Answer Set Programming: Solving

Sebastian Rudolph

Computational Logic Group Technische Universität Dresden

Slides based on a lecture by Martin Gebser and Torsten Schaub.

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0

Unported License.

Outline

- 1 Motivation
- 2 Boolean constraints
- 3 Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas
- 4 Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis

Motivation

- Goal Approach to computing stable models of logic programs, based on concepts from
 - Constraint Processing (CP) and
 - Satisfiability Testing (SAT)
- Idea View inferences in ASP as unit propagation on nogoods
- Benefits
 - A uniform constraint-based framework for different kinds of inferences in ASP
 - Advanced techniques from the areas of CP and SAT
 - Highly competitive implementation

Outline

- 1 Motivation
- 2 Boolean constraints
- 3 Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas
- 4 Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis

■ An assignment A over $dom(A) = atom(P) \cup body(P)$ is a sequence $(\sigma_1, \dots, \sigma_n)$

- Tv expresses that v is true and Fv that it is false
- The complement, $\overline{\sigma}$, of a literal σ is defined as Tv = Fv and $\overline{Fv} = Tv$
- $A \circ \sigma$ stands for the result of appending σ to A
- Given $A = (\sigma_1, \dots, \sigma_{k-1}, \sigma_k, \dots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \dots, \sigma_{k-1}]$
- We sometimes identify an assignment with the set of its literals
- Given this, we access true and false propositions in A via

$$A^{\mathsf{T}} = \{ v \in dom(A) \mid \mathsf{T}v \in A \} \text{ and } A^{\mathsf{F}} = \{ v \in dom(A) \mid \mathsf{F}v \in A \}$$

■ An assignment A over $dom(A) = atom(P) \cup body(P)$ is a sequence $(\sigma_1, \ldots, \sigma_n)$

- Tv expresses that v is true and Fv that it is false
- The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{Tv} = Fv$ and $\overline{Fv} = Tv$
- $A \circ \sigma$ stands for the result of appending σ to A
- Given $A = (\sigma_1, \dots, \sigma_{k-1}, \sigma_k, \dots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \dots, \sigma_{k-1}]$
- We sometimes identify an assignