Answer Set Programming: Solving

Sebastian Rudolph

Computational Logic Group
Technische Universitdt Dresden

Slides based on a lecture by Martin Gebser and Torsten Schaub.
Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0

Unported License.

Sebastian Rudolph (TUD) Answer Set Programming: Solving 1/36

Motivation

Outline

Motivation

Sebastian Rudolph (TUD) Answer Set Programming: Solving 2/36

Motivation

Motivation

m Goal Approach to computing stable models of logic programs,
based on concepts from

m Constraint Processing (CP) and

m Satisfiability Testing (SAT)
m Idea View inferences in ASP as unit propagation on nogoods
m Benefits

m A uniform constraint-based framework for different
kinds of inferences in ASP

m Advanced techniques from the areas of CP and SAT

m Highly competitive implementation

Sebastian Rudolph (TUD) Answer Set Programming: Solving 3/36

Boolean constraints

Outline

Boolean constraints

Sebastian Rudolph (TUD) Answer Set Programming: Solving 4/36

Boolean constraints

Assignments

m An assignment A over dom(A) = atom(P) U body(P) is a sequence

(01,...,0n)

of signed literals o of form Tv or Fv for v € dom(A) and 1 </ <n
m Tv expresses that v is true and Fv that it is false

Sebastian Rudolph (TUD) Answer Set Programming: Solving 5/36

Boolean constraints

Assignments

m An assignment A over dom(A) = atom(P) U body(P) is a sequence

(01,...,0n)

of signed literals o of form Tv or Fv for v € dom(A) and 1 </ <n

= The complement, 7, of a literal o is defined as Tv = Fv and
Fv=Tyv

Sebastian Rudolph (TUD) Answer Set Programming: Solving 5/36

Boolean constraints

Assignments

m An assignment A over dom(A) = atom(P) U body(P) is a sequence

(01,...,0n)

of signed literals o of form Tv or Fv for v € dom(A) and 1 </ <n

m Ao o stands for the result of appending o to A

Sebastian Rudolph (TUD) Answer Set Programming: Solving 5/36

Boolean constraints

Assignments

m An assignment A over dom(A) = atom(P) U body(P) is a sequence

(01,...,0n)

of signed literals o of form Tv or Fv for v € dom(A) and 1 </ <n

m Given A= (01,...,0k—1,0k,...,0n), we let Alok] = (01,...,0k-1)

Sebastian Rudolph (TUD) Answer Set Programming: Solving 5/36

Boolean constraints

Assignments

m An assignment A over dom(A) = atom(P) U body(P) is a sequence

(01,...,0n)

of signed literals o of form Tv or Fv for v € dom(A) and 1 </ <n

m We sometimes identify an assignment with the set of its literals

Sebastian Rudolph (TUD) Answer Set Programming: Solving 5/36

Boolean constraints

Assignments

m An assignment A over dom(A) = atom(P) U body(P) is a sequence

(01,...,0n)

of signed literals o of form Tv or Fv for v € dom(A) and 1 </ <n

m We sometimes identify an assignment with the set of its literals
m Given this, we access true and false propositions in A via

AT = {v € dom(A) | Tv € A} and AF = {v € dom(A) | Fv € A}

Sebastian Rudolph (TUD) Answer Set Programming: Solving 5/36

Boolean constraints

Assignments

An assignment A over dom(A) = atom(P) U body(P) is a sequence

(01,...,0n)

of signed literals o of form Tv or Fv for v € dom(A) and 1 </ <n
T v expresses that v is true and Fv that it is false

The complement, , of a literal o is defined as Tv = Fv and
Fv=Tyv

Ao o stands for the result of appending o to A

Given A = ((71, ey O—1,0k,y o ,Jn), we let A[O’k] = ((71, - 7O'k,]_)
We sometimes identify an assignment with the set of its literals
Given this, we access true and false propositions in A via

AT = {v € dom(A) | Tv € A} and AF = {v € dom(A) | Fv € A}

Sebastian Rudolph (TUD) Answer Set Programming: Solving 5/36

Boolean constraints

Nogoods, solutions, and unit propagation
m A nogood is a set {o1,...,0n} of signed literals,

expressing a constraint violated by any assignment
containing o1,...,0,

Sebastian Rudolph (TUD) Answer Set Programming: Solving 6/36

Boolean constraints

Nogoods, solutions, and unit propagation

m A nogood is a set {o1,...,0n} of signed literals,
expressing a constraint violated by any assignment
containing o1,...,0,

m An assignment A such that AT U AF = dom(A) and AT N AF =)
is a solution for a set A of nogoods, if § £ A forall § € A

Sebastian Rudolph (TUD) Answer Set Programming: Solving 6/36

Boolean constraints

Nogoods, solutions, and unit propagation

m A nogood is a set {o1,...,0n} of signed literals,
expressing a constraint violated by any assignment
containing o1,...,0,

m An assignment A such that AT U AF = dom(A) and AT nAF =)
is a solution for a set A of nogoods, if § £ A forall § € A
m For a nogood ¢, a literal o € §, and an assignment A, we say that
7 is unit-resulting for § wrt A, if
0\A={c} and
TEA

Sebastian Rudolph (TUD) Answer Set Programming: Solving 6/36

Boolean constraints

Nogoods, solutions, and unit propagation

m A nogood is a set {o1,...,0n} of signed literals,
expressing a constraint violated by any assignment
containing o1,...,0,

m An assignment A such that AT U AF = dom(A) and AT N AF =)
is a solution for a set A of nogoods, if § £ A forall § € A
m For a nogood ¢, a literal o € §, and an assignment A, we say that
7 is unit-resulting for § wrt A, if
0\A={c} and
T A
m For a set A of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in A

