2. Bisimulation 101

Lecture on Models of Concurrent Systems

(Summer 2022)

Stephan Mennicke Apr 12-20, 2022

What is up next?

Week 1: A Primer in Programming Language Semantics Week 2: Bisimilarity and Interaction Week 3: Algebraic Properties of Bisimilarity (SOS needed!) Week 4: Bisimilarity for Processes with Internal Actions Week 5: Towards True-Concurrency Semantics Week 6: Week 7: **Week 8:** Mobility: The π -Calculus Week 9: Week 10: Week 11: Advanced Topics: Expressiveness Week 12: Advances Topics: Expressiveness Week 13: Advanced Topics: Data-Manipulating Systems Week 14: Advanced Topics: Data-Manipulating Systems

Labeled Transition System: A Unifying Model

Definition 2.1: A labeled transition system (LTS) is a triple (Pr, Act, \rightarrow) where Pr is a non-empty set of states/processes (also called the domain of the LTS), Act is the set of labels (or actions), and $\rightarrow \subseteq Pr \times Act \times Pr$ is the transition relation.

- Write $P \xrightarrow{\alpha} Q$ for $(P, \alpha, Q) \in \rightarrow$ and call Q the $(\alpha$ -)derivative of P; or P performs α and becomes Q.
- If $s = \alpha_1 \alpha_2 \dots \alpha_{k-1}$ for $\alpha_i \in Act \ (1 \le i < k)$, then $P \xrightarrow{s} P'$ if there are $P_0, P_1, \dots, P_{k-1}, P_k$ such that $P_{j-1} \xrightarrow{\alpha_j} P_j \ (0 < j \le k)$, $P = P_0$, and $P' = P_k$.
- Write $P \xrightarrow{\alpha}$ if there is a P' with $P \xrightarrow{\alpha} P'$ and $P \xrightarrow{\alpha}$ if there is no such P'.
- The same notion carries over to sequences of actions $s \in Act^*$.

LTSs and Processes: Further Notation and Classes

If $\mathcal{L} = (Pr, Act, \rightarrow)$ is an LTS, then every process $P \in Pr$ describes an LTS by its own, namely $(\mathbf{P}, Act, \rightarrow_P)$ with \mathbf{P} being the smallest subset of Pr, such that

- $P \in \mathbf{P}$ and
- if $Q \in \mathbf{P}$ and $Q \xrightarrow{\alpha} Q'$, then $Q' \in \mathbf{P}$ and $Q \xrightarrow{\alpha}_P Q'$.

Definition 2.2: An LTS (Pr, Act, \rightarrow) is

- 1. image-finite if for each $P \in Pr$ and $\alpha \in Act$, $\{P' \in Pr \mid P \xrightarrow{\alpha} P'\}$ is finite;
- 2. finite-state if Pr is finite;
- 3. **finite** if it is finite-state and \rightarrow is acyclic;
- 4. deterministic if for each $P \in Pr$ and $\alpha \in Act$, $P \xrightarrow{\alpha} P'$ and $P \xrightarrow{\alpha} P''$ implies P' = P''.

Notions carry over to processes $P \in Pr$.

Equivalence of Processes (1/2)

We call a binary relation on the states of an LTS a process relation.

We subsequently assume a single "global" LTS $\mathcal{L} = (Pr, Act, \rightarrow)$.

Every LTS has a natural graph representation, called the **process graph**, interpreting Pr as the set of nodes, Act is the set of edge labels, and \rightarrow is the labeled edge relation.

Definition 2.3: Let $G_i = (V_i, \Sigma, E_i)$ be two edge-labeled directed graphs (V_i and Σ are disjoint sets, $E_i \subseteq V_i \times \Sigma \times V_i$). A bijective function $f : V_1 \to V_2$ is called an **isomorphism between** G_1 and G_2 if $(v, a, w) \in E_1$ if, and only if, $(f(v), a, f(w)) \in E_2$. Two processes P and Q are **equivalent up to isomorphisms**, denoted by $P \cong Q$, if, and only if, there is an isomorphism between the process graphs of P and Q.

Note, functions $f : A \to B$ are ultimately relations since $f = \{(x, y) \mid f(x) = y\}$.

Equivalence of Processes (1.5/2)

Comparison LTS to NFAs:

- set of states
- alphabet
- initial state
- final states
- transition function

Definition 2.4: For process P, a **trace of** P is a sequence of actions $w \in Act^*$, such that $P \xrightarrow{w}$. The set of all traces of process P is denoted by Tr(P). Two processes P and Q are **trace-equivalent**, denoted by $P \sim_{Tr} Q$, if, and only if, Tr(P) = Tr(Q).

