language,
that capture the specifics of the original DLP proposal,
in Section 4. The above discussion indicates that some
care is needed to define such principles. Thereafter, we
ask whether DLP could be defined as a larger, or even
as the largest, DL language that satisfies our design
principles. A positive answer to this question is given
by defining such a “largest possible Datalog fragment”
DLPALC for the DL ALC in Section 5, and proving
its maximality in Section 6. In Section 7, we consider
the generalisation of this approach toSROIQ, and dis-
cuss a related study by Krötzsch and Rudolph [21].

3Recall that data complexity is the complexity of reasoning with
respect to the amount of facts/assertions, while combined complexity
refers to the overall size of the input.

Table 1
Syntax and semantics ofALC concept expressions

Syntax Semantics

Atomic concept A AI

Top � ΔI

Bottom ⊥ ∅
Conjunction C 
 D CI ∩ DI

Disjunction C � D CI ∪ DI

Negation ¬C ΔI \CI

Role restrictions
existential ∃R.C {x | there is y: 〈x, y〉 ∈RI and y ∈CI}
universal ∀R.C {x | for all 〈x, y〉 ∈RI: y ∈CI}

2. Description logic and Datalog

We provide a brief introduction to our notation on
description logics (DLs) [3] and Datalog [1]. We use
FOL= for referring to standard first-order logic with
equality, and we use the term theory for a set of closed
formulae (sentences) of FOL= (or another logic that
can be considered as a fragment thereof).

Description Logics DL knowledge bases are defined
over finite sets of individual names (constants) I, con-
cept names A, and roles R. We call S = 〈I,A,R〉 a
signature. A signature S ′ = 〈I′,A′,R′〉 is called an
extension of S , in symbols S ⊆ S ′, if I ⊆ I′ and
A ⊆ A′ and R ⊆ R′.

One of the most expressive DLs considered in the
literature is SROIQ but we will only consider the
simpler logic ALC in detail within this paper. Con-
cept expressions (or simply concepts) of ALC are de-
fined recursively as in Table 1. Terminological axioms
(or TBox axioms) of ALC are general concept inclu-
sions (GCIs) of the form C � D where C and D are
ALC concepts. Assertional axioms (or ABox axioms)
ofALC are expressions C(a) or R(a, b) where a, b are
individuals, C is a concept expression, and R is a role.
An ALC knowledge base is a set of (terminological
and assertional) axioms ofALC.

The semantics of DLs are based on a Tarski-style
model theory. An interpretation I over a domain ΔI

assigns a set AI ⊆ ΔI to each atomic concept A ∈ A,
a binary relation RI ⊆ ΔI ×ΔI to each role R ∈ R, and
an element aI ∈ ΔI to each individual a ∈ I. The inter-
pretation of concept expressions is defined recursively
as in Table 1. A GCI C � D is satisfied by I, written
I |= C � D, it CI ⊆ DI. An assertion C(a) (R(a, b))
is satisfied by I, written I |= C(a) (I |= R(a, b)), if
aI ∈ CI (〈aI, bI〉 ∈ RI). A knowledge base KB is
satisfied by I, written I |= KB, if I |= α for all ax-
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Table 2
TransformingALC axioms to first-order logic

Concept expressions

π(�, t)=�
π(⊥, t)=⊥
π(A, t)= A(t)
π(¬C, t)=¬π(C, t)

π(C 
 D, t)= π(C, t) ∧ π(D, t)
π(C � D, t)= π(C, t) ∨ π(D, t)
π(∀R.C, t)=∀x.

(
R(t, x)→ π(C, x)

)

π(∃R.C, t)=∃x.
(
R(t, x) ∧ π(C, x)

)

Axioms

π(C(a))= π(C, a)
π(R(a, b))=R(a, b)
π(C � D)=∀x.

(
π(C, x)→ π(D, x)

)

ioms α ∈ KB. When an interpretation satisfies an ax-
iom/a knowledge base, we also say that it is a model of
that axiom/knowledge base.

Entailment is defined as usual. A knowledge base
KB1 entails a knowledge base KB2, written KB1 |=
KB2, if every model of KB1 is a model of KB2.
A knowledge base is unsatisfiable (or inconsistent) if
it has no models, and satisfiable (or consistent) other-
wise. We use the same terminology for axioms, treated
as singleton knowledge bases.

Every DL interpretation as defined above can be
considered as an interpretation of FOL= by consider-
ing atomic concepts as unary predicates, roles as bi-
nary predicates, and individuals as constant symbols.
Indeed, most description logics can be viewed as frag-
ments of first-order logic. Table 2 defines a standard
mapping π from ALC axioms to first-order logic sen-
tences. For a knowledge base KB, we define π(KB) to
be the conjunction

∧
α∈KB π(α). It is easy to see that

KB and π(KB) have the same models, and thus also the
same consequences. Knowing this, we sometimes treat
DL axioms like first-order sentences, even without us-
ing π explicitly.

Datalog We use the term “Datalog” to refer to the
function-free Horn logic fragment of FOL=. A Data-
log program is a first-order theory which contains only
formulae of the form ∀x.A1∧· · ·∧An → B where Ai, B
are atoms without function symbols of arity greater
than 0, and x contains all variables occurring in these
atoms. We generally omit the quantifier, we simply
write B if n = 0. A special nullary atom ⊥ is used to
denote falsity. Rules with head ⊥ are sometimes called
(integrity) constraints, and are also written by omitting
the head completely.

The semantics of Datalog is defined as for first-order
logic, where ⊥ is interpreted as a nullary atom with
constant value false. Entailment and satisfiability are
defined as usual for FOL=.

Note that we allow rules that contain variables in
the head that do not occur in the body, i.e., rules that
are not safe in the sense of the Datalog literature. Se-
mantically, a rule like→ B(x) represents the first-order
formula ∀x.B(x). When considering Datalog as a first-
order language, such rules do not require any special
treatment; all properties of Datalog remain unaffected.
Given a fixed signature, one can transform unsafe Dat-
alog into safe Datalog without affecting ground entail-
ments. For this, one adds facts of the form �(c) for ev-
ery constant c ∈ I, and atoms �(x) to the body of every
rule that contains a variable x. In this way, rule engines
that are limited to safe Datalog programs can be used
to compute first-order entailments of unsafe programs.

3. Semantic correspondences between logical
theories

We are generally interested in DL knowledge bases
the semantics of which can be expressed in a Datalog
program. In this section, we introduce the kind of se-
mantic correspondence that we find most appropriate
for this task, and we observe a useful lemma that re-
lates this notion to Datalog.

As discussed above, there are various notions of se-
mantic correspondence that could be considered. For
example, we could restrict to knowledge bases KB
such that π(KB) is semantically equivalent to a Data-
log program. This, however, leads to a very strong re-
quirement that excludes some interesting cases.

Example 3.1. The following ALC assertion states
that Tom has a supervisor who is a professor:

∃supervisor.Prof(tom). (9)

Datalog cannot express existential quantifiers in gen-
eral. But this particular case requires the existence of
only one individual (the supervisor of Tom), and the
claimed existence of this individual can be captured
with two facts using an auxiliary constant:

supervisor(tom, ctomsprof), (10)

Prof(ctomsprof). (11)

Then (10) and (11) together are just another way of
writing the Skolemisation of (9) with ctomsprof used as
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the nullary Skolem function symbol. Thus both forms
are equisatisfiable, but they are not semantically equiv-
alent.

This shows that semantic equivalence might turn out
to be too restrictive, and that equisatisfiability might
be a more suitable form of semantic correspondence.
However, equisatisfiability is too weak, since it does
not preserve relevant logical entailments. In particular,
every satisfiable DL knowledge base is equisatisfiable
to the empty Datalog program, yet this correspondence
has no practical utility for using Datalog-based reason-
ing methods.