Sebastian Rudolph (TUD) Answer Set Programming: Solving 6/36

Nogoods from logic programs

Outline

Nogoods from logic programs
m Nogoods from program completion
m Nogoods from loop formulas

Sebastian Rudolph (TUD) Answer Set Programming: Solving 7/36

Nogoods from logic programs Nogoods from program completion

Motivation
Boolean constraints

Nogoods from logic programs
m Nogoods from program completion

Conflict-driven nogood learning

Sebastian Rudolph (TUD) Answer Set Programming: Solving

Outline

8/36

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

The completion of a logic program P can be defined as follows:

{vg<r a1 A~ NamA—-amy1 A+ A—ap |
B € body(P) and B ={ai1,...,am,~am+1,-..,~an}}

U {a¢>vg V- Vg |
a € atom(P) and bodyp(a) = {Bi,...,Bk}},

where bodyp(a) = {body(r) | r € P and head(r) = a}

Sebastian Rudolph (TUD) Answer Set Programming: Solving 9/36

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

m The (body-oriented) equivalence
vg <> ai A+ Nam A -amp1 N - AN ap

can be decomposed into two implications:

Sebastian Rudolph (TUD) Answer Set Programming: Solving 10/36

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

m The (body-oriented) equivalence
vg<rai AN Nam/N-ame1 N+ A ap
can be decomposed into two implications:

vg —airN---Nam/N\-ame1 AN--- A 7ap

is equivalent to the conjunction of
—-vgVai, ..., "vgVay vV anpy1, ..., VBV Ta,
and induces the set of nogoods

A(B)={{TB,Fa},....,{TB,Fa,},{TB, Tams1},....{TB, Ta,}}

Sebastian Rudolph (TUD) Answer Set Programming: Solving 10/36

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

m The (body-oriented) equivalence
vg <> ai A+ Nam A -amp1 N - AN ap

can be decomposed into two implications:

agAN---NamA\-amy1 AN---A—-ap, — v
gives rise to the nogood

§(B)={FB,Ta1,..., Tam Fams1,...,Fa,}

Sebastian Rudolph (TUD) Answer Set Programming: Solving 10/36

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

m Analogously, the (atom-oriented) equivalence
a<rvg V---Vvg,
yields the nogoods
A(a) ={{Fa, TB1},...,{Fa, TB} } and

(5(3) = {T87FBl,...,FBk}

Sebastian Rudolph (TUD) Answer Set Programming: Solving 11/36

Nogoods from logic programs Nogoods from loop formulas

Outline

Motivation

Boolean constraints

Nogoods from logic programs
m Nogoods from loop formulas

Conflict-driven nogood learning

Sebastian Rudolph (TUD) Answer Set Programming: Solving 12 /36

Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:
m For L C atom(P), the external supports of L for P are
ESp(L) = {r e P| head(r) € L and body(r)* NnL =0}

Sebastian Rudolph (TUD) Answer Set Programming: Solving 13/36

Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:
m For L C atom(P), the external supports of L for P are
ESp(L) = {r e P| head(r) € L and body(r)* NnL =0}
m The (disjunctive) loop formula of L for P is
LFp(L) = (VaelA) = (erESP(L)bOdy(r))
= (Aveesyy=body(r)) = (Aaci—A)

m Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

Sebastian Rudolph (TUD) Answer Set Programming: Solving

13/36

Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
via loop formulas
Let P be a normal logic program and recall that:
m For L C atom(P), the external supports of L for P are
ESp(L) = {r e P| head(r) € L and body(r)* NnL =0}
m The (disjunctive) loop formula of L for P is
LFp(L) = (VaelA) = (erESP(L)bOdy(r))
= (Aveesyy=body(r)) = (Aaci—A)

m Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

m The external bodies of L for P are
EBp(L) = {body(r) | r € ESp(L)}

Sebastian Rudolph (TUD) Answer Set Programming: Solving

13/36

Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
loop nogoods

m For a logic program P and some () C U C atom(P),
define the loop nogood of an atom a € U as

Aa,U) = {TaFBi,...,FB
where EBp(U) = {Bu, ..., Bk}

Sebastian Rudolph (TUD) Answer Set Programming: Solving 14 /36

Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
loop nogoods

m For a logic program P and some () C U C atom(P),
define the loop nogood of an atom a € U as

Aa,U) = {TaFBi,...,FB
where EBp(U) = {Bu, ..., Bk}

m We get the following set of loop nogoods for P:
Ap = U@CUgatom(P){)‘(a7 U) ’ ac U}

Sebastian Rudolph (TUD) Answer Set Programming: Solving 14 /36

Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
loop nogoods

m For a logic program P and some () C U C atom(P),
define the loop nogood of an atom a € U as

Aa,U) = {TaFBi,...,FB
where EBp(U) = {Bu, ..., Bk}

m We get the following set of loop nogoods for P:

Ap = U@CUgatom(P){)‘(a7 U) ’ ac U}
m The set Ap of loop nogoods denies cyclic support among true atoms

