2. Bisimulation 101

Lecture on Models of Concurrent Systems
(Summer 2022)

Stephan Mennicke
Apr 12-20, 2022

What is up next?

Week 1: A Primer in Programming Language Semantics
Week 2: Bisimilarity and Interaction
Week 3: Algebraic Properties of Bisimilarity (SOS needed!)
Week 4: Bisimilarity for Processes with Internal Actions
Week 5: Towards True-Concurrency Semantics
Week 6: ...
Week 7: ...
Week 8: Mobility: The 7-Calculus
Week 9: ...
Week 10: ...
Week 11: Advanced Topics: Expressiveness
Week 12: Advances Topics: Expressiveness
Week 13: Advanced Topics: Data-Manipulating Systems
Week 14: Advanced Topics: Data-Manipulating Systems

Stephan Mennicke Concurrency Theory 15/43

Labeled Transition System: A Unifying Model

Definition 2.1: A labeled transition system (LTS) is a triple (Pr, Act,—) where Pr is
a non-empty set of states/processes (also called the domain of the LTS), Act is the set
of labels (or actions), and —C Pr x Act x Pr is the transition relation.

e Write P % Q for (P,a, Q) €— and call Q the (a-)derivative of P;
or P performs «v and becomes ().

o If s=ajay...ap_; for a; € Act (1 <i < k), then P > P’ if there are
Py, Pi,...,Py_1, Py such that P,_y =% P; (0 < j < k), P= Py, and P’ = P,
Write P 2% if there is a P’ with P % P’ and P 2+ if there is no such P’

e The same notion carries over to sequences of actions s € Act™.

Stephan Mennicke Concurrency Theory 16/43

LTSs and Processes: Further Notation and Classes
If L= (Pr,Act,—) is an LTS, then every process P € Pr describes an LTS by its own,
namely (P, Act, — p) with P being the smallest subset of Pr, such that

e PcP and
eifQePand Q5 Q' then Q' € Pand Q Sp Q.

Definition 2.2: An LTS (Pr, Act,—) is
1. image-finite if for each P € Pr and a € Act, {P' € Pr | P < P'} is finite;
2. finite-state if Pr is finite;
3. finite if it is finite-state and — is acyclic;

4. deterministic if for each P € Pr and a € Act, P = P’ and P = P implies
P — P

Notions carry over to processes P € Pr.

Stephan Mennicke Concurrency Theory 17/43

Equivalence of Processes (1/2)

We call a binary relation on the states of an LTS a process relation.
We subsequently assume a single “global” LTS £ = (Pr, Act,—).

Every LTS has a natural graph representation, called the process graph, interpreting Pr as the
set of nodes, Act is the set of edge labels, and — is the labeled edge relation.

Definition 2.3: Let G, = (V;, %, E;) be two edge-labeled directed graphs (V; and % are
disjoint sets, £; C V; x X x1;). A bijective function f : V; — V5 is called an isomorphism
between (G| and G if (v,a,w) € Ey if, and only if, (f(v),a, f(w)) € Es.

Two processes P and () are equivalent up to isomorphisms, denoted by P = @), if, and
only if, there is an isomorphism between the process graphs of P and ().

Note, functions f : A — B are ultimately relations since f = {(x,y) | f(z) = y}.

Stephan Mennicke Concurrency Theory 18/43

Equivalence of Processes (1.5/2)

Comparison LTS to NFAs:

e set of states
e alphabet

e initial state

e final states

e transition function

Definition 2.4: For process P, a trace of P is a sequence of actions w € Act”, such
that P . The set of all traces of process P is denoted by Tr(P). Two processes P and
(@) are trace-equivalent, denoted by P ~+, @, if, and only if, Tr(P) = Tr(Q).

Stephan Mennicke Concurrency Theory

19/43

Equivalence of Processes (2/2)

Definition 2.5: A process relation R is called a bisimulation if, and only if, (P,Q) € R
implies for all o € Act,
o for all P’ € Pr with P % P/, thereisa Q' € Pr with @ = Q" and (P',Q) € R,
and
o forall Q' € Prwith Q % @', thereisa P’ € Pr with P % P’ and (P',Q’) € R.
If there is a bisimulation R with (P,(Q)) € R we say that P is bisimilar to (), denoted
P < (). < is called bisimilarity.

Hence, is the union of all bisimulations.

Theorem 2.6: (I) Bisimilarity is reflexive, symmetric, and transitive. (Il) Bisimilarity is
itself a bisimulation. (II) Bisimilarity is the largest bisimulation.

Stephan Mennicke Concurrency Theory 20/43

“Alternative” Notions/Definitions

A process relation R is a noitslumiaid if, and only if, (P, Q) € R implies for all o € Act,

e for all P’ with P % P’, and for all Q" with Q@ = @', it holds that (P, Q') € R,
and

o for all Q' with @ = @', and for all P’ with P % P’, it holds that (P, Q') € R.