But Skolemisation actually leads to a stronger form
of semantic correspondence that is certainly more use-
ful as a middle-ground between equivalence and equi-
satisfiability:

Definition 3.2. Consider FOL= theories T and T ′ with
signatures S ⊆ S ′. Then T ′ semantically emulates T
if the following conditions hold:

(1) every model of T ′ becomes a model of T
when restricted to the interpretations of symbols
from S ,

(2) for every modelJ of T there is a model I of T ′

that has the same domain as J , and that agrees
with J on S .

It is usually not necessary to mention the signatures
of T and T ′ explicitly, since it is always possible to find
minimal signatures for T and T ′ that satisfy condition
(1) of Definition 3.2. Intuitively speaking, whenever a
theory T ′ semantically emulates a theory T , we find
that T ′ and T encode the same information about the
symbols in T , and in particular that T ′ cannot be dis-
tinguished from T when restricting to those symbols.

The concept of semantic emulation is related to the
notion of conservative extensions [27] which, how-
ever, additionally assumes T ⊆ T ′ and hence requires
syntactic compatibility of the involved logics. Another
closely related notion is the model-theoretic version of
S -inseparability [19] which holds between two the-
ories if their model classes coincide after being pro-
jected to a given signature S . This justifies to intro-
duce the new notion of semantic emulation for our set-
ting. Also note that, in contrast to equivalence and eq-
uisatisfiability, semantic emulation is not a symmetric
relation, since one of the theories introduces additional
“internal” symbols to its signature. It is not hard to see
that the Datalog program consisting of (10) and (11)
above semantically emulates the DL fact (9) since we
can always find a suitable interpretation for the fresh
constant ctomsprof.

To understand the consequence of Definition 3.2, we
also consider a slightly weaker notion:

Definition 3.3. Consider FOL= theories T and T ′ with
signatures S ⊆ S ′. Then T ′ syntactically emulates T
if for every first-order formula ϕ over S : T |= ϕ iff
T ′ |= ϕ.

Note that syntactic emulation of T by T ′ can equiv-
alently be characterized by the requirement that for ev-
ery formula ϕ over S the sets T ∪ {ϕ} and T ′ ∪ {ϕ} be
equisatisfiable. It is easy to see that semantic emulation
implies syntactic emulation. The converse is not true in
general, and indeed it is not hard to show that seman-
tic emulation is equivalent to the condition that one
would obtain when considering second-order logic in-
stead of first-order logic in Definition 3.3. In this work,
we use the stronger notion, since it guarantees a max-
imal amount of semantic interoperability without de-
pending on a particular logic. However, we conjecture
that our results are not affected by this choice. Some
related discussion can be found in Section 7.

An important goal in this work is to show that
certain DL axioms can be semantically emulated in
Datalog. This can be accomplished by noting model-
theoretic properties of Datalog that are not generally
shared by description logics. To this end, we recall two
simple constructions: intersection and product [7].

Definition 3.4. Let I1 and I2 be interpretations over
the same domain Δ, such that cI1 = cI2 for all con-
stants c. The intersection I1 ∩ I2 of I1 and I2 is
the interpretation with domain Δ that interprets con-
stants c as cI1∩I2 � cI1 , and predicates p as pI1∩I2 �
pI1 ∩ pI2 .

Definition 3.5. Let I1 and I2 be interpretations. The
product I1 × I2 of I1 and I2 is the interpretation
with domain ΔI1 × ΔI2 that interprets constants c as
cI1×I2 � 〈cI1 , cI2〉, and predicates p as pI1×I2 �
pI1 × pI2 .

Models of Datalog are closed under both operations:

Proposition 3.6. Consider interpretations I1 and I2,
and a Datalog program P with I1 |= P and I2 |= P.

1. If I1 ∩ I2 is defined, then I1 ∩ I2 |= P.
2. I1 × I2 |= P.

Proof. The arguments for both cases are similar. We
illustrate the case of ×, which is the less widely known
construction. Consider an arbitrary rule A1∧· · ·∧An →
B in P. Assume that there is a variable assignment Z
for I1 × I2 such that I1 × I2,Z |= A1 ∧ · · · ∧ An.
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LetZi be the variable assignment for Ii that maps x to
the ith component of Z(x). By definition of I1 × I2,
we find Ii,Zi |= A1 ∧ · · · ∧ An. Since Ii |= P, we
obtain Ii,Zi |= B. By definition of I1×I2, this implies
I1 × I2,Z |= B, as required. �

4. The DLP fragment of a description logic

In this section, we discuss and motivate a generic
definition for DLP fragments of a description logic.
This will provide a meaningful definition for the “in-
tersection of DL and Datalog” that we will use in the
rest of this paper.

Since DL and Datalog use a different syntax, this
“intersection” is necessarily asymmetrical in the sense
that DLP must be a fragment of either DL or of Data-
log. In the tradition of the original DLP proposal, we
choose the former [13]. A second defining property of
DLP is the semantic correspondence with some Data-
log program. As discussed in the previous section, the
notion of semantic emulation provides a suitable no-
tion for this correspondence.

These requirements alone, however, do not give rise
to viable language definitions yet. As discussed in
the introduction, deciding whether a knowledge base
meets the semantic criteria of being expressible in Dat-
alog may involve complex reasoning. In particular, ev-
ery inconsistent knowledge base can be semantically
emulated by some Datalog program. Therefore, some
additional criterion is needed to ensure that contain-
ment in the language is easy to check.

A powerful tool for obtaining this criterion is the
construction of variants of logical expressions which
preserve only the logical structure but may modify
concrete signature symbols:

Definition 4.1. Let F be a FOL= formula, a DL ax-
iom, or a DL concept expression, and let S be a
signature. An expression F′ is a variant of F in S
if F′ can be obtained from F by replacing each oc-
currence of a role/concept/individual name with some
role/concept/individual name in S . Multiple occur-
rences of the same entity name in F need not be re-
placed by the same entity name of S in this process.

A knowledge base KB′ is a variant of a knowledge
base KB if it is obtained from KB by replacing each
axiom with a variant.

Note that we do not require all occurrences of an en-
tity name to be renamed together, so it is indeed pos-
sible to obtain A 
 ¬B from A 
 ¬A. Considering all

variants of a formula or axiom allows us to study the
semantics and expressivity of formulae based on their
syntactic structure, disregarding any possible interac-
tions between signature symbols. We call a FOL= for-
mula, DL axiom, or DL concept expression F name-
separated if no signature symbol occurs more than
once in F. Intuitively speaking, disallowing symbols
to occur in multiple positions in name-separated ax-
ioms prevent most of the complex semantic effects that
could require reasoning, i.e., a name-separated axiom
that can only be expressed in Datalog if its formula
structure can generally be captured using rules.

Combining these ideas, we can formally define DLP
fragments:

Definition 4.2. Given description logics L andD, we
callD a DLP fragment of L if

(1) every axiom ofD is an axiom of L,
(2) there is a transformation function datalog that

maps every D axiom α to a Datalog program
datalog(α) such that datalog(α) semantically
emulates α,

(3) D is closed under variants, i.e., given any axiom
α and an arbitrary variant α′ of α, we find α is
inD iff α′ is.