Sebastian Rudolph (TUD) Answer Set Programming: Solving 14 /36

Nogoods from logic programs Nogoods from loop formulas

Example

m Consider the program

u<—Xx
X &=~y

u<—v
Yy < ~X

Vi uy

Sebastian Rudolph (TUD) Answer Set Programming: Solving 15/36

Nogoods from logic programs Nogoods from loop formulas

Example

m Consider the program

u<—Xx
X &=~y

u<—v
Yy < ~X

Vi uy

m For u in the set {u, v}, we obtain the loop nogood:

Mu,{u,v}) = {Tu, F{x}}

Sebastian Rudolph (TUD) Answer Set Programming: Solving 15/36

Nogoods from logic programs Nogoods from loop formulas

Example

m Consider the program

u<—Xx
X &=~y

u<—v
Yy < ~X

Vi uy

m For u in the set {u, v}, we obtain the loop nogood:

Mu,{u,v}) = {Tu, F{x}}

Similarly for v in {u, v}, we get:

Av,{u,v}) = {Tv,F{x}}

Sebastian Rudolph (TUD) Answer Set Programming: Solving 15/36

Nogoods from logic programs Nogoods from loop formulas

Characterization of stable models

Theorem
Let P be a logic program. Then,
X C atom(P) is a stable model of P iff
X = AT N atom(P) for a (unique) solution A for Ap U Ap

Sebastian Rudolph (TUD) Answer Set Programming: Solving 16 /36

Nogoods from logic programs Nogoods from loop formulas

Characterization of stable models

Theorem
Let P be a logic program. Then,
X C atom(P) is a stable model of P iff
X = AT N atom(P) for a (unique) solution A for Ap U Ap

Some remarks
m Nogoods in Ap augment Ap with conditions checking
for unfounded sets, in particular, those being loops
m While |Ap| is linear in the size of P, Ap may contain
exponentially many (non-redundant) loop nogoods

Sebastian Rudolph (TUD) Answer Set Programming: Solving 16 /36

Conflict-driven nogood learning

Outline

Conflict-driven nogood learning
m CDNL-ASP Algorithm
m Nogood Propagation
m Conflict Analysis

Sebastian Rudolph (TUD) Answer Set Programming: Solving 17 /36

Conflict-driven nogood learning

Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

m Traditional DPLL-style approach
(DPLL stands for ‘Davis-Putnam-Logemann-Loveland’)

m (Unit) propagation
m (Chronological) backtracking

m in ASP, eg smodels

m Modern CDCL-style approach
(CDCL stands for ‘Conflict-Driven Constraint Learning’)

m (Unit) propagation
m Conflict analysis (via resolution)
m Learning + Backjumping + Assertion

m in ASP, eg clasp

Sebastian Rudolph (TUD) Answer Set Programming: Solving

18/36

Conflict-driven nogood learning

DPLL-style solving

loop
propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution

else decide // non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable
else
backtrack // unassign literals propagated after last decision
flip // assign complement of last decision literal

Sebastian Rudolph (TUD) Answer Set Programming: Solving 19/36

loop

Conflict-driven nogood learning

CDCL-style solving

propagate // deterministically assign literals
if no conflict then
if all variables assigned then return solution

else decide // non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable
else
analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

Sebastian Rudolph (TUD) Answer Set Programming: Solving 20/36

Conflict-driven nogood learning CDNL-ASP Algorithm

Outline

Motivation
Boolean constraints

Nogoods from logic programs

Conflict-driven nogood learning
m CDNL-ASP Algorithm

Sebastian Rudolph (TUD) Answer Set Programming: Solving 21/36

Conflict-driven nogood learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

m Keep track of deterministic consequences by unit propagation on:

m Program completion [Ap]
m Loop nogoods, determined and recorded on demand [Ap]
m Dynamic nogoods, derived from conflicts and unfounded sets V]

Sebastian Rudolph (TUD) Answer Set Programming: Solving 22 /36

Conflict-driven nogood learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

m Keep track of deterministic consequences by unit propagation on:

m Program completion [Ap]
m Loop nogoods, determined and recorded on demand [Ap]
m Dynamic nogoods, derived from conflicts and unfounded sets V]

m When a nogood in Ap UV becomes violated:

m Analyze the conflict by resolution
(until reaching a Unique Implication Point, short: UIP)
m Learn the derived conflict nogood 9
m Backjump to the earliest (heuristic) choice such that the
complement of the UIP is unit-resulting for §
m Assert the complement of the UIP and proceed
(by unit propagation)

Sebastian Rudolph (TUD) Answer Set Programming: Solving 22 /36

Conflict-driven nogood learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

m Keep track of deterministic consequences by unit propagation on:

m Program completion [Ap]
m Loop nogoods, determined and recorded on demand [Ap]
m Dynamic nogoods, derived from conflicts and unfounded sets V]

m When a nogood in Ap UV becomes violated:

m Analyze the conflict by resolution
(until reaching a Unique Implication Point, short: UIP)

m Learn the derived conflict nogood &

m Backjump to the earliest (heuristic) choice such that the
complement of the UIP is unit-resulting for §

m Assert the complement of the UIP and proceed
(by unit propagation)

m Terminate when either:
m Finding a stable model (a solution for Ap U Ap)
m Deriving a conflict independently of (heuristic) choices

Sebastian Rudolph (TUD) Answer Set Programming: Solving 22 /36

Conflict-driven nogood learning CDNL-ASP Algorithm

Algorithm 1: CDNL-ASP

Input : A normal program P

Output : A stable model of P or “no stable model”

A= // assignment over atom(P) U body(P)
V= // set of recorded nogoods
dl:=0 // decision level
loop

