
2. Bisimulation 101

Lecture on Models of Concurrent Systems
(Summer 2022)

Stephan Mennicke

Apr 12-20, 2022



What is up next?

Week 1: A Primer in Programming Language Semantics
Week 2: Bisimilarity and Interaction
Week 3: Algebraic Properties of Bisimilarity (SOS needed!)
Week 4: Bisimilarity for Processes with Internal Actions
Week 5: Towards True-Concurrency Semantics
Week 6: . . .
Week 7: . . .
Week 8: Mobility: The π-Calculus
Week 9: . . .
Week 10: . . .
Week 11: Advanced Topics: Expressiveness
Week 12: Advances Topics: Expressiveness
Week 13: Advanced Topics: Data-Manipulating Systems
Week 14: Advanced Topics: Data-Manipulating Systems

Stephan Mennicke Concurrency Theory 15/43



Labeled Transition System: A Unifying Model

Definition 2.1: A labeled transition system (LTS) is a triple (Pr ,Act ,−→) where Pr is
a non-empty set of states/processes (also called the domain of the LTS), Act is the set
of labels (or actions), and −→⊆ Pr ×Act × Pr is the transition relation.

• Write P α−→ Q for (P, α,Q) ∈−→ and call Q the (α-)derivative of P ;
or P performs α and becomes Q.

• If s = α1α2 . . . αk−1 for αi ∈ Act (1 ≤ i < k), then P s−→ P ′ if there are
P0, P1, . . . , Pk−1, Pk such that Pj−1

αj−→ Pj (0 < j ≤ k), P = P0, and P ′ = Pk.

• Write P α−→ if there is a P ′ with P α−→ P ′ and P 6 α−→ if there is no such P ′.

• The same notion carries over to sequences of actions s ∈ Act∗.

Stephan Mennicke Concurrency Theory 16/43



LTSs and Processes: Further Notation and Classes

If L = (Pr ,Act ,−→) is an LTS, then every process P ∈ Pr describes an LTS by its own,
namely (P,Act ,−→P ) with P being the smallest subset of Pr , such that

• P ∈ P and

• if Q ∈ P and Q α−→ Q′, then Q′ ∈ P and Q α−→P Q
′.

Definition 2.2: An LTS (Pr ,Act ,−→) is

1. image-finite if for each P ∈ Pr and α ∈ Act , {P ′ ∈ Pr | P α−→ P ′} is finite;
2. finite-state if Pr is finite;

3. finite if it is finite-state and −→ is acyclic;

4. deterministic if for each P ∈ Pr and α ∈ Act , P α−→ P ′ and P α−→ P ′′ implies
P ′ = P ′′.

Notions carry over to processes P ∈ Pr .

Stephan Mennicke Concurrency Theory 17/43



Equivalence of Processes (1/2)

We call a binary relation on the states of an LTS a process relation.

We subsequently assume a single “global” LTS L = (Pr ,Act ,−→).

Every LTS has a natural graph representation, called the process graph, interpreting Pr as the
set of nodes, Act is the set of edge labels, and −→ is the labeled edge relation.

Definition 2.3: Let Gi = (Vi,Σ, Ei) be two edge-labeled directed graphs (Vi and Σ are
disjoint sets, Ei ⊆ Vi×Σ×Vi). A bijective function f : V1 → V2 is called an isomorphism
between G1 and G2 if (v, a, w) ∈ E1 if, and only if, (f(v), a, f(w)) ∈ E2.
Two processes P and Q are equivalent up to isomorphisms, denoted by P ∼= Q, if, and
only if, there is an isomorphism between the process graphs of P and Q.

Note, functions f : A→ B are ultimately relations since f = {(x, y) | f(x) = y}.

Stephan Mennicke Concurrency Theory 18/43



Equivalence of Processes (1.5/2)

Comparison LTS to NFAs:

• set of states

• alphabet

• initial state

• final states

• transition function

Definition 2.4: For process P , a trace of P is a sequence of actions w ∈ Act∗, such
that P w−→. The set of all traces of process P is denoted by Tr(P ). Two processes P and
Q are trace-equivalent, denoted by P ∼Tr Q, if, and only if, Tr(P ) = Tr(Q).