As discussed above, item (1) of this definition fixes
the syntactic framework for DLP fragments. Item (2)
states the property that motivates the study of DLP lan-
guages: every axiom of a DLP fragment can be ex-
pressed in Datalog. DLP languages as discussed in the
literature may require the use of auxiliary symbols for
the translation to Datalog [36], and the Datalog pro-
gram can no longer be semantically equivalent to the
original knowledge base in this case, even if all conse-
quences with respect to the original predicates are still
the same. This motivates the use of semantic emula-
tion as introduced in Definition 3.2. Note that we do
not require the transformation function datalog to be
computable, although it will turn out to be computable
rather easily in the case studied in this paper.

Item (3) of Definition 4.2 reflects our desire to ob-
tain fragments that correspond to well-behaved logical
languages as opposed to being arbitrary collections of
axioms. An obvious way to implement this would be
to require DLP fragments to be described by a context-
free grammar. A typical feature of grammars for logi-
cal languages is that they are parametrised by a logical
signature that can be modified without changing the
essential structural features of the language. This ef-
fect is mirrored by the requirement of item (3) without
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introducing detailed requirements on a suitable logical
grammar. We will find grammatical descriptions in the
cases we consider, though item (3) as such does not
imply that this is possible.

The original motive for item (3) in Definition 4.2
was to obtain DLP fragments for which membership
can be checked without complex reasoning. A natural
alternative would thus be to require that membership
in a fragment can be decided efficiently, say in polyno-
mial time. However, Proposition 4.3 below shows that
in this case no maximal DLP fragment can exist. Defi-
nition 4.2, in contrast, does not impose any restriction
on the complexity of checking the membership rela-
tion, but it admits a maximal DLP fragment for ALC
that can be described by a context-free language (Sec-
tion 5), and thus is efficiently recognisable.

Proposition 4.3. Given description logics L and D,
we call D a P-DLP fragment of L if items (1) and (2)
of Definition 4.2 are satisfied, and in addition there is
a polynomial procedure for deciding α ∈ D for any
DL axiom α.

Unless the complexity classes P and PSpace coin-
cide, there is no maximal P-DLP fragment of ALC:
given any P-DLP fragment D of ALC, there is a P-
DLP fragment D′ of ALC that covers more axioms,
i.e,D ⊂ D′.

Proof. We start with an auxiliary construction: if the
concept expression C is satisfiable and does not con-
tain the symbols R, A1, A2, and c, then no Datalog
program semantically emulates the expression αC �
(C 
 ∃R.(A1 � A2))(c). For a contradiction, suppose
that αC is semantically emulated by a Datalog theory
datalog(αC). By construction, αC is satisfiable, and so
is {αC , Ai � ⊥} for each i = 1, 2. By Definition 3.3,
we find that datalog(αC) ∪ {Ai � ⊥} is satisfiable, too.
Thus, there are models Ii of datalog(αC) such that
AIi

i = ∅. Thanks to Proposition 3.6, we find a model
I = I1 ∩ I2 of datalog(αC) such that AI1 = AI2 = ∅.
But then datalog(αC)∪ {A1 � A2 � ⊥} is satisfiable al-
though {α, A1 � A2 � ⊥} is not, contradicting the sup-
posed semantic emulation.

Let us now assume for the sake of a contradiction
that D contains all unsatisfiable ALC axioms of the
form of αC . This would give a polynomial decision
procedure for deciding satisfiability of ALC concept
expressions C: construct αC from C (clearly polyno-
mial) decide αC ∈ D (was assumed to be of polyno-
mial complexity). This contradicts the fact that decid-
ing (un)satisfiability of ALC concept expressions is
PSpace-hard.

Therefore, there is an unsatisfiable expression α
with α � D. Now let D′ be defined as D ∪ {α}. The
transformation is given by datalog′(β) = datalog(β) if
β ∈ D, and datalog′(β) = {� → A(x), A(x) → ⊥} oth-
erwise, where A is a new predicate symbol. It is imme-
diate thatD′ P-DLP fragment ofALC strictly greater
thanD. �

This proof exemplifies a general problem that oc-
curs when trying to define DLP: the question whether
an axiom is expressible in Datalog is typically compu-
tationally harder than one would like to admit for a lan-
guage definition. This result carries over to more ex-
pressive DLs, and remains valid even if requirements
such as closure under common normal form transfor-
mations are added to the definition of fragments. The
fact that this problem is avoided by item (3) in Defi-
nition 4.2 confirms our intuition that this requirement
closely relates to the possibility of representing DLP
fragments syntactically, i.e., without referring to com-
plex semantic conditions.

Next, we establish an interesting general result on
the complexity of reasoning in DLP fragments. By the
size of an axiom, we mean the number of symbols that
are necessary to write it.

Proposition 4.4. Consider a class K of knowledge
bases that belong to a DLP fragment of some descrip-
tion logic, and such that the maximal size of axioms
in K is bounded. Deciding satisfiability of knowledge
bases in K is possible in polynomial time.

Proof. Let the maximal size of axioms be bounded by
N. Let V be a vocabulary with N concept, role and
constant symbols. By assumption we know that for ev-
ery of the finitely many axioms α of size less than N
there is a translation datalog(α). We will use this as
a (finite) look-up table for finding a Datalog transfor-
mation for axioms β in KB ∈ K. Note that we do not
need to specify how the translations datalog(α) were
computed, since we only need to show that there is a
polynomial time algorithm, not how it can be found.

We define a Datalog transformation datalogK(β) for
all axioms β ∈ KB that occur in some knowledge
base KB ∈ K. By the assumption on K, there are at
most N signature symbols in β. Hence there some ax-
iom α over the vocabulary of V and a 1-1 renaming σ
of symbols in α such that σ(α) = β. We thus define
datalogK(β) � σ(datalog(α)). It is easy to see that
datalogK(β) still satisfies item (2) of Definition 4.2.

Thus satisfiability of KB ∈ K can be decided
by checking satisfiability of

⋃
β∈KB datalogK(β). The
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Concepts necessarily equivalent to �: L� � � | ∀R.L� | L� 
 L� | L� � C

Concepts necessarily equivalent to ⊥: L⊥ � ⊥ | ∃R.L⊥ | L⊥ 
 C | L⊥ � L⊥
Body (C ∈ LB iff ¬C � A inDLPALC): LB � L� | L⊥ | ¬A | ∀R.LB | LB 
 LB | LB � LB

Head (C ∈ LH iff A � C inDLPALC): LH � LB | A | ∀R.LH | LH 
 LH | LH � LB

Assertions (C ∈ La iff C(a) inDLPALC): La � LH | ∃R.La | La 
 La | La � LB

Fig. 1.DLPALC concepts in negation normal form.

maximal number of variables occurring within these
Datalog programs can be bounded by an integer M. In-
deed, M can be taken to be the (finite) number of vari-
ables in

⋃
α datalog(α), where this is the union over

all axioms α for which datalog(α) was defined above.
Note that M depends only on the choice of N since we
can assume w.l.o.g. that the translations datalog(α) are
such that M is minimal.

Satisfiability of Datalog with at most M variables
per rule can be decided in time polynomial in 2M [8].
The renamings σ can be found in time polynomial
in 2N . Since N and M are constants, this yields a poly-
nomial time upper bound for deciding satisfiability of
knowledge bases in K. �

It is interesting that the previous result does not
require any assumptions on the computational com-
plexity of recognising or translating DLP axioms. In-
tuitively, Proposition 4.4 states that reasoning in any
DLP language is necessarily “almost” tractable. In-
deed, many DLs allow complex axioms to be de-
composed into a number of simpler normal forms of
bounded size, and in any such case tractability is ob-
tained. Moreover, Proposition 4.4 clarifies why Horn-
SHIQ (and thus also Horn-SHOIQ) cannot be in
DLP: ExpTimeworst-case complexity of reasoning can
be proven for a class K of Horn-SHIQ knowledge
bases as in the above proposition (see [23], noting
that remaining complex axioms can be decomposed
in Horn-SHIQ). In fact the same argument already
holds for the much weaker DL Horn-FLE [23].