(A, V) := NOGOODPROPAGATION(P, V, A)
if ¢ C A for some e € Ap UV then // conflict
if max({dlevel(c) | o € e} U{0}) = 0 then return no stable model

(9, dl) := CONFLICTANALYSIS (g, P, V, A)

V=V U{d} // (temporarily) record conflict nogood
A:=A\{o € A|dl <dlevel(c)} // backjumping
else if AT U AF = atom(P) U body(P) then // stable model
| return AT N atom(P)
else
o4 = SELECT(P, V, A) // decision
dl:=dl+1
dlevel(cy) = dl
A:=Aooy

Sebastian Rudolph (TUD) Answer Set Programming: Solving 23 /36

Conflict-driven nogood learning CDNL-ASP Algorithm

Observations

m Decision level dI, initially set to 0, is used to count the number of
heuristically chosen literals in assignment A

m For a heuristically chosen literal oy = Ta or oy = Fa, respectively, we
require a € (atom(P) U body(P)) \ (AT U AF)

m For any literal 0 € A, dl(o) denotes the decision level of o, viz. the
value d/ had when ¢ was assigned

Sebastian Rudolph (TUD) Answer Set Programming: Solving 24 /36

Conflict-driven nogood learning CDNL-ASP Algorithm

Observations

m Decision level dI, initially set to 0, is used to count the number of
heuristically chosen literals in assignment A

m For a heuristically chosen literal oy = Ta or oy = Fa, respectively, we
require a € (atom(P) U body(P)) \ (AT U AF)

m For any literal 0 € A, dl(o) denotes the decision level of o, viz. the
value d/ had when ¢ was assigned

m A conflict is detected from violation of a nogood ¢ C Ap UV

m A conflict at decision level 0 (where A contains no heuristically
chosen literals) indicates non-existence of stable models

m A nogood ¢ derived by conflict analysis is asserting, that is,
some literal is unit-resulting for ¢ at a decision level k < d/

Sebastian Rudolph (TUD) Answer Set Programming: Solving 24 /36

Conflict-driven nogood learning CDNL-ASP Algorithm

Observations

m Decision level dI, initially set to 0, is used to count the number of
heuristically chosen literals in assignment A

m For a heuristically chosen literal oy = Ta or oy = Fa, respectively, we
require a € (atom(P) U body(P)) \ (AT U AF)

m For any literal 0 € A, dl(o) denotes the decision level of o, viz. the
value d/ had when ¢ was assigned

m A conflict is detected from violation of a nogood ¢ C Ap UV

m A conflict at decision level 0 (where A contains no heuristically
chosen literals) indicates non-existence of stable models

m A nogood ¢ derived by conflict analysis is asserting, that is,
some literal is unit-resulting for ¢ at a decision level k < d/

m After learning § and backjumping to decision level k,
at least one literal is newly derivable by unit propagation
m No explicit flipping of heuristically chosen literals !

Sebastian Rudolph (TUD) Answer Set Programming: Solving 24 /36

Conflict-driven nogood learning

CDNL-ASP Algorithm

Example: CDNL-ASP

Consider
p_ X4~y U Xy VX W 4— ~x, ~oy
N Yy ~X UV Vi uy
| dl | og T |0 \

Sebastian Rudolph (TUD) Answer Set Programming: Solving

25 /36

Conflict-driven nogood learning

CDNL-ASP Algorithm

Example: CDNL-ASP

Consider
p _ X4~y U XY VX W 4 ~X, ~y
N Yy ~X UV Vi uy
el L |
1| Tu

Sebastian Rudolph (TUD) Answer Set Programming: Solving

25 /36

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider
p _ {x<—~y U X,y VX W%NX,Ny}
Y n~X UV Ve uy
| dl | og ed |0 \
1| Tu
F{~x,~y}

Sebastian Rudolph (TUD) Answer Set Programming: Solving 25 /36

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider
p _ {x<—~y U X,y VX W%NX,Ny}
Y n~X UV Ve uy
| dl | og ed |0 \
1| Tu
F{~x,~y}

Fw {Tw, F{~x,~y}} = d(w)

Sebastian Rudolph (TUD) Answer Set Programming: Solving 25 /36

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

p X4~y U XY VX W 4 ~X, ~y

N Yy n~X UV Vi uy
Ao 5 15 |
1| Tu

F{NxﬂNY}

Fw {Tw, F{~x,~y}} = d(w)
3 | F{~y}

Sebastian Rudolph (TUD) Answer Set Programming: Solving 25 /36

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

p X4~y U XY VX W 4 ~X, ~y

- Y4 ~X UV Vi uy
Ao 5 15 |
1| Tu

F{NxﬂNY}

Fw {Tw, F{~x,~y}} = d(w)

3 | F{~y}

Fx {Tx, F{~y}} = d(x)
Fi{x} | {T{x},Fx} e A({x})
Fix,y} | {T{x,y} Fx} € A({x,y})

Sebastian Rudolph (TUD) Answer Set Programming: Solving 25 /36

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

p X4~y U XY VX W 4 ~X, ~y

- Y4 ~X UV Vi uy
Ao 5 15 |
1| Tu

F{NxﬂNY}

Fw {Tw, F{~x,~y}} = d(w)
3 | F{~y}

Fx {Tx, F{~y}} = d(x)