Stephan Mennicke Concurrency Theory 19/43



Equivalence of Processes (2/2)

Definition 2.5: A process relation R is called a bisimulation if, and only if, (P,Q) ∈ R
implies for all α ∈ Act ,

• for all P ′ ∈ Pr with P α−→ P ′, there is a Q′ ∈ Pr with Q α−→ Q′ and (P ′, Q′) ∈ R,
and

• for all Q′ ∈ Pr with Q α−→ Q′, there is a P ′ ∈ Pr with P α−→ P ′ and (P ′, Q′) ∈ R.
If there is a bisimulation R with (P,Q) ∈ R we say that P is bisimilar to Q, denoted
P - Q. - is called bisimilarity.

Hence, - is the union of all bisimulations.

Theorem 2.6: (I) Bisimilarity is reflexive, symmetric, and transitive. (II) Bisimilarity is
itself a bisimulation. (III) Bisimilarity is the largest bisimulation.

Stephan Mennicke Concurrency Theory 20/43



“Alternative” Notions/Definitions

A process relation R is a bisimulation if, and only if, (P,Q) ∈ R implies for all α ∈ Act ,

• for all P ′ with P α−→ P ′, and for all Q′ with Q α−→ Q′, it holds that (P ′, Q′) ∈ R,
and

• for all Q′ with Q α−→ Q′, and for all P ′ with P α−→ P ′, it holds that (P ′, Q′) ∈ R.

Discuss bisimulation in light of bisimulation.

A process relation S is a simulation if, and only if, (P,Q) ∈ S implies for all α ∈ Act ,

• if P α−→ P ′, then there is a Q′ ∈ Pr with Q α−→ Q′ and (P ′, Q′) ∈ S.
We say that Q simulates P if there is a simulation S with (P,Q) ∈ S, denoted P � Q.
P and Q are simulation equivalent if, and only if, P � Q and Q � P .

Compare similarity (�) to bisimilarity (-). Are two simulation equivalent processes also
bisimilar?

Stephan Mennicke Concurrency Theory 21/43



Final Remarks

Bisimilarity (-) is the largest bisimulation (Theorem 2.6):

Bisimilarity is the largest process relation, such that for each P - Q and label α ∈ Act ,

1. if P α−→ P ′, then there is a Q′ ∈ Pr such that Q α−→ Q′ and P ′ - Q′, and

2. if Q α−→ Q′, then there is a P ′ ∈ Pr such that P α−→ P ′ and P ′ - Q′.

To show that P - Q (i. e., (P,Q) ∈-), it is sufficient to give a bisimulation R such that
(P,Q) ∈ R.

An inductive definition of process equality:

P = Q if, for all α:

1. for all P ′ with P α−→ P ′, there is a Q′ such that Q α−→ Q′ and P ′ = Q′, and

2. for all Q′ with Q α−→ Q′, there is a P ′ such that P α−→ P ′ and P ′ = Q′.

Stephan Mennicke Concurrency Theory 22/43



What about Interaction? Testing!

• As before, we consider a single LTS (Pr ,Act ,−→).

• Additionally, we’ll assume image-finiteness for the transition system.

• For tests T and processes P we have a look at observations

O(T, P ) ⊆ {>,⊥}

• Testing scenario: very simple, only success and failure (absence of success)

• Recall, P 6 a−→ means there is no P ′ with P a−→ P ′

Stephan Mennicke Concurrency Theory 23/43



Testing: Syntax and Semantics

A test T is an expression of the following grammar:

T ::= SUCC FAIL a.T ã.T T ∧ T T ∨ T ∀T ∃T

For an arbitrary process P and test T , define the observations admitted by P through T as:

O(SUCC, P ) = {>}
O(FAIL, P ) = {⊥}

O(a.T, P ) =

{
{⊥} if P 6 a−→⋃

{O(T, P ′) | P a−→ P ′} otherwise.

O(ã.T, P ) =

{
{>} if P 6 a−→⋃

{O(T, P ′) | P a−→ P ′} otherwise.
O(T1 ∧ T2, P ) = O(T1, P ) ∧? O(T2, P )

O(T1 ∨ T2, P ) = O(T1, P ) ∨? O(T2, P )

Stephan Mennicke Concurrency Theory 24/43



Testing: Syntax and Semantics

T ::= SUCC FAIL a.T ã.T T ∧ T T ∨ T ∀T ∃T

O(SUCC, P ) = {>}
O(FAIL, P ) = {⊥}

O(a.T, P ) =

{
{⊥} if P 6 a−→⋃

{O(T, P ′) | P a−→ P ′} otherwise.