5. The DLP fragment ofALC

Using Definition 4.2, it is now possible to investi-
gate DLP fragments of relevant description logics. In
this paper, we detail this approach for ALC; some re-
marks on the more complex case of SROIQ are given
in Section 7 below. It turns out that the largest DLP
fragment of ALC exists, and can be defined as fol-

lows, where we use the negation normal form NNF for
simplifying our presentation.

Definition 5.1. The description logic DLPALC con-
sists of all knowledge bases that contain only ALC
axioms which are

– GCIs C � D such that NNF(¬C � D) is an LH
concept as defined in Fig. 1, or

– ABox axioms C(a) where NNF(C) is an La con-
cept as defined in Fig. 1.

– ABox axioms R(a, b) where R ∈ R is a role name.

The headings in Fig. 1 give the basic intuition about
the significance of the various concept languages. The
distinction of head and body concepts is typical for
many works on DLP and Horn DLs, while our use
of additional assertional concepts takes into account
that emulation allows for some forms of Skolemisa-
tion.

Example 5.2. Some typical example representatives
of the head, body, and assertion grammars in Fig. 1 are
as follows:

¬A 
 ∀R.(¬B � ¬C) ∈ LB, (12)

¬A � (B 
 ∀R.C) ∈ LH , (13)

¬A � ∃R.B ∈ La. (14)

Concept (13) corresponds to the DLPALC axiom A �
B
 ∀R.C, while (14) can be used in assertions such as
(¬A � ∃R.B)(c). Typical examples of axioms that are
not inDLPALC include A � B�C and (B�C)(a), and
also A � ∃R.B. In contrast, (∃R.B)(a) is inDLPALC.

Though name separation prevents most forms of se-
mantic interactions within concepts, we still require
grammars for L� and L⊥ to characterise concepts
all variants of which are equivalent to � and ⊥, re-
spectively. This includes concept expressions such as
A 
 ∃R.⊥ and B � ∀R.�.

We start with an easy observation on Definition 5.1.
This result will not explicitly be used later on but might
add to the understanding of this definition.
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dlgB(¬A � C) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{} if C ∈ L�
{A(x)} if C ∈ L⊥
{B(x)→ A(x)} if C = ¬B

dlgB(¬X � D) ∪ {R(x, y) ∧ X(y)→ A(x)} if C = ∀R.D

dlgB(¬A � D1) ∪ dlgB(¬A � D2) if C = D1 
 D2 ∈ (LB 
 LB)

dlgB(¬X1 �D1)∪ dlgB(¬X2 �D2) ∪ {X1(x) ∧ X2(x)→ A(x)} if C = D1 � D2 ∈ (LB � LB)

Fig. 2. Transforming axioms ¬A � C to Datalog, where A ∈ A, C ∈ LB, and X(i) are fresh concept names.

dlgH(A � C) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dlgB(¬X � C) ∪ {A(x) ∧ X(x)→ ⊥} if C ∈ LB

{A(x)→ C(x)} if C ∈ A
dlgH(X � D) ∪ {A(x) ∧ R(x, y)→ X(y)} if C = ∀R.D

dlgH(A � D1) ∪ dlgH(A � D2) if C = D1 
 D2

dlgH(X2 � D1) ∪ dlgB(¬X1 � D2) ∪ {A(x) ∧ X1(x)→ X2(x)} if C = D1 � D2 ∈ (LH � LB)

Fig. 3. Transforming axioms A � C to Datalog, where A ∈ A, C ∈ LH , and X(i) are fresh concept names.

Lemma 5.3. Consider arbitrary ALC concept ex-
pressions C that do not contain quantifiers ∀, ∃, and
the symbols � and ⊥.

1. If C ∈ LB then C has a conjunctive normal form
�

i
⊔

j Ci, j with Ci, j a negated atom for all i, j.
2. If C ∈ LH or C ∈ La then C has a conjunctive

normal form
�

i
⊔

j Ci, j with Ci, j negated or non-
negated atoms and for every i there is at most one
j such that Ci, j is an non-negated atom.
(Since the assumptions require that C does not
contain quantifiers there is no difference here be-
tween C ∈ LH and C ∈ La.)

Proof. Notice that C � L� and C � L⊥ since neither
� nor ⊥ occur in C. For item (1), note that if C ∈ LB

then either C is a negated atom, or C = C1 
 C2 or
C = C1 � C2 with Ci ∈ LB. The claim now follows
easily from the induction hypothesis on C1,C2.

For item (2), by the assumptions on C we have C ∈
LH if one of the following cases holds true:

1. C ∈ LB. Then the claim follows from part (1) of
the lemma.

2. C is an atom. Then the claim is obviously true.
3. C = C1 
C2 with Ci ∈ LH . If C′i is a conjunctive

normal form of Ci satisfying the claim then C′1 

C′2 is a conjunctive normal form of C satisfying
the claim.

4. C = C1 � C2 with Ci ∈ LH and C1 ∈ LB.
Let
�

i
⊔

j C1
i, j and

�
m
⊔

n C2
m,n be the conjunc-

tive normal forms that exist by induction hypoth-
esis satisfying the respective claims. A conjunc-
tive normal form of C = C1�C2 is obtained as the
conjunction of all

⊔
j C1

i, j�
⊔

n C2
m,n for all combi-

nations of i,m. Since
⊔

j C1
i, j contains at most one

positive atom and
⊔

n C2
m,n contains only negative

atoms we are finished. �

It is obvious that DLPALC satisfies items (1) and
(3) of Definition 4.2, so what remains to show is
that DLPALC knowledge bases can indeed be ex-
pressed in Datalog. Following the grammatical struc-
ture of DLPALC, we specify various functions for
constructing Datalog programs to semantically emu-
late a DLPALC knowledge base. GCIs are handled
by the functions dlgB and dlgH , defined recursively in
Figs 2 and 3. The function dlgB constructs Datalog to
semantically emulate GCIs of the form ¬A � C with
C ∈ LB, while dlgH allows us to semantically emulate
GCIs A � C with C ∈ LH .

Example 5.4. Let E be the LH concept¬A�(B
∀R.C)
as in (13). The rules of dlgH(D � E) are as follows:

D(x) ∧ X1(x)→ X2(x)

A(x)→ X1(x)

X2(x)→ B(x)

X2(x) ∧ R(x, y)→ X3(x)

X3(x)→ C(x)
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dlga(C(a), E) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dlgH(X � C � E) ∪ {X(a)} if C ∈ LH

dlga(D1(a), E) ∪ dlga(D2(a), E) if C = D1 
 D2

dlgB(¬X � D2) ∪ dlga(D1(a), E � ¬X) if C = D1 � D2 ∈ (La � LB)

dlgB(¬X � E) ∪ dlga(D(b),¬Y) ∪ {X(a)→ R(a, b), X(a)→ Y(b)} if C = ∃R.D

Fig. 4. Transforming axioms C(a) to Datalog, where C ∈ La, E ∈ LB, X,Y are fresh concept names, and b is a fresh constant.

Clearly, this rule set could be further simplified to ob-
tain three rules D(x) ∧ A(x) → X2(x), X2(x) → B(x),
and X2(x) ∧ R(x, y) → C(x), which are easily seen to
semantically emulate D � E.

The correctness of dlgB and dlgH is shown in the
following two lemmas.

Lemma 5.5. Given a concept name A, and a concept
C ∈ LB, Fig. 2 recursively defines a Datalog program
dlgB(¬A � C) that semantically emulates ¬A � C.

