Exercise Sheet 5: Treewidth and Hypertreewidth
 Jonas Karge, Sebastian Rudolph
 Database Theory, 2020-06-01, Summer Term 2021

Exercise 5.1. Construct the query hypergraph and the primal graph for the following queries:

1. $\exists x, y, z, u, v . r(x, y, z, u) \wedge s(z, u, v)$
2. $\exists x, y, z, u, v \cdot a(x, y) \wedge b(y, z) \wedge c(z, u) \wedge d(u, v) \wedge e(v, z) \wedge f(z, x) \wedge d(x, u) \wedge d(u, y)$

Exercise 5.2. Determine the treewidth of each of the following graphs and provide a suitable tree decomposition.
(a)

(b)

(c)

(d)

Exercise 5.3. Show that a clique (fully connected graph) of size n has treewidth $n-1$.

Exercise 5.4. Decide whether the following claims are true or false. Explain your answer.

1. Deleting an edge from a graph may make the treewidth smaller but never larger.
2. Deleting a vertex from a graph (and removing all of its edges) may make the treewidth smaller but never larger.
3. Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.
4. Deleting a vertex from a hypergraph (and contracting all of its edges) may make the hypertree width smaller but never larger.

Exercise 5.5. The following BCQ corresponds to graph (a) in Exercise 5.2:

$$
\left.\left.\begin{array}{rl}
\exists x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8} \cdot r\left(x_{1}, x_{2}\right) & \wedge r\left(x_{1}, x_{3}\right) \\
r\left(x_{4}, x_{6}\right) & \wedge r\left(x_{2}, x_{4}\right)
\end{array}\right) r\left(x_{5}, x_{6}\right) \wedge r\left(x_{5}, x_{4}\right) \wedge r\left(x_{7}\right) \wedge r\left(x_{6}, x_{5}\right) \wedge\right) \wedge r\left(x_{7}, x_{8}\right)
$$

According to the logical characterisation from the lecture, this query can be expressed in the $\exists-\wedge$-fragment of FO using only treewidth +1 variables. Find such a formula.