F{x} | {T{x},Fx} € A({x})
Fix,y} | {T{x,y}, Fx} € A({x,y})
(Tu, F{x}, F{x,y}} = Au, {u, v}) | x

Sebastian Rudolph (TUD) Answer Set Programming: Solving 25 /36

Conflict-driven nogood learning

CDNL-ASP Algorithm

Example: CDNL-ASP
Consider
p _ X4~y U X,y VX W 4= ~X, ~y
N Yy n~X UV Vi uy
(dl | oq G 5 |
1| Tu

Sebastian Rudolph (TUD) Answer Set Programming: Solving

26 /36

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider
p _ {X<—~y U X,y VX Wewx,wy}
Yy n~X UV Vi uy
| dl | og T K ‘
1| Tu
Tx {Tu,Fx} eV

Sebastian Rudolph (TUD) Answer Set Programming: Solving 26 /36

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider
p X4~y U XY VX W 4 ~X, ~y
N Yy n~X UV Vi ouy
’ dl ‘ o4 o ‘) ‘
1| Tu

Tx {Tu,Fx} eV
Tv {Fv, T{x}} € A(v)
Fy {Ty, F{~x}} =d(y)
Fw {Tw, F{~x,~y}} = d(w)

Sebastian Rudolph (TUD) Answer Set Programming: Solving 26 /36

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider
p X4~y U XY VX W 4 ~X, ~y
N Yy n~X UV Vi ouy
’ dl ‘ o4 o ‘) ‘
1| Tu

Tx {Tu,Fx} eV
Tv {Fv, T{x}} € A(v)
Fy {Ty, F{~x}} =d(y)
Fw {Tw, F{~x,~y}} = d(w)

Sebastian Rudolph (TUD) Answer Set Programming: Solving 26 /36

Conflict-driven nogood learning Nogood Propagation

Outline

Motivation
Boolean constraints

Nogoods from logic programs

Conflict-driven nogood learning

m Nogood Propagation

Sebastian Rudolph (TUD) Answer Set Programming: Solving 27 /36

Conflict-driven nogood learning Nogood Propagation

Outline of NogoodPropagation

m Derive deterministic consequences via:

m Unit propagation on Ap and V;
m Unfounded sets U C atom(P)

m Note that U is unfounded if EBp(U) C AF
m Note For any a € U, we have (A(a, U)\ {Ta}) C A

Sebastian Rudolph (TUD) Answer Set Programming: Solving 28 /36

Conflict-driven nogood learning Nogood Propagation

Outline of NogoodPropagation

m Derive deterministic consequences via:

m Unit propagation on Ap and V;
m Unfounded sets U C atom(P)

m Note that U is unfounded if EBp(U) C AF
m Note For any a € U, we have (A(a, U)\ {Ta}) C A

m An “interesting” unfounded set U satisfies:
§ C U C (atom(P)\ AF)

m Wrt a fixpoint of unit propagation,

Sebastian Rudolph (TUD) Answer Set Programming: Solving

28 /36

Conflict-driven nogood learning Nogood Propagation

Outline of NogoodPropagation

m Derive deterministic consequences via:

m Unit propagation on Ap and V;
m Unfounded sets U C atom(P)

m Note that U is unfounded if EBp(U) C AF
m Note For any a € U, we have (A(a, U)\ {Ta}) C A

m An “interesting” unfounded set U satisfies:
§ C U C (atom(P)\ AF)
m Wrt a fixpoint of unit propagation,

such an unfounded set contains some loop of P
m Note Tight programs do not yield “interesting” unfounded sets !

Sebastian Rudolph (TUD) Answer Set Programming: Solving 28 /36

Conflict-driven nogood learning Nogood Propagation

Outline of NogoodPropagation

m Derive deterministic consequences via:

m Unit propagation on Ap and V;
m Unfounded sets U C atom(P)

m Note that U is unfounded if EBp(U) C AF
m Note For any a € U, we have (A(a, U)\ {Ta}) C A
m An “interesting” unfounded set U satisfies:

§ C U C (atom(P)\ AF)

m Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of P
m Note Tight programs do not yield “interesting” unfounded sets !
m Given an unfounded set U and some a € U, adding A(a, U) to V
triggers a conflict or further derivations by unit propagation
m Note Add loop nogoods atom by atom to eventually falsify all a € U

Sebastian Rudolph (TUD) Answer Set Programming: Solving 28 /36

Conflict-driven nogood learning Nogood Propagation

Algorithm 2: NOGOODPROPAGATION
Input : A normal program P, a set V of nogoods, and an assignment A.
Output : An extended assignment and set of nogoods.
u:=0 // unfounded set
loop
repeat
if 6 C A for some § € Ap UV then return (A, V) // conflict
Y ={0e€ApUV |I\A={T},0¢ A} // unit-resulting nogoods
if ¥ % () thenlet 5 € §\ A for some § € X in
dlevel(c) := max({dlevel(p) | p € 6\ {7}} U{0})
A:=Aoo
until ¥ =0

eba

if loop(P) = () then return (A, V)

U:= U\ AF
if U =0 then U := UNFOUNDEDSET(P, A)

if U =0 then return (A,Y) // no unfounded set) C U C atom(P) \ AF

stian Rudolph (TUD) Answer Set Programming: Solving

29 /36

Conflict-driven nogood learning Nogood Propagation

Requirements for UNFOUNDEDSET

m Implementations of UNFOUNDEDSET must guarantee the following
for a result U
U C (atom(P) \ AF)
EBo(U) C AF
U = () iff there is no nonempty unfounded subset of (atom(P) \ AF)