Discuss noitslumizid in light of bisimulation.

A process relation S is a simulation if, and only if, (P, Q) € S implies for all a € Act,
o if P % P, then thereis a Q' € Pr with @ % Q' and (P',Q') € S.

We say that @ simulates P if there is a simulation S with (P, Q) € S, denoted P < Q.

P and @ are simulation equivalent if, and only if, P < Q and) < P.

Compare similarity (<) to bisimilarity (<). Are two simulation equivalent processes also
bisimilar?

Stephan Mennicke Concurrency Theory 21/43

Final Remarks

Bisimilarity (<) is the largest bisimulation (Theorem 2.6):

Bisimilarity is the largest process relation, such that for each P < @ and label o € Act,
1. if PS5 P/, then thereis a Q' € Pr such that Q = @’ and P’ <)’, and
2. if Q@ = @', then there is a P’ € Pr such that P = P’ and P’ < Q'.

To show that P = @ (i.e., (P, Q) €=), it is sufficient to give a bisimulation R such that
(P,Q) € R.

An inductive definition of process equality:

P =Q if, for all a:
1. for all P’ with P = P/, there is a Q' such that @ = @’ and P’ = ', and
2. for all Q" with Q@ = @, thereis a P’ such that P % P’ and P/ = Q.

Stephan Mennicke Concurrency Theory 22/43

What about Interaction? Testing!

As before, we consider a single LTS (Pr, Act, —).

Additionally, we'll assume image-finiteness for the transition system.

For tests 7" and processes I° we have a look at observations

O(T,P)C{T, 1}

e Testing scenario: very simple, only success and failure (absence of success)
Recall, P % means there is no P’ with P = P’

Stephan Mennicke Concurrency Theory 23/43

Testing: Syntax and Semantics

A test T' is an expression of the following grammar:

T == SUCC \ FAIL \ a.T

For an arbitrary process P and test 1", define the observations admitted by P through 7" as:

O(SUCC, P)
O(FAIL, P)

O(a.T,P)

O(a.T,P)

O(Tl N Ts, P)
O(Tl Vv Ty, P)

Stephan Mennicke

{1}
{1}
{1}
Uto(r,p)| P = P'}
{T}

U{o(r,pP) | P% P}
O(Ty, P) A* O(T3, P)
O(T, P) v* O(T3, P)

Concurrency Theory

a.T\TAT\TvT\VT\aT

if P2

otherwise.

if P2

otherwise.

24/43

Testing: Syntax and Semantics

T == SUCC|FAIL|aT |aT |TAT|TVT|VT|3T
O(SUCC,P) = {T}
O(FAIL,P) = {1}
{1} if P2
.T P = a .
0T, P) UH{O(T,P)| P P'} otherwise.
_ {T} if P2
O@T,P) = .
@T.P) ULO(T,P') | P % P’} otherwise.
O(Ty ATy, P) = O(Ty, P) A* O(Ty, P)
Oy VTe,P) = O(Ty, P)V* O(Ty, P)
{1} if LeO(T,P)
O(T,P) =
(T, P) {T} otherwise
0@r.p) - (T} ifTeOT,P)

{L} otherwise

Stephan Mennicke Concurrency Theory 25/43

Properties of Tests and Observation (1/)

Theorem 2.7: Every test 7' has an inverse test 7', such that for all processes P,
1. L € O(T,P) if, and only if, T € O(T, P) and
2. T € O(T,P) if, and only if, L € O(T, P).

Proof (of 1): Define T by

SUCC = FALL FAIL = succ
aT’" = al al’ = aT
nAT, = v, TVvh = TiAD
I = VI vI© = JT

Proof by induction on the structure of 7". Let P be a process.
Base: 7' = FAIL. Then O(T, P) = {1} and O(T, P) = O(SUCC, P) = {T}.

Stephan Mennicke Concurrency Theory 26/43

Properties of Tests and Observations (2/)

SUCC = FAIL FAIL = succ
aT = aT al” = aT’
AT, = vk TVL = T1AT
I = vI' VI = 3T

Step: By case distinction.
e T=T,ATy: L e€O(T,P)iff Le O, P)or L eOTy, P) iff(IH)
T e€O(T,P)or T €Oy, P)iff T € O(Ty VTy, P) iff T € O(T, P)
e T=T,VTy: L cO(T,P)iff L € O(Ty,P) and L € O(T3, P) iff(IH)
T €Oy, P)and T € Oy, P) iff T € O(T, ATy, P) iff T € O(T, P)
o T=3T": 1L € O(T,P)iff O(T", P) = {L} iff(IH) O(T", P) = {T} iff
T € O(VT', P) iff T € O(T, P).
o T=VT": 1L € O(T,P)iff L e OT', P)iff(IH) T € O(T", P) iff
T e O@ET,P)iff T € O, P).