Equivalence of Processes (2/2)

Definition 2.5: A process relation \mathcal{R} is called a **bisimulation** if, and only if, $(P,Q) \in \mathcal{R}$ implies for all $\alpha \in Act$,

- for all $P' \in Pr$ with $P \xrightarrow{\alpha} P'$, there is a $Q' \in Pr$ with $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \mathcal{R}$, and
- for all $Q' \in Pr$ with $Q \xrightarrow{\alpha} Q'$, there is a $P' \in Pr$ with $P \xrightarrow{\alpha} P'$ and $(P', Q') \in \mathcal{R}$.

If there is a bisimulation \mathcal{R} with $(P,Q) \in \mathcal{R}$ we say that P is bisimilar to Q, denoted $P \Leftrightarrow Q$. \Leftrightarrow is called **bisimilarity**.

Hence, \Leftrightarrow is the union of all bisimulations.

Theorem 2.6: (I) Bisimilarity is reflexive, symmetric, and transitive. (II) Bisimilarity is itself a bisimulation. (III) Bisimilarity is the largest bisimulation.

"Alternative" Notions/Definitions

A process relation \mathcal{R} is a **noitelumized** if, and only if, $(P,Q) \in \mathcal{R}$ implies for all $\alpha \in Act$,

- for all P' with $P \xrightarrow{\alpha} P'$, and for all Q' with $Q \xrightarrow{\alpha} Q'$, it holds that $(P', Q') \in \mathcal{R}$, and
- for all Q' with $Q \xrightarrow{\alpha} Q'$, and for all P' with $P \xrightarrow{\alpha} P'$, it holds that $(P', Q') \in \mathcal{R}$.

noitelumized to the simulation as a subsection and the second sec

A process relation S is a simulation if, and only if, $(P,Q) \in S$ implies for all $\alpha \in Act$,

• if $P \xrightarrow{\alpha} P'$, then there is a $Q' \in Pr$ with $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in S$.

We say that Q simulates P if there is a simulation S with $(P,Q) \in S$, denoted $P \preceq Q$. P and Q are **simulation equivalent** if, and only if, $P \preceq Q$ and $Q \preceq P$.

Compare similarity (\leq) to bisimilarity (\Leftrightarrow). Are two simulation equivalent processes also bisimilar?

Stephan Mennicke

Concurrency Theory

Final Remarks

Bisimilarity (\rightleftharpoons) is the largest bisimulation (Theorem 2.6):

Bisimilarity is the largest process relation, such that for each $P \Leftrightarrow Q$ and label $\alpha \in Act$, 1. if $P \xrightarrow{\alpha} P'$, then there is a $Q' \in Pr$ such that $Q \xrightarrow{\alpha} Q'$ and $P' \Leftrightarrow Q'$, and 2. if $Q \xrightarrow{\alpha} Q'$, then there is a $P' \in Pr$ such that $P \xrightarrow{\alpha} P'$ and $P' \Leftrightarrow Q'$.

To show that $P \Leftrightarrow Q$ (i.e., $(P,Q) \in \Leftrightarrow$), it is sufficient to give a bisimulation \mathcal{R} such that $(P,Q) \in \mathcal{R}$.

An inductive definition of process equality:

P = Q if, for all α : 1. for all P' with $P \xrightarrow{\alpha} P'$, there is a Q' such that $Q \xrightarrow{\alpha} Q'$ and P' = Q', and 2. for all Q' with $Q \xrightarrow{\alpha} Q'$, there is a P' such that $P \xrightarrow{\alpha} P'$ and P' = Q'.

What about Interaction? Testing!

- As before, we consider a single LTS (Pr, Act, \rightarrow) .
- Additionally, we'll assume image-finiteness for the transition system.
- For tests T and processes \boldsymbol{P} we have a look at observations

 $\mathcal{O}(T,P) \subseteq \{\top,\bot\}$

- Testing scenario: very simple, only success and failure (absence of success)
- Recall, $P \xrightarrow{a}$ means there is no P' with $P \xrightarrow{a} P'$

Testing: Syntax and Semantics

A test T is an expression of the following grammar:

$$T ::= \mathsf{SUCC} \mid \mathsf{FAIL} \mid a.T \mid \tilde{a}.T \mid T \land T \mid T \lor T \mid \forall T \mid \exists T$$