Proof. The claim is shown by induction over the struc-
ture of C. We illustrate one case.

Consider the case C = D1 � D2. To show Defini-
tion 3.2 (1), assume that I |= dlgB(¬A � C). In partic-
ular, I |= dlgB(¬X1 � D1) and I |= dlgB(¬X2 � D2).
By the induction hypothesis, I |= ¬X1 � D1 and
I |= ¬X2 � D2. Since I |= X1(x) ∧ X2(x) → A(x), for
any δ ∈ AI, we find that δ � XI1 for some i ∈ {1, 2}.
Thus, δ ∈ DIi follows from I |= ¬Xi � Di. Since δ was
arbitrary, I |= ¬A � D1 � D2.

To show Definition 3.2 (2), assume thatI |=¬A � C.
An interpretation I′ over the extended signature is de-
fined by setting XI

′

i � Δ
I \ DIi for i ∈ {1, 2}. It is easy

to see that I′ |= {¬Xi � Di | i ∈ {1, 2}} ∪ {X1(x) ∧
X2(x) → A(x)}. By the induction hypothesis, we can
find an interpretation I1 that extends I′ and such that
I1 |= dlgB(¬X1 � D1). Another application of the hy-
pothesis yields a model I2 |= dlgB(¬A � C) as re-
quired to show the claim. �

Lemma 5.6. Given a concept name A, and a concept
C ∈ LH, Fig. 3 recursively defines a Datalog program
dlgH(A � C) that semantically emulates A � C.

Proof. First note that dlgH(A � C) is well-defined. In
particular, programs dlgB(¬B � D) are only used if
D ∈ LB. The inductive proof of the claim is similar to
the proof of Lemma 5.5, so we omit the details. �

For translating concept assertions to Datalog, we de-
fine a function dlga in Fig. 4. The construction of Fig. 4
uses a “guard” concept E that is used to defer the en-
coding of LB disjunctions: dlgH(C(a), E) semantically

emulates (C � E)(a). To encode an assertion C(a), the
program dlgH(C(a),⊥) is used. As before, this trans-
formation is designed for a concise definition, not for
optimised output.

Example 5.7. Let E be the La concept ¬A � ∃R.B as
in (14). Then dlgH(E(a),⊥) consists of the following
rules (Xi and Y indicating fresh concept names as in
the definition of the transformation):

A(x) → X1(x) X2(a) → R(a, b)
X2(a) → Y(b) X3(x) ∧ X4(x) → X2(x)

→ X3(x) X1(x) → X4(x)
→ X5(b) X5(x) ∧ X6(x) → X7(x)

X7(x) → B(x) Y(x) → X6(x)

As before, this rule set can be simplified significantly
by eliminating most of the introduced auxiliary con-
cept symbols. Doing this, we obtain the three rules
A(x) → X2(x), X2(a) → R(a, b), and X2(a) → B(b),
which again are easily seen to semantically emulate
E(a) as claimed. Here, the fresh constant symbol b acts
as a Skolem constant that represents the individual that
the existential concept expression may require to exist.

Note that some Datalog rules created in Example 5.7
are not safe. As explained in Section 2, this is not a
principal issue.

Lemma 5.8. Given a constant a and a concept
C ∈ La, Fig. 4 recursively defines a Datalog program
dlgH(C(a),⊥) that semantically emulates C(a).

Proof. As before, the proof works by induction. The
induction claim is that, for every E ∈ LB, C ∈ La, and
a ∈ I, the program dlgH(C(a), E) semantically emu-
lates (C � E)(a).

The concept E is processed in case C ∈ LH by using
dlgH . Another more interesting case is C = ∃R.D. The
basic encoding works by standard Skolemisation, but
the guard concept is also processed and a new guard
¬Y is created for the Skolem constant d. It is not hard
to show semantic emulation in all cases. �

Combining the previous lemmata, we obtain the em-
ulation theorem forDLPALC.
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Theorem 5.9. For everyDLPALC axiom α as in Defi-
nition 5.1, one can construct a Datalog program dlg(α)
that semantically emulates α.

Proof. If α = C � D is a TBox axiom, define
datalog(α) � dlgH(A � NNF(¬C � D)) ∪ {A(x)}. If
α = C(a) is an ABox axiom, define datalog(α) �
dlga(C(a),⊥). The result then follows by Lemma 5.6
and 5.8. �

6. Maximality ofDLPALC

It remains to show that DLPALC is indeed the
largest DLP fragment of ALC. In general, Proposi-
tion 3.6 can be used to show that a logical theory T
cannot be semantically emulated in Datalog as follows:
based on the assumption that T is semantically emu-
lated by a Datalog program PT , one constructs inter-
pretations I1 and I2 such that I1 |= PT and I2 |= PT

and shows that either I1 ∩ I2 �|= PT or I1 × I2 �|= PT ,
contradicting Proposition 3.6. We use I1 ∩I2 to show
that DLP cannot contain existential axioms like ∃R.A
(Lemma 6.7), and I1 × I2 to show that it cannot con-
tain disjunctive axioms like A � B (Lemma 6.10).

We can simplify our arguments by means of the
following syntactic simplification for concepts of the
form L� and L⊥.

Definition 6.1. Let C be an ALC concept expression
in negation normal form, i.e., such that C = NNF(C).
The expression etb(C) (eliminate top and bottom) is
obtained from C by applying exhaustively the follow-
ing rewrite rules:

� 
 D �→ D ⊥ � D �→ D
� � D �→ � ⊥ 
 D �→ ⊥
D 
 � �→ D D � ⊥ �→ D
D � � �→ � D 
 ⊥ �→ ⊥
∀R.� �→ � ∃R.⊥ �→ ⊥

Note, that etb(C) may still contain subexpressions of
the form ∀R.⊥ and ∃R.�. The next lemma summarises
some easy observations on etb.

Lemma 6.2. For anyALC concept C = NNF(C):

1. etb(C) is logically equivalent to C, i.e., for any
interpretation I, we have CI = etb(C)I;

2. for every L ∈ {L�,L⊥,La,LB,LH}, we have C ∈
L iff etb(C) ∈ L;

3. if C does not contain subexpressions of the form
∀R.⊥ or ∃R.� then etb(C) = ⊥, or etb(C) = �,
or etb(C) does neither contain ⊥ nor �.

We now introduce some simple ways of construct-
ing interpretations that assign specific extensions to
name-separated concepts of the form etb(NNF(C)).
For an arbitrary concept C, we write CI � CJ to ex-
press that I is defined for all symbols X that occur in
C by setting XI � XJ . First, we define interpreta-
tions that map concepts to the whole domain and to the
empty set, respectively.

Definition 6.3. Consider a setΔ, and a name-separated
concept C � ⊥ such that C = etb(NNF(C)). We re-
cursively define an interpretation I�(C) over Δ that is
defined on all signature symbols in C:

– If C = �, then I�(C) is defined on no symbol.
– If C = A is an atomic concept, then AI�(C) � Δ.
– If C = ¬A with A atomic, then AI�(C) � ∅.
– If C = C1 
 C2 or C = C1 � C2, then CI�(C)

1 �
CI�(C1)

1 and CI�(C)
2 � CI�(C2)

2 .
– If C = ∃R.D, then RI�(C) � {〈δ, δ〉 | δ ∈ Δ} and

DI�(C) � DI�(D).
– If C = ∀R.D, then RI�(C) � ∅ and the interpreta-

tion of symbols in D is arbitrary.

Moreover, for a name-separated concept C′ � �
with C′ = etb(NNF(C′)), we define an interpretation
I⊥(C′) � I�(NNF(¬C′)).