Stephan Mennicke Concurrency Theory 27/43

Properties of Tests and Observations (3/)

Ty NT5
Erg

Step (cont’d): By case distinction.

FAIL FAIL = SUCC
a. T’ aTl = aT
W, TV = T1AT
VT’ vIr = 317

e T=aT: L €O(T,P)iff (a) P 2% or (b) L € O(T', P') for some P’
with P % P’. In case (a), (a.T’, P)={T}. Incase (b), T € O(T", P")
by IH. Hence, T € O(a.T", P) by the arguments for (a) and (b).

e T=aT: L cO(T,P)iff P% P (for some P') and L € O(T', P') iff
TeOT,P)iff TeO®T,P)iff T € OT,P). O

Stephan Mennicke

Concurrency Theory 28/43

Properties of Tests and Observation (4/4)

Definition 2.8: P ~1 @ if, and only if, O(T, P) = O(T, Q) for all tests T

Theorem 2.9: If P o1 (), then there is a test case 7', such that O(7, P) = {L} and
o(T,Q) ={T}.

Proof: Since P 57 (), there is at least one test case 7)) with O(T}, P) # O(Tp, Q).
Transform T} into the required 7" by the following procedure:

L If O(To, Q) = {T}, set T = VTy. If O(Ty, Q) = { L}, set O(VTp).

2. Otherwise, if O(Ty, P) = { L}, set T = 3Ty and if O(Tp, P) = {T}, set T = ITy. O

Theorem 2.10: <=~ on image-finite processes.

Stephan Mennicke Concurrency Theory 29/43

Intermezzo: What is a Good Equivalence on Processes?

Stephan Mennicke Concurrency Theory 30/43

Completed Traces and Failure Equivalence

Definition 2.11: For process P, a trace w € Tr(P) is a completed trace of P if for
some process P, P 5 P’ and for all @ € Act, P’ /7. Denote by CTr(P) the set of all
completed traces of P. Process P is completed trace equivalent to process () if, and
only if, P ~7 @ and CTr(P) = CTr(Q).

Definition 2.12: For process P, (w, X) is a failure pair of P if w € Tr(P) and for some
P' with P % P’, P' 2 for all @ € X. Denote by F(P) the set of all failure pairs of P.
Process P is failure equivalent to process () if, and only if, F(P) = F(Q).

Stephan Mennicke Concurrency Theory 31/43

Testing Revisited

T = SUCC|FAIL | a.T

aT\TAT\TVT\wﬂaT

What if a test is a process itself (i.e., ' € Pr)? A special action v' € Act would signal success
of a test.

A testing configuration is an expression of the following grammar:
E uw= (T,P)|T

where T, P € Pr. Define the testing transition relation =—> as the smallest relation
satisfying the following two rules:

TS T PP g Lo gt
—— (SUCC) —
(T, Py — (T, P') (T,P) =T

(ACT)

Stephan Mennicke Concurrency Theory 32/43

Testing Preorder and Equivalence

TS%T PY% P T4 T
(ACT) - (succ) ———
(T, P) = (T, P") (T,P) =T
A (finite or infinite) sequence of testing configurations FF ... is called a testing sequence

of process P and test 7" if £y = (T, P) and for all i > 0, B,y — E,.

1. T € O(T, P) if there is a testing sequence emanating from (7, P) on which T occurs;

2. L € O(T, P) if there is a testing sequence emanating from (T, P) on which no T occurs.

O(T, P) are non-empty subsets of {T, 1} (as a lattice 1. C T).
Lifting for observations: { L} C {T, L} C {T}.

Definition 2.13: P < @ if, and only if, for all processes 7', O(T, P) C O(T,Q). P and
() are observational testing equivalent, denoted P ~ (), if, and only if, P < @ and
QS P

Stepha v heorem 2.14: ~ coincides with failurecg%ir\@jgy@ﬁeory

3/43

May/Must Testing (1/2)

Another lifting for observations: { L} Cray {T, L} =may {T}

Definition 2.15: P <., @ if, and only if, for all processes 7', O(T', P) Cyay O(T, P).
P and () are may-testing equivalent, denoted P ~,, @, if, and only if, P <nay @ and

Q Smay P.

Theorem 2.16: ~,, =~

Stephan Mennicke Concurrency Theory 34/43

May/Must Testing (2/2)

Another lifting for observations: { L} =nust {T, L} Crust { T}

Definition 2.17: P <., @ if, and only if, for all processes T', O(T, P) Cpust O(T, P).
P and @) are must-testing equivalent, denoted P ~, . @, if, and only if, P < .t @
and @ <pmust P-

Theorem 2.18: (1) ~=~may N 2must (1) Zmust Cmay (1) 2muse=2

Stephan Mennicke Concurrency Theory 35/43

Py

Py