Sebastian Rudolph (TUD) Answer Set Programming: Solving 30/36

Conflict-driven nogood learning Nogood Propagation

Requirements for UNFOUNDEDSET

m Implementations of UNFOUNDEDSET must guarantee the following
for a result U

U C (atom(P) \ AF)

EBp(U) C A*

U = () iff there is no nonempty unfounded subset of (atom(P) \ AF)
m Beyond that, there are various alternatives, such as:

m Calculating the greatest unfounded set
m Calculating unfounded sets within strongly connected components of
the positive atom dependency graph of P

m Usually, the latter option is implemented in ASP solvers

Sebastian Rudolph (TUD) Answer Set Programming: Solving 30/36

Conflict-driven nogood learning Nogood Propagation

Example: NogoodPropagation

Consider
p X4~y U X,y VX W 4 ~X, ~y
N Yy n~X UV Vi ouy
[di [oa e [6 |
1| Tu
2 F{NX7Ny}
Fw {Tw, F{~x,~y}} = d(w)
3 | F{~y}
Fx {Tx, F{~y}} = d(x)

F{x} {T{x}, Fx} € A({x})
F{x, v} | {T{x.y}, Fx} € A({x,y})
T{~x} | {F{~x}, Fx} =d({~x})

Ty {F{~y},Fy} =d({~y})
T{v} | {Tu F{x,y}, F{v}} =6(u)
T{va} {F{U7y}7 Tu, Ty}:5({u7y})
Tv {Fv, T{u,y}} € A(v)

{Tu, F{X}v F{X,y}} = >‘(u7 {u7 V}) X

Sebastian Rudolph (TUD) Answer Set Programming: Solving 31/36

Conflict-driven nogood learning Conflict Analysis

Outline

Motivation

Boolean constraints

Nogoods from logic programs

Conflict-driven nogood learning

m Conflict Analysis

Sebastian Rudolph (TUD) Answer Set Programming: Solving 32/36

Conflict-driven nogood learning Conflict Analysis

Outline of ConflictAnalysis

m Conflict analysis is triggered whenever some nogood § € Ap UV
becomes violated, viz. § C A, at a decision level d/ > 0
m Note that all but the first literal assigned at dl have been unit-resulting
for nogoods ¢ € Ap UV
m If o € 6 has been unit-resulting for €, we obtain a new violated nogood
by resolving § and ¢ as follows:

(O\{oeh)u(e\{a})

Sebastian Rudolph (TUD) Answer Set Programming: Solving 33/36

Conflict-driven nogood learning Conflict Analysis

Outline of ConflictAnalysis

m Conflict analysis is triggered whenever some nogood § € Ap UV
becomes violated, viz. § C A, at a decision level d/ > 0

m Note that all but the first literal assigned at dl have been unit-resulting
for nogoods ¢ € Ap UV

m If o € 6 has been unit-resulting for €, we obtain a new violated nogood
by resolving § and ¢ as follows:

(0\{ehu(e\{a})

m Resolution is directed by resolving first over the literal o € § derived
last, viz. (0 \ Alo]) = {0}

m lIterated resolution progresses in inverse order of assignment

Sebastian Rudolph (TUD) Answer Set Programming: Solving 33/36

Conflict-driven nogood learning Conflict Analysis

Outline of ConflictAnalysis

m Conflict analysis is triggered whenever some nogood § € Ap UV
becomes violated, viz. § C A, at a decision level d/ > 0

m Note that all but the first literal assigned at dl have been unit-resulting
for nogoods ¢ € Ap UV

m If o € 6 has been unit-resulting for €, we obtain a new violated nogood
by resolving § and ¢ as follows:

(6\{eh)u(e\{7})
m Resolution is directed by resolving first over the literal o € § derived
last, viz. (0 \ Alo]) = {0}
m lIterated resolution progresses in inverse order of assignment

m lterated resolution stops as soon as it generates a nogood ¢
containing exactly one literal o assigned at decision level d/

m This literal o is called First Unique Implication Point (First-UIP)
m All literals in (§ \ {o}) are assigned at decision levels smaller than d/

Sebastian Rudolph (TUD) Answer Set Programming: Solving 33/36

Conflict-driven nogood learning Conflict Analysis

Algorithm 3: CONFLICTANALYSIS

Input : A non-empty violated nogood §, a normal program P, a set V of
nogoods, and an assignment A.
Output : A derived nogood and a decision level.

loop
let o € 0 such that ¢ \ Alo] = {0} in

k := max({dlevel(p) | p € 6 \ {o}} U{0})
if k = dlevel(o) then

let ¢ € Ap UV such that ¢\ Alg] = {G} in

| 0=\ {o})U(e\{a}) // resolution

else return (4, k)

Sebastian Rudolph (TUD) Answer Set Programming: Solving 34 /36

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider
p — X4~y U X,y VX W 4— ~x, ~y
N Yy ~X U v Vi uy
dl | oy o 0
1| Tu
2 F{Nx7Ny}
Fw {Tw, F{~x,~y}} = é(w)
3| F{~y}

Fx {Tx,F{~y}} =d(x)

F{x} [{T{x}, Fx} € A({x})
F{x,y} [{T{x,y}, Fx} € A({x,y})
T{~x} |[{F{~x}, Fx} = 6({~x})