Note that I�(C) is well-defined: the case C = ⊥
cannot occur, and in the cases of C = C1 
 C2, C =
C1 � C2, and C = ∃R.D, we find C1 � ⊥, C2 � ⊥, and
D � ⊥, respectively, since C = etb(C). The following
is immediate from the definition.

Lemma 6.4. Consider a concept C = etb(NNF(C)). If
C � ⊥, then CI�(C) = Δ. If C � �, then CI⊥(C) = ∅.

Next, we define an interpretation I[C � D] that
extends an interpretation I over a concept D to a larger
concept C of which D is a subconcept in such a way
that CI[C�D] = DI.

Definition 6.5. Consider a name-separated concept
C with a non-negated occurrence of a subconcept D.
Given an interpretation I that is defined for sym-
bols in D, we recursively define an interpretation
I[C � D] as follows:

– If C = D, then I[C � D] � I.
– If C = C1 
 C2 and D occurs in C2, then

CI[C�D]
1 � CI�(C1)

1 and CI[C�D]
2 � CI[C2�D]

2 .
The case where D occurs in C1 is analogous.
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– If C = C1 � C2 and D occurs in C2, then
CI[C�D]

1 � CI⊥(C1)
1 and CI[C�D]

2 � CI[C2�D]
2 .

The case where D occurs in C1 is analogous.
– If C = ∃R.E or C = ∀R.E, and D occurs in E,

then RI[C�D] � {〈δ, δ〉 | δ ∈ ΔI} and EI[C�D] �
EI[E�D].

Again, it is easy to see that I[C � D] is well-
defined. In particular, the occurrence of D is unique
since C is name-separated. In cases C = C1 
 C2 and
C = C1 � C2, we find that C1,C2 � {⊥,�} since
C = etb(C). Moreover, the cases C = �, C = ⊥,
C = A, and C = ¬A are subsumed by the case C = D.
For C = ¬A, this follows since D does not occur in a
negation.

Lemma 6.6. If C, D, and I are as in Definition 6.5,
then CI[C�D] = DI.

Proof. The proof is again immediate in most cases. For
the cases of C = ∃R.E and C = ∀R.E, it is useful to
note:

(∀R.E)I[C�D]

= {a ∈ Δ | b ∈ EI[E�D] for all 〈a, b〉 ∈ RI[C�D]}

= {a ∈ Δ | a ∈ EI[E�D]} = EI[E�D],

(∃R.E)I[C�D]

= {a ∈ Δ | there is 〈a, b〉 ∈ RI[C�D]

with b ∈ EI[E�D]

= {a ∈ Δ | a ∈ EI[E�D]} = EI[E�D].

In either case, the claim follows by induction. �

To show that DLPALC is maximal with respect to
concept inclusions, we first observe that the use of
existential quantification is severely restricted in the
concept inclusions of any DLP fragment of ALC. In
essence, the following lemma states that etb is able to
eliminate all existential quantifiers.

Lemma 6.7. Let C be a name-separated concept with
C = etb(NNF(C)) that contains a subconcept of the
form ∃R.D. Then � � C cannot be semantically emu-
lated in Datalog.

Proof. Suppose for a contradiction that � � C can be
semantically emulated in Datalog. Let Δ be an infinite
domain with enumerated elements Δ = {δ1, δ2, . . . }.
We define an interpretation I over Δ by setting DI �
DI�(D) and RI � {〈δi, δi+1〉 | i � 1}. We extend I to

C to obtain an interpretation J � I[C � ∃R.D]. By
Lemma 6.4, DI = DJ = Δ, and thus also ∃R.DI =
∃R.DJ = Δ. By Lemma 6.6, CJ = ∃R.DI = Δ.

By assumption, � � C can be semantically emu-
lated by some Datalog program PC . Thus there is an
extension J1 of J such that J1 |= PC . By Defini-
tion 3.2, CJ1 = CJ and RJ1 = RJ . An element δ ∈ Δ
is anonymous if no constant (of the extended signature
of PC) is interpreted as δ. Since Δ is infinite, there are
infinitely many anonymous elements. Let δi and δ j be
two anonymous elements for which there are elements
δ′i and δ′j such that 〈δi, δ′i〉, 〈δ j, δ

′
j〉 ∈ RJ and δi, δ′i , δ j, δ

′
j

are pairwise distinct. Such elements exist by construc-
tion of RJ and since Δ is infinite.

We define an interpretation J2 that agrees with J1
in all aspects, other than the definition of RJ2 which is

RJ2 � RJ ∪ {〈δi, δ′j〉, 〈δ j, δ
′
i〉} \ {〈δi, δ′i〉, 〈δ j, δ

′
j〉}.

It is easy to see that J2 |= PC . Indeed, J1 and J2 can-
not be distinguished by any first-order logic formula.
By construction, we still have CJ2 = ∃R.DJ2 = Δ.

By Proposition 3.6, J1 ∩ J2 |= PC . Since J1 and
J2 agree on all symbols other than R, we still have
CJ1∩J2 = ∃R.DJ1∩J2 . However, RJ1∩J2 does not con-
tain any pair of the form 〈δi, ε〉 or 〈δ j, ε〉. Thus, δi, δ j �
∃R.DJ1∩J2 , and hence CJ1∩J2 � Δ. Therefore,J1∩J2
is a model of PC that is no model of C, which contra-
dicts Definition 3.2. �

The previous proof uses the intersection of J1 and
J2 to show that a formula C cannot be semantically
emulated in Datalog. Interpretation J1 is obtained by
semantic emulation from a model J |= � � C, while
J2 is constructed by modifying J1. It would be easier
to construct two models I1 and I2 or C such that I1 ∩
I2 �|= � � C, but this would not show the claim, as
illustrated by the next example.

Example 6.8. The axiom ∃R.�(c) is inDLPALC, and
indeed it can be semantically emulated by the Datalog
program R(c, d) where d is a fresh constant. However,
there are models I1 |= ∃R.�(c) and I2 |= ∃R.�(c)
that agree on constants, whereas I1 ∩ I2 �|= ∃R.�(c).
For example, let Δ � {c, d1, d2}, RI1 � {〈c, d1〉}, and
RI2 � {〈c, d2〉}. For both i = 1 and i = 2, Ii extends
to a model Ji of R(c, d) by setting dJi � di. Proposi-
tion 3.6 is not applicable sinceJ1 andJ2 do not agree
on the interpretation of the constant d.

Lemma 6.7 allows us to exclude existential quantifi-
cation from DLP. It remains to exclude disjunctive in-
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formation. Disjunctions of the form LB � LH are not
problematic – they include DLP axioms like ¬A � B.
Our interest is is therefore in disjunctions C1 � C2

where neither C1 nor C2 is in LB. The next lemma
shows that any such concept contains a positive occur-
rence of an atomic concept or role.

Lemma 6.9. Let C be a concept with C = etb(NNF(C))
such that C � LB. Then C contains a non-negated sub-
concept that is either an atomic concept A or of the
form ∃R.D.

Proof. We show the contrapositive: every concept C
with C = etb(NNF(C)) that contains no subconcept as
in the claim is in LB. This follows from an easy induc-
tion over the structure of ALC concepts. If C = A is
atomic, then it has a non-negated atomic subconcept,
contradicting our assumption. If C = �, C = ⊥, or
C = ¬A for an atom A, then the claim holds by defi-
nition of LB. If C is of the form C1 
 C2, C1 � C2, or
∀R.C1, then the claim holds for C1,C2 ∈ LB by induc-
tion hypothesis; thus C ∈ LB by definition of LB. If
C = ∃R.D, then it has a non-negated subconcept of the
form ∃R.D, contradicting our assumption. �

We can now show that DLP cannot express disjunc-
tions in GCIs or concept assertions.