For an arbitrary process P and test T, define the observations admitted by P through T as:

$$\mathcal{O}(\mathsf{SUCC}, P) = \{\top\}$$

$$\mathcal{O}(\mathsf{FAIL}, P) = \{\bot\}$$

$$\mathcal{O}(a.T, P) = \begin{cases} \{\bot\} & \text{if } P \xrightarrow{a} \\ \bigcup\{\mathcal{O}(T, P') \mid P \xrightarrow{a} P'\} & \text{otherwise.} \end{cases}$$

$$\mathcal{O}(\tilde{a}.T, P) = \begin{cases} \{\top\} & \text{if } P \xrightarrow{a} \\ \bigcup\{\mathcal{O}(T, P') \mid P \xrightarrow{a} P'\} & \text{otherwise.} \end{cases}$$

$$\mathcal{O}(T_1 \land T_2, P) = \mathcal{O}(T_1, P) \land^* \mathcal{O}(T_2, P)$$

$$\mathcal{O}(T_1 \lor T_2, P) = \mathcal{O}(T_1, P) \lor^* \mathcal{O}(T_2, P)$$

Testing: Syntax and Semantics

 $T ::= \mathsf{SUCC} \mid \mathsf{FAIL} \mid a.T \mid \tilde{a}.T \mid T \land T \mid T \lor T \mid \forall T \mid \exists T$ $\mathcal{O}(\mathsf{SUCC}, P) = \{\top\}$ $\mathcal{O}(T_1 \wedge T_2, P) = \mathcal{O}(T_1, P) \wedge^* \mathcal{O}(T_2, P)$ $\mathcal{O}(T_1 \vee T_2, P) = \mathcal{O}(T_1, P) \vee^{\star} \mathcal{O}(T_2, P)$ $\mathcal{O}(\forall T, P) = \begin{cases} \{\bot\} & \text{if } \bot \in \mathcal{O}(T, P) \\ \{T\} & \text{otherwise} \end{cases}$ $\mathcal{O}(\exists T, P) = \begin{cases} \{T\} & \text{if } \top \in \mathcal{O}(T, P) \\ \{\bot\} & \text{otherwise} \end{cases}$

Properties of Tests and Observation (1/)

Theorem 2.7: Every test T has an inverse test \overline{T} , such that for all processes P, 1. $\bot \in \mathcal{O}(T, P)$ if, and only if, $\top \in \mathcal{O}(\overline{T}, P)$ and 2. $\top \in \mathcal{O}(T, P)$ if, and only if, $\bot \in \mathcal{O}(\overline{T}, P)$.

Proof (of 1): Define \overline{T} by

$$\begin{array}{rcl} \overline{\mathsf{SUCC}} &=& \mathsf{FAIL} & \overline{\mathsf{FAIL}} &=& \mathsf{SUCC} \\ \hline \overline{a.T'} &=& \tilde{a}.\overline{T'} & & \overline{\tilde{a}.T'} &=& a.\overline{T'} \\ \hline \overline{T_1 \wedge T_2} &=& \overline{T_1} \vee \overline{T_2} & & \overline{T_1 \vee T_2} &=& \overline{T_1} \wedge \overline{T_2} \\ \hline \exists \overline{T'} &=& \forall \overline{T'} & & \forall \overline{T'} &=& \exists \overline{T'} \end{array}$$

Proof by induction on the structure of T. Let P be a process.

Base: T = FAIL. Then $\mathcal{O}(T, P) = \{\bot\}$ and $\mathcal{O}(\overline{T}, P) = \mathcal{O}(\text{SUCC}, P) = \{\top\}$.

Concurrency Theory

Properties of Tests and Observations (2/)

$$\begin{array}{rcl} \overline{\mathsf{SUCC}} &=& \mathsf{FAIL} & \overline{\mathsf{FAIL}} &=& \mathsf{SUCC} \\ \hline \overline{a.T'} &=& \tilde{a}.\overline{T'} & & \hline \tilde{a}.T' &=& a.\overline{T'} \\ \hline \overline{T_1 \wedge T_2} &=& \overline{T_1} \vee \overline{T_2} & & \overline{T_1 \vee T_2} &=& \overline{T_1} \wedge \overline{T_2} \\ \hline \exists \overline{T'} &=& \forall \overline{T'} & & \forall \overline{T'} &=& \exists \overline{T'} \end{array}$$

Step: By case distinction.