Ty {F{~y},Fy}=45({~y})
T{v} {Tu F{x,y}, F{v}} =4(u)
T{u,y} [{F{u,y}, Tu, Ty} =6({u,y})
Tv {Fv, T{u,y}} € A(v)

{Tu, F{x}, F{x,y}} = Mu,{u,v})| ¥

Sebastian Rudolph (TUD) Answer Set Programming: Solving 35/36

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider
p — X4~y U X,y VX W 4— ~x, ~y
N Yy ~X U v Viuy
dl | oy o 0
1| Tu
2 F{Nx7Ny}
Fw {Tw, F{~x,~y}} = é(w)
3| F{~y}

Fx {Tx,F{~y}} =d(x)

Fi{x} [{T{x}, Fx} € A({x})
FiOq v {T{x, ¥}, Fx} € A({x,y})
T{~x} |[{F{~x}, Fx} = 6({~x})

Ty {F{~y},Fy}=45({~y})
T{v} {Tu F{x,y}, F{v}} =4(u)
T{u,y} [{F{u,y}, Tu, Ty} =6({u,y})
Tv {Fv, T{u,y}} € A(v)

{Tu, F{x}, F{x,y}} = Mu,{u,v})| X

Sebastian Rudolph (TUD) Answer Set Programming: Solving 35/36

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider
p — X4~y U X,y VX W 4— ~x, ~y
N Yy ~X U v Viuy
dl | oy o 0
1| Tu
2 F{Nx7Ny}
Fw {Tw, F{~x,~y}} = é(w)
3| F{~y}

Fx {Tx,F{~y}} =d(x)

Fi{x} [{T{x}, Fx} € A({x})
FiOq v {T{x, ¥}, Fx} € A({x,y})
T{~x} |[{F{~x}, Fx} = 6({~x})

Ty {F{~y},Fy}=45({~y})
T{v} {Tu F{x,y}, F{v}} =4(u)
T{u,y} [{F{u,y}, Tu, Ty} =6({u,y})
Tv {Fv, T{u,y}} € A(v)

{Tu, F{x}, F{x,y}} = Mu,{u,v})| X

Sebastian Rudolph (TUD) Answer Set Programming: Solving 35/36

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider
p — X4~y U X,y VX W 4— ~x, ~y
N Yy ~X U v Viuy
dl | oy o 0
1| Tu
2 F{Nx7Ny}
Fw {Tw, F{~x,~y}} = é(w)
3| F{~y}

Fx {Tx,F{~y}} =d(x)

F{x} [{T{x}, Fx} € A({x})
F{x,y} [{T{x. v}, Fx} € A({x,y})
T{~x} |[{F{~x}, Fx} = 6({~x})

Ty {F{~y},Fy}=45({~y})
T{v} {Tu F{x,y}, F{v}} =4(u)
T{u,y} [{F{u,y}, Tu, Ty} =6({u,y})
Tv {Fv, T{u,y}} € A(v)

{Tu, F{x}, F{x,y}} = Mu,{u,v})| ¥

Sebastian Rudolph (TUD) Answer Set Programming: Solving 35/36

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider
p — X4~y U X,y VX W 4— ~x, ~y
N Yy ~X U v Viuy
dl | oy o 0
1| Tu
2 F{Nx7Ny}
Fw {Tw, F{~x,~y}} = é(w)
3| F{~y}

Fx {Tx,F{~y}} =d(x)
Fi{x} [{T{x}, Fx} € A({x})
F{x,y} [{T{x, ¥}, Fx} € A({x,y}) {Tu, Fx,F{x}}
T{~x} |[{F{~x}, Fx} = 6({~x})

Ty {F{~y},Fy} =45({~y})
T{v} {Tu F{x,y}, F{v}} =4(u)
T{u,y} [{F{u,y}, Tu, Ty} =6({u,y})
Tv {Fv, T{u,y}} € A(v)

{Tu, F{x}, F{x,y}} = Mu,{u,v})| ¥

Sebastian Rudolph (TUD) Answer Set Programming: Solving 35/36

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider
p — X4~y U X,y VX W 4— ~x, ~y
N Yy ~X U v Viuy
dl | oy o 0
1| Tu
2 F{Nx7Ny}
Fw {Tw, F{~x,~y}} = é(w)
3| F{~y}

Fx {Tx,F{~y}} =d(x)
Fi{x} [{T{x}, Fx} € A({x})
F{x,y} [{T{x, ¥}, Fx} € A({x,y}) {Tu, Fx, F{x}}
T{~x} |[{F{~x}, Fx} = 6({~x})

Ty {F{~y},Fy} =45({~y})
T{v} {Tu F{x,y}, F{v}} =4(u)
T{u,y} [{F{u,y}, Tu, Ty} =6({u,y})
Tv {Fv, T{u,y}} € A(v)

{Tu, F{x}, F{x,y}} = Mu,{u,v})| X

Sebastian Rudolph (TUD) Answer Set Programming: Solving 35/36

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider
p — X4~y U X,y VX W 4— ~x, ~y
N Yy ~X U v Viuy
dl | oy o 0
1| Tu
2 F{Nx7Ny}
Fw {Tw, F{~x,~y}} = é(w)
3| F{~y}

Fx {Tx,F{~y}} =d(x)
F{x} [{T{x}, Fx} € A({x})
F{x,y} [{T{x, ¥}, Fx} € A({x,y}) {Tu, Fx,F{x}}
T{~x} |[{F{~x}, Fx} = 6({~x})