Lemma 6.10. Let C be a name-separated concept with
C = etb(NNF(C)) that contains a subconcept of the
form C1 � C2 with C1,C2 � LB. Then neither � � C
nor C(a) can be semantically emulated in Datalog.

Proof. By Lemma 6.9, each of the concepts Ci (i ∈
{1, 2}) contains a non-negated subconcept Di that is ei-
ther atomic or of the form ∃R.D. In the latter case we
assume without loss of generality, that Di is an outer-
most existential subconcept in Ci, that is, Di does not
occur in a concept E for which ∃S .E is a subconcept
of Ci. Let Δ be an arbitrary nonempty domain, and let
Ii � I�(Di) (i ∈ {1, 2}). By Lemma 6.4, DIi

i = Δ.
We extend Ii to C by defining Ji � I[C � Di]. By
Lemma 6.6, CJi = DIi

i = Δ. Clearly Ji |= � � C and
Ji |= C(a), where the interpretation aJi can be arbi-
trary.

Suppose for a contradiction that � � C can be se-
mantically emulated by a Datalog program PC . Thus
there is an extension J′i of Ji such that J′i |= PC .
By Definition 3.2, CJ

′
i = CJi . By Proposition 3.6,

J′1 × J
′
2 |= PC .

We claim that DJ
′
2

1 = ∅. The definition of I[C �
D2] ensures (C1 � C2)I[C�D2] = DI2

2 ; this is achieved

by setting CI[C�D2]
1 � CI⊥(C1)

1 . We have I⊥(C1) =
I�(NNF(¬C1)). If D1 is atomic, it occurs as ¬D1 in
NNF(¬C1), and we find DI�(¬D1)

1 = DI⊥(NNF(¬C1))
1 =

DJ2
1 = DJ

′
2

1 = ∅. If D1 is of the form ∃R.D, then it
leads to a subconcept ∀R.NNF(¬D) in NNF(¬C1), and
we find RI⊥(NNF(¬C1)) = RJ2 = RJ

′
2 = ∅. Again, we

obtain DJ
′
2

1 = ∅. Analogously, one can show DJ
′
1

2 = ∅.
We thus find DJ

′
1×J

′
2

1 = DJ
′
1×J

′
2

2 = ∅. By induction
on the structure of Ci and the corresponding cases in
the definition of I[Ci � Di], one can show CJ

′
1×J

′
2

1 =

CJ
′
1×J

′
2

2 = ∅. Thus, (C1 � C2)J
′
1×J

′
2 = ∅. This implies

CJ
′
1×J

′
2 = ∅, again by induction on the structure of C.

Thus, J′1 × J′2 |= PC but J′1 × J′2 �|= � � C, con-
tradicting the supposed semantic emulation. The proof
for the case of C(a) is similar. In fact, we can use the
same interpretations: clearly J1 |= C(a), J2 |= C(a),
and J′1 × J′2 �|= C(a). �

The main result of this section can now be estab-
lished by noting that every ALC axiom that does not
contain either of the problematic cases discussed in
Lemmas 6.7 and 6.10 is an axiom ofDLPALC.

Theorem 6.11. DLPALC is the largest DLP fragment
ofALC.

Proof. Let F be an arbitrary DLP fragment of ALC,
and let α ∈ F a name-separated axiom of F . In
particular, α can be semantically emulated in Data-
log. We show that α ∈ DLPALC. Since α is arbi-
trary and DLP is closed under variants, this shows that
F ⊆ DLPALC.

If α is a GCI, then, by Lemmas 6.7 and 6.10,
etb(NNF(α)) does not contain an existential quanti-
fier or a subconcept C1 � C2 with C1,C2 � LB. We
show that this implies etb(NNF(α)) ∈ LH , which im-
plies α ∈ LH by Lemma 6.2 and the definition of
DLPALC. The proof is by induction on the structure
of C = etb(NNF(α)). If C = �, C = ⊥, C = A, or
C = ¬A for an atomic concept A, then C ∈ LH by the
grammar. If C = C1 
 C2, then, by the induction hy-
pothesis, C1,C2 ∈ LH; hence C ∈ LH . If C = C1 � C2,
then again C1,C2 ∈ LH by induction. In addition, by
the assumption on C, we have C1 ∈ LB or C2 ∈ LB;
thus C ∈ LH . If C = ∀R.D, the claim is again immedi-
ate by induction. The case C = ∃R.D cannot occur by
our assumption on C.

The proof for the case where α is a concept assertion
C(a) is similar, but using only Lemma 6.10 to ensure
that etb(NNF(C)) does not contain a subconcept C1 �
C2 with C1,C2 � LB. Then etb(NNF(C)) ∈ La follows



76 M. Krötzsch et al. / A closer look at the semantic relationship between Datalog and description logics

again by induction, where the case C = ∃R.D is now
immediate from the definition of La.

Finally, if α is a role assertion R(a, b), then it is
clearly inDLPALC, too. �

7. The Datalog fragment of SROIQ

The previous sections showed that syntactic descrip-
tions tend to become rather complex when maximis-
ing languages in a canonical way, but the situation is
substantially more intricate when considering SROIQ
instead of ALC as an underlying DL. In this section,
we discuss some of the related problems by means of
examples, and we review related work by Krötzsch
and Rudolph, who have identified a DLP fragment of
SROIQ that is maximal under some additional restric-
tions [21].

Among the additional features of SROIQ, there are
two that make the relationship to Datalog highly com-
plicated. Nominals are concepts of the form {c} for a
constant c ∈ I, which are interpreted as singleton sets
{c}I = {cI}. Unions of nominals can express concepts
of a certain maximal cardinality. Number restrictions
are concepts of the form �n R.C and �n R.C, where
n is a non-negative number, and which denote the set
of individuals that have at least n and at most n R-
successors in C, respectively. In particular, one can ex-
press ∃R.C as �1 R.C, and ∀R.C as �0 R.¬C.

Example 7.1. The concept {a} � {b} � {c} has at
most three instances, possibly less if the interpreta-
tions of two of the constant symbols coincide. There-
fore, the expression �4 R.({a} � {b} � {c}) is equiva-
lent to ⊥, and can thus be expressed in Datalog. The
negated concept ¬�4 R.({a}�{b}�{c}), which is equiv-
alent to �3 R.({a} � {b} � {c}), is therefore equivalent
to �.

Note that all concepts in the previous example are
name-separated. This illustrates that more elaborate
grammars are needed to define classes L⊥ and L� for
SROIQ.

The interaction of nominals, unions, and number
restrictions becomes more complex in cases where
the cardinality of a nominal equals the cardinality ex-
pressed in a restriction.

Example 7.2. The axiom A � ∃R.{c} can be expressed
by the Datalog rule A(x) → R(x, c). This case is
widely known – the ontology language OWL RL even
includes a dedicated syntactic construct ObjectHas-
Value for concept expressions of the form ∃R.{c} [28].

It is less known that this can be generalised to larger
numbers. For instance, the axiom A � �2 R.({c} � {d})
can be expressed by the Datalog program

{A(x)→ R(x, c), A(x)→ R(x, d), A(x)∧c ≈ d → ⊥},

which uses the equality predicate ≈. It is well-known
that ≈ can easily be axiomatised in Datalog using a
standard equality theory.

Even more intricate types of interaction between
nominals and unions can occur in concept assertions.