O(ã.T, P ) =

{
{>} if P 6 a−→⋃

{O(T, P ′) | P a−→ P ′} otherwise.
O(T1 ∧ T2, P ) = O(T1, P ) ∧? O(T2, P )

O(T1 ∨ T2, P ) = O(T1, P ) ∨? O(T2, P )

O(∀T, P ) =

{
{⊥} if ⊥ ∈ O(T, P )

{>} otherwise

O(∃T, P ) =

{
{>} if > ∈ O(T, P )

{⊥} otherwise

Stephan Mennicke Concurrency Theory 25/43



Properties of Tests and Observation (1/)

Theorem 2.7: Every test T has an inverse test T , such that for all processes P ,

1. ⊥ ∈ O(T, P ) if, and only if, > ∈ O(T , P ) and

2. > ∈ O(T, P ) if, and only if, ⊥ ∈ O(T , P ).

Proof (of 1): Define T by

SUCC = FAIL FAIL = SUCC
a.T ′ = ã.T ′ ã.T ′ = a.T ′

T1 ∧ T2 = T1 ∨ T2 T1 ∨ T2 = T1 ∧ T2
∃T ′ = ∀T ′ ∀T ′ = ∃T ′

Proof by induction on the structure of T . Let P be a process.

Base: T = FAIL. Then O(T, P ) = {⊥} and O(T , P ) = O(SUCC, P ) = {>}.

Stephan Mennicke Concurrency Theory 26/43



Properties of Tests and Observations (2/)

SUCC = FAIL FAIL = SUCC
a.T ′ = ã.T ′ ã.T ′ = a.T ′

T1 ∧ T2 = T1 ∨ T2 T1 ∨ T2 = T1 ∧ T2
∃T ′ = ∀T ′ ∀T ′ = ∃T ′

Step: By case distinction.
• T = T1 ∧ T2: ⊥ ∈ O(T, P ) iff ⊥ ∈ O(T1, P ) or ⊥ ∈ O(T2, P ) iff(IH)
> ∈ O(T1, P ) or > ∈ O(T2, P ) iff > ∈ O(T1 ∨ T2, P ) iff > ∈ O(T , P )

• T = T1 ∨ T2: ⊥ ∈ O(T, P ) iff ⊥ ∈ O(T1, P ) and ⊥ ∈ O(T2, P ) iff(IH)
> ∈ O(T1, P ) and > ∈ O(T2, P ) iff > ∈ O(T1 ∧ T2, P ) iff > ∈ O(T , P )

• T = ∃T ′: ⊥ ∈ O(T, P ) iff O(T ′, P ) = {⊥} iff(IH) O(T ′, P ) = {>} iff
> ∈ O(∀T ′, P ) iff > ∈ O(T , P ).

• T = ∀T ′: ⊥ ∈ O(T, P ) iff ⊥ ∈ O(T ′, P ) iff(IH) > ∈ O(T ′, P ) iff
> ∈ O(∃T ′, P ) iff > ∈ O(T , P ).

Stephan Mennicke Concurrency Theory 27/43



Properties of Tests and Observations (3/)

SUCC = FAIL FAIL = SUCC
a.T ′ = ã.T ′ ã.T ′ = a.T ′

T1 ∧ T2 = T1 ∨ T2 T1 ∨ T2 = T1 ∧ T2
∃T ′ = ∀T ′ ∀T ′ = ∃T ′

Step (cont’d): By case distinction.

• T = a.T ′: ⊥ ∈ O(T, P ) iff (a) P 6 a−→ or (b) ⊥ ∈ O(T ′, P ′) for some P ′

with P a−→ P ′. In case (a), O(ã.T ′, P ) = {>}. In case (b), > ∈ O(T ′, P ′)

by IH. Hence, > ∈ O(ã.T ′, P ) by the arguments for (a) and (b).
• T = ã.T ′: ⊥ ∈ O(T, P ) iff P a−→ P ′ (for some P ′) and ⊥ ∈ O(T ′, P ′) iff
> ∈ O(T ′, P ′) iff > ∈ O(a.T ′, P ) iff > ∈ O(T , P ).

Stephan Mennicke Concurrency Theory 28/43



Properties of Tests and Observation (4/4)

Definition 2.8: P ∼T Q if, and only if, O(T, P ) = O(T,Q) for all tests T .

Theorem 2.9: If P 6∼T Q, then there is a test case T , such that O(T, P ) = {⊥} and
O(T,Q) = {>}.