Ty {F{~y},Fy} =45({~y})
T{v} {Tu F{x,y}, F{v}} =4(u)
T{u,y} [{F{u,y}, Tu, Ty} =6({u,y})
Tv {Fv, T{u,y}} € A(v)

{Tu, F{x}, F{x,y}} = Mu,{u,v})| X

Sebastian Rudolph (TUD) Answer Set Programming: Solving 35/36

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider
p X4~y U X,y VX W 4 ~X, ~y
N Yy ~X U v Viuy

dl| o4 o 0

1({Tu

2 F{Nx7 Ny}
Fw {Tw, F{~x,~y}} = §(w)

3|F{~y}
Fx {Tx,F{~y}} =d(x)
F{x} |{T{x}, Fx} € A({x}) {Tu, Fx}
F{x,y} [{T{x, ¥}, Fx} € A({x,y}) {Tu, Fx, F{x}}

T{~x} |[{F{~x}, Fx} = 6({~x})

Ty {F{~y},Fy} =45({~y})
T{v} {Tu F{x,y}, F{v}} =4(u)
T{u,y}{F{u,y}, Tu, Ty} =({u,y})
Tv {Fv, T{u,y}} € A(v)

{Tu, F{x}, F{x,y}} = Mu,{u,v})| X

Sebastian Rudolph (TUD) Answer Set Programming: Solving 35/36

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider
p X4~y U X,y VX W 4 ~X, ~y
N Yy ~X U v Viuy

dl| o4 o 0

1({Tu

2 F{Nx7 Ny}
Fw {Tw, F{~x,~y}} = §(w)

3|F{~y}
Fx {Tx,F{~y}} =d(x)
F{x} |{T{x}, Fx} € A({x}) {Tu, Fx}
F{x,y} [{T{x, ¥}, Fx} € A({x,y}) {Tu, Fx,F{x}}

T{~x} |[{F{~x}, Fx} = 6({~x})

Ty {F{~y},Fy} =45({~y})
T{v} {Tu F{x,y}, F{v}} =4(u)
T{u,y}{F{u,y}, Tu, Ty} =({u,y})
Tv {Fv, T{u,y}} € A(v)

{Tu, F{x}, F{x,y}} = Mu,{u,v})| X

Sebastian Rudolph (TUD) Answer Set Programming: Solving 35/36

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider
p X4~y U X,y VX W 4 ~X, ~y
N Yy ~X U v Viuy

dl| o4 o 0

1({Tu

2 F{Nx7 Ny}
Fw {Tw, F{~x,~y}} = §(w)

3|F{~y}
Fx {Tx,F{~y}} =d(x)
F{x} |{T{x}, Fx} € A({x}) {Tu, Fx}
F{x,y} [{T{x, ¥}, Fx} € A({x,y}) {Tu, Fx,F{x}}

T{~x} |[{F{~x}, Fx} = 6({~x})

Ty {F{~y},Fy} =45({~y})
T{v} {Tu F{x,y}, F{v}} =4(u)
T{u,y}{F{u,y}, Tu, Ty} =({u,y})
Tv {Fv, T{u,y}} € A(v)

{Tu, F{x}, F{x,y}} = Mu,{u,v})| X

Sebastian Rudolph (TUD) Answer Set Programming: Solving 35/36

Conflict-driven nogood learning Conflict Analysis

Remarks
m There always is a First-UIP at which conflict analysis terminates

m In the worst, resolution stops at the heuristically chosen literal
assigned at decision level d/

Sebastian Rudolph (TUD) Answer Set Programming: Solving 36 /36

Conflict-driven nogood learning Conflict Analysis

Remarks

m There always is a First-UIP at which conflict analysis terminates

m In the worst, resolution stops at the heuristically chosen literal
assigned at decision level d/

m The nogood § containing First-UIP ¢ is violated by A, viz. § C A
m We have k = max({dl(p) | p€ d \ {c}} U{0}) < dI

Sebastian Rudolph (TUD) Answer Set Programming: Solving 36 /36

Conflict-driven nogood learning Conflict Analysis

Remarks

m There always is a First-UIP at which conflict analysis terminates
m In the worst, resolution stops at the heuristically chosen literal
assigned at decision level d/
m The nogood § containing First-UIP ¢ is violated by A, viz. § C A
m We have k = max({dl(p) | p€ d\ {o}} U{0}) < dI

m After recording 0 in V and backjumping to decision level k,
7 is unit-resulting for ¢ !
m Such a nogood 4 is called asserting

Sebastian Rudolph (TUD) Answer Set Programming: Solving 36 /36

Conflict-driven nogood learning Conflict Analysis

Remarks

m There always is a First-UIP at which conflict analysis terminates
m In the worst, resolution stops at the heuristically chosen literal
assigned at decision level d/
m The nogood § containing First-UIP ¢ is violated by A, viz. § C A
m We have k = max({dl(p) | p€ d\ {o}} U{0}) < dI
m After recording 0 in V and backjumping to decision level k,
7 is unit-resulting for ¢ !
m Such a nogood 4 is called asserting
m Asserting nogoods direct conflict-driven search into a different region
of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

Sebastian Rudolph (TUD) Answer Set Programming: Solving 36 /36

	Motivation
	Boolean constraints
	Nogoods from logic programs
	Nogoods from program completion
	Nogoods from loop formulas

	Conflict-driven nogood learning
	CDNL-ASP Algorithm
	Nogood Propagation
	Conflict Analysis