Example 7.3. In concept assertions, nominals are
not necessary to express � -restrictions. For example,
(�2 R.A)(c) is semantically emulated by the program

{R(c, s1), R(c, s2), A(s1), A(s2), s1 ≈ s2 → ⊥},

where s1 and s2 are fresh Skolem constants. This gen-
eralises the case of ∃ inDLPALC assertions. However,
the filler concept A can be significantly more complex
and even include disjunction. For example, the asser-
tion (�2 R.(¬{a} � A � B))(c) is expressed by the fol-
lowing program

{R(c, s1), R(c, s2), s1 ≈ s2 → ⊥,

a ≈ s1 → A(s1), a ≈ s2 → B(s2)},

which allows limited forms of disjunction by using
the fact that only at most one of the two Skolem con-
stants can be equal to a. Clearly, there are two dis-
tinct R-successors of c in every model. At most one
of them can be equal to a (and thus fail to be an in-
stance of ¬{a}): if s1 ≈ a, then A(s1); if s2 ≈ a, then
A(s2). This reasoning is strictly deterministic, yet it
expresses a certain form of disjunction. By introduc-
ing further pairs of distinct successor constants s′1 and
s′2 (not necessarily distinct to s1 and s2), one can al-
low arbitrarily many disjunctive cases, e.g., to encode
(�2 R.(¬{a} � A � B �C))(c).

The proof of Lemma 6.10 is not applicable to Ex-
ample 7.3, since we cannot construct an interpretation
I⊥(¬{a}) with ¬{a}I⊥(¬{a}) = ∅. More generally, the
utility of product models is limited when dealing with
nominals. In the above example, I1 × I2 |= s1 ≈ a
holds only if both I1 |= s1 ≈ a and I2 |= s1 ≈ a. So
whenever I1 × I2 |= s1 ≈ a, we find that I1 |= A(s1)
and I2 |= A(s1), and hence I1 × I2 |= A(s1).

Krötzsch and Rudolph consider more complex
forms of product constructions to show the limits of
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the encoding approach of Example 7.3 [21]. This al-
lows them to show that an expression of the form
(�n R.((¬{a1}
· · ·
¬{am})�A�B))(c) can be semanti-
cally emulated in Datalog exactly if m � n2 − n. More-
over, they discover further kinds of encodings that are
different from Example 7.3. A consequence of their
findings is, for example, that the assertion C(e) can be
expressed in Datalog for C = �4 R.(A � {a} � ({b} 

�1 S .({c} � {d}))) but not for C = �3 R.(A� {a} � ({b} 

�1 S .({c} � {d}))), although the two cases only differ in
the initial number restriction.

Another special case that needs to be considered oc-
curs when a SROIQ axiom restricts the overall size of
the domain.

Example 7.4. The axiom� � {a} can only be satisfied
by models with a domain that has exactly one element,
denoted by a. In such a case, every expression of the
form � � �n R.C with n � 1 is equivalent to �. Thus,
the axiom � � {a} 
 �3 R.(A � B) can be expressed by
the (unsafe) Datalog rule a ≈ x.

Krötzsch and Rudolph systematically study all of
these cases to arrive at a grammatical description of a
DLP fragment ofSROIQ [21]. The resulting grammar
is significantly more complicated than in our case. To
curtail this complexity, they additionally require DLP
to be closed under the computation of disjunctive nor-
mal forms. Clearly, if an axiom can be semantically
emulated in Datalog, the same is true for its disjunc-
tive normal form, but not necessarily for all variants
(in the sense of Definition 4.1) of this normal form. It
is conjectured that this additional requirement is not
essential for the existence of a maximal DLP frag-
ment.

Another difference to our work is that FOL=-
emulation is used instead of semantic emulation as the
main semantic criterion for defining DLP. We conjec-
ture that this does not have any impact on the resulting
fragments. It mainly affects the proofs: instead of com-
paring models of DL axioms and Datalog, one needs
to compare entailments. Our model-theoretic construc-
tions, such as I⊥(C), are replaced by auxiliary Datalog
programs, such as the program �C � ⊥�A that entails
that C is empty.

Besides this, the main difference to our work is the
significant increase in complexity that makes it harder
to follow the essential ideas. The restriction to name-
separated axioms in Definition 4.2 cannot prevent this
complexity, but it still suffices to ensure the existence
of a maximal DLP fragment that can be described by a
context-free grammar.

8. Conclusions and outlook

DLP provides an interesting example of a general
type of problem: given two knowledge representation
(KR) formalisms that can be translated to first-order
logic, how can we syntactically characterise all theo-
ries of the source formalism that can faithfully be rep-
resented in the target formalism? In this work, we pro-
posed to interpret “faithful representation” by means
of semantic emulation (a weaker notion of semantic
equivalence), while “syntactic” has been realised by
requiring closure under variants (non-uniform renam-
ings of signature symbols). These two simple princi-
ples allowed us to show the existence of a largest DLP
fragment for the DL ALC. In this sense, we argue
that our approach introduces a workable definition for
the vague notion of the “intersection” of two KR for-
malisms.

Our rigorous definition of DLP fragments also clar-
ifies the differences between DLP and the DLs EL and
Horn-SHIQ which can both be expressed in terms
of Datalog as well. Neither EL nor Horn-SHIQ can
be semantically emulated in Datalog but both satisfy
a weaker version of syntactic emulation that is ob-
tained by restricting to variable-free formulae ϕ in Def-
inition 3.3. Under such weaker requirements, a larger
space of possible DL fragments is allowed, but it is
unknown whether (finitely many) maximal languages
exist in this case. There is clearly no largest such lan-
guage, since both EL and DLP abide by the weak-
ened principles whereas their (intractable) union does
not (this follows from Proposition 4.4).

Even when weakening the requirements of DLP
fragments like this, Horn-FLE and thus its promi-
nent super-logics Horn-SHIQ and Horn-SHOIQ are
still excluded by Proposition 4.4, which explains why
Horn-SHIQ cannot be translated to Datalog axiom-
by-axiom. In the presence of transitivity, Horn-SHIQ
also is not really closed under variants, but this prob-
lem could be overcome by using distinct signature
sets for simple and non-simple roles. Again, it is open
which results can be established for Horn-SHIQ-like
DLs based on the remaining weakened principles.

This work also explicitly introduces a notion of em-
ulation that appears to be novel, though loosely related
to conservative extensions. In essence, it requires that
a theory can take the place of another theory in all log-
ical contexts, based on a given syntactic interface. Ex-
amples given in this paper illustrate that this can be
very different from semantic equivalence. Yet, emu-
lation can be argued to define minimal requirements
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for preserving a theory’s semantics even in combina-
tion with additional information, so it appears to be a
natural tool for enabling information exchange in dis-
tributed knowledge systems. We think that the articu-
lation of this notion is useful for studying the semantic
interplay of heterogeneous logical formalisms in gen-
eral.

Finally, the approach of this paper – seeking a log-
ical fragment that is provably maximal under certain
conditions – immediately leads to a number of further
research questions. For example, what is the maximal
fragment of SWRL (“Datalog ∪ SROIQ,” see [16])
that can be expressed in SROIQ? Clearly, this frag-
ment would contain DL Rules [24] and maybe some
form of DL-safe rules [31]. But also the maximal
FOL= fragment that can be expressed in a well-known
subset such as the Guarded Fragment [2] or the two-
variable fragment might be of general interest. We ar-
gue that ultimate answers to such questions can in-
deed be obtained based on similar definitions of frag-
ments as used for DLP in this work. At the same time,
our study of SROIQ indicates that the required def-
initions and arguments can become surprisingly com-
plex when dealing with a syntactically rich formal-
ism like description logic. The main reason for this is
that constructs that are usually considered “syntactic
sugar” have non-trivial semantic effects when consid-
ering logical fragments that are closed under variants.
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