Proof: Since P 6∼T Q, there is at least one test case T0 with O(T0, P ) 6= O(T0, Q).
Transform T0 into the required T by the following procedure:

1. If O(T0, Q) = {>}, set T = ∀T0. If O(T0, Q) = {⊥}, set O(∀T0).

2. Otherwise, if O(T0, P ) = {⊥}, set T = ∃T0 and if O(T0, P ) = {>}, set T = ∃T0.

Theorem 2.10: -=∼T on image-finite processes.

Stephan Mennicke Concurrency Theory 29/43



Intermezzo: What is a Good Equivalence on Processes?

Stephan Mennicke Concurrency Theory 30/43



Completed Traces and Failure Equivalence

Definition 2.11: For process P , a trace w ∈ Tr(P ) is a completed trace of P if for
some process P ′, P w−→ P ′ and for all α ∈ Act , P ′ 6 α−→. Denote by CTr(P ) the set of all
completed traces of P . Process P is completed trace equivalent to process Q if, and
only if, P ∼Tr Q and CTr(P ) = CTr(Q).

Definition 2.12: For process P , 〈w,X〉 is a failure pair of P if w ∈ Tr(P ) and for some
P ′ with P w−→ P ′, P ′ 6 α−→ for all α ∈ X. Denote by F(P ) the set of all failure pairs of P .
Process P is failure equivalent to process Q if, and only if, F(P ) = F(Q).

Stephan Mennicke Concurrency Theory 31/43



Testing Revisited

T ::= SUCC FAIL a.T ã.T T ∧ T T ∨ T ∀T ∃T

What if a test is a process itself (i. e., T ∈ Pr)? A special action X ∈ Act would signal success
of a test.

A testing configuration is an expression of the following grammar:

E ::= 〈T, P 〉 >

where T, P ∈ Pr . Define the testing transition relation =⇒ as the smallest relation
satisfying the following two rules:

(ACT)
T

a−→ T ′ P
a−→ P ′

〈T, P 〉 =⇒ 〈T ′, P ′〉
(SUCC)

T
X−→ T ′

〈T, P 〉 =⇒ >

Stephan Mennicke Concurrency Theory 32/43



Testing Preorder and Equivalence

(ACT)
T

a−→ T ′ P
a−→ P ′

〈T, P 〉 =⇒ 〈T ′, P ′〉
(SUCC)

T
X−→ T ′

〈T, P 〉 =⇒ >

A (finite or infinite) sequence of testing configurations E0E1 . . . is called a testing sequence
of process P and test T if E0 = 〈T, P 〉 and for all i > 0, Ei−1 =⇒ Ei.

1. > ∈ O(T, P ) if there is a testing sequence emanating from 〈T, P 〉 on which > occurs;
2. ⊥ ∈ O(T, P ) if there is a testing sequence emanating from 〈T, P 〉 on which no > occurs.

O(T, P ) are non-empty subsets of {>,⊥} (as a lattice ⊥ v >).

Lifting for observations: {⊥} v {>,⊥} v {>}.

Definition 2.13: P . Q if, and only if, for all processes T , O(T, P ) v O(T,Q). P and
Q are observational testing equivalent, denoted P ' Q, if, and only if, P . Q and
Q . P .

Theorem 2.14: ' coincides with failure equivalence.Stephan Mennicke Concurrency Theory 33/43



May/Must Testing (1/2)

Another lifting for observations: {⊥} vmay {>,⊥} ≡may {>}

Definition 2.15: P .may Q if, and only if, for all processes T , O(T, P ) vmay O(T, P ).
P and Q are may-testing equivalent, denoted P 'may Q, if, and only if, P .may Q and
Q .may P .

Theorem 2.16: 'may=∼Tr

Stephan Mennicke Concurrency Theory 34/43



May/Must Testing (2/2)

Another lifting for observations: {⊥} ≡must {>,⊥} vmust {>}

Definition 2.17: P .must Q if, and only if, for all processes T , O(T, P ) vmust O(T, P ).
P and Q are must-testing equivalent, denoted P 'must Q, if, and only if, P .must Q

and Q .must P .

Theorem 2.18: (I) '='may ∩ 'must (II) 'must⊆'may (III) 'must='

Stephan Mennicke Concurrency Theory 35/43



P1

a a

b c

P2

a

b c

P3

a
a

a

b
b

c
c

P4

a a

b b

c d

P5

a

b b

c d

P6

a

b

c d