- $T = T_1 \wedge T_2$: $\bot \in \mathcal{O}(T, P)$ iff $\bot \in \mathcal{O}(T_1, P)$ or $\bot \in \mathcal{O}(T_2, P)$ iff(IH) $\top \in \mathcal{O}(\overline{T_1}, P)$ or $\top \in \mathcal{O}(\overline{T_2}, P)$ iff $\top \in \mathcal{O}(\overline{T_1} \vee \overline{T_2}, P)$ iff $\top \in \mathcal{O}(\overline{T}, P)$
- $T = T_1 \vee T_2$: $\bot \in \mathcal{O}(T, P)$ iff $\bot \in \mathcal{O}(T_1, P)$ and $\bot \in \mathcal{O}(T_2, P)$ iff(IH) $\top \in \mathcal{O}(\overline{T_1}, P)$ and $\top \in \mathcal{O}(\overline{T_2}, P)$ iff $\top \in \mathcal{O}(\overline{T_1} \wedge \overline{T_2}, P)$ iff $\top \in \mathcal{O}(\overline{T}, P)$
- $T = \exists T': \perp \in \mathcal{O}(T, P) \text{ iff } \mathcal{O}(T', P) = \{\perp\} \text{ iff}(\mathsf{IH}) \mathcal{O}(\overline{T'}, P) = \{\top\} \text{ iff} \\ \top \in \mathcal{O}(\forall \overline{T'}, P) \text{ iff } \top \in \mathcal{O}(\overline{T}, P).$
- $T = \forall T': \bot \in \mathcal{O}(T, P) \text{ iff } \bot \in \mathcal{O}(T', P) \text{ iff}(\mathsf{IH}) \top \in \mathcal{O}(\overline{T'}, P) \text{ iff}$ $\top \in \mathcal{O}(\exists \overline{T'}, P) \text{ iff } \top \in \mathcal{O}(\overline{T}, P).$

Concurrency Theory

Properties of Tests and Observations (3/)

$$\begin{array}{rcl} \overline{\mathsf{SUCC}} &=& \mathsf{FAIL} & \overline{\mathsf{FAIL}} &=& \mathsf{SUCC} \\ \hline \overline{a.T'} &=& \tilde{a}.\overline{T'} & & \overline{\tilde{a}.T'} &=& a.\overline{T'} \\ \hline \overline{T_1 \wedge T_2} &=& \overline{T_1} \vee \overline{T_2} & & \overline{T_1 \vee T_2} &=& \overline{T_1} \wedge \overline{T_2} \\ \hline \exists \overline{T'} &=& \forall \overline{T'} & & \forall \overline{T'} &=& \exists \overline{T'} \end{array}$$

Step (cont'd): By case distinction.

- $T = a.T': \perp \in \mathcal{O}(T, P)$ iff (a) $P \xrightarrow{q}$ or (b) $\perp \in \mathcal{O}(T', P')$ for some P'with $P \xrightarrow{a} P'$. In case (a), $\mathcal{O}(\tilde{a}.\overline{T'}, P) = \{\top\}$. In case (b), $\top \in \mathcal{O}(\overline{T'}, P')$ by IH. Hence, $\top \in \mathcal{O}(\tilde{a}.\overline{T'}, P)$ by the arguments for (a) and (b).
- $T = \tilde{a}.T'$: $\bot \in \mathcal{O}(T,P)$ iff $P \xrightarrow{a} P'$ (for some P') and $\bot \in \mathcal{O}(T',P')$ iff $\top \in \mathcal{O}(\overline{T'},P')$ iff $\top \in \mathcal{O}(a.\overline{T'},P)$ iff $\top \in \mathcal{O}(\overline{T},P)$.

Properties of Tests and Observation (4/4)

Definition 2.8: $P \sim_T Q$ if, and only if, $\mathcal{O}(T, P) = \mathcal{O}(T, Q)$ for all tests T.

Theorem 2.9: If $P \not\sim_T Q$, then there is a test case T, such that $\mathcal{O}(T, P) = \{\bot\}$ and $\mathcal{O}(T, Q) = \{\top\}.$

Proof: Since $P \not\sim_T Q$, there is at least one test case T_0 with $\mathcal{O}(T_0, P) \neq \mathcal{O}(T_0, Q)$. Transform T_0 into the required T by the following procedure:

- 1. If $\mathcal{O}(T_0, Q) = \{\top\}$, set $T = \forall T_0$. If $\mathcal{O}(T_0, Q) = \{\bot\}$, set $\mathcal{O}(\forall \overline{T_0})$.
- 2. Otherwise, if $\mathcal{O}(T_0, P) = \{\bot\}$, set $T = \exists T_0$ and if $\mathcal{O}(T_0, P) = \{\top\}$, set $T = \exists \overline{T_0}$.

Theorem 2.10: $\Delta = \sim_T$ on image-finite processes.

 \square

Intermezzo: What is a Good Equivalence on Processes?

Completed Traces and Failure Equivalence

Definition 2.11: For process P, a trace $w \in \text{Tr}(P)$ is a **completed trace of** P if for some process P', $P \xrightarrow{w} P'$ and for all $\alpha \in Act$, $P' \xrightarrow{\alpha}$. Denote by CTr(P) the set of all completed traces of P. Process P is **completed trace equivalent to** process Q if, and only if, $P \sim_{\text{Tr}} Q$ and CTr(P) = CTr(Q).

Definition 2.12: For process P, $\langle w, X \rangle$ is a **failure pair of** P if $w \in \text{Tr}(P)$ and for some P' with $P \xrightarrow{w} P'$, $P' \xrightarrow{q}$ for all $\alpha \in X$. Denote by F(P) the set of all failure pairs of P. Process P is **failure equivalent** to process Q if, and only if, F(P) = F(Q).

Testing Revisited

$$T ::= \mathsf{SUCC} \mid \mathsf{FAIL} \mid a.T \mid \tilde{a}.T \mid T \land T \mid T \lor T \mid \forall T \mid \exists T$$

What if a test is a process itself (i.e., $T \in Pr$)? A special action $\checkmark \in Act$ would signal success of a test.

A testing configuration is an expression of the following grammar:

$$E ::= \langle T, P \rangle \mid \top$$

where $T, P \in Pr$. Define the **testing transition relation** \implies as the smallest relation satisfying the following two rules:

$$(\mathsf{ACT}) \xrightarrow{T \xrightarrow{a} T'} P \xrightarrow{a} P' \\ \hline \langle T, P \rangle \Longrightarrow \langle T', P' \rangle \qquad (\mathsf{SUCC}) \xrightarrow{T \xrightarrow{\checkmark} T'} \\ \hline \langle T, P \rangle \Longrightarrow \top$$

Concurrency Theory

Testing Preorder and Equivalence

$$(\mathsf{ACT}) \xrightarrow{T \xrightarrow{a} T'} P \xrightarrow{a} P' \\ \hline \langle T, P \rangle \Longrightarrow \langle T', P' \rangle \qquad (\mathsf{SUCC}) \xrightarrow{T \xrightarrow{\checkmark} T'} \\ \hline \langle T, P \rangle \Longrightarrow \top$$

A (finite or infinite) sequence of testing configurations $E_0E_1...$ is called a **testing sequence** of process P and test T if $E_0 = \langle T, P \rangle$ and for all i > 0, $E_{i-1} \Longrightarrow E_i$.

1. $\top \in \mathcal{O}(T, P)$ if there is a testing sequence emanating from $\langle T, P \rangle$ on which \top occurs; 2. $\perp \in \mathcal{O}(T, P)$ if there is a testing sequence emanating from $\langle T, P \rangle$ on which no \top occurs.

 $\mathcal{O}(T, P)$ are non-empty subsets of $\{\top, \bot\}$ (as a lattice $\bot \sqsubseteq \top$).

Lifting for observations: $\{\bot\} \sqsubseteq \{\top, \bot\} \sqsubseteq \{\top\}$.

Definition 2.13: $P \leq Q$ if, and only if, for all processes T, $\mathcal{O}(T, P) \sqsubseteq \mathcal{O}(T, Q)$. P and Q are observational testing equivalent, denoted $P \simeq Q$, if, and only if, $P \leq Q$ and $Q \leq P$.

Stepha Mehnickerem 2.14: ~ coincides with failure cequivalence

Another lifting for observations: $\{\bot\} \sqsubseteq_{may} \{\top, \bot\} \equiv_{may} \{\top\}$

Definition 2.15: $P \leq_{may} Q$ if, and only if, for all processes T, $\mathcal{O}(T, P) \sqsubseteq_{may} \mathcal{O}(T, P)$. P and Q are **may-testing equivalent**, denoted $P \simeq_{may} Q$, if, and only if, $P \leq_{may} Q$ and $Q \leq_{may} P$.

Theorem 2.16: $\simeq_{may} = \sim_{Tr}$

Another lifting for observations: $\{\bot\} \equiv_{must} \{\top, \bot\} \sqsubseteq_{must} \{\top\}$

Definition 2.17: $P \leq_{\text{must}} Q$ if, and only if, for all processes T, $\mathcal{O}(T, P) \sqsubseteq_{\text{must}} \mathcal{O}(T, P)$. P and Q are **must-testing equivalent**, denoted $P \simeq_{\text{must}} Q$, if, and only if, $P \leq_{\text{must}} Q$ and $Q \leq_{\text{must}} P$.

Theorem 2.18: (I) $\simeq = \simeq_{may} \cap \simeq_{must}$ (II) $\simeq_{must} \subseteq \simeq_{may}$ (III) $\simeq_{must} = \simeq$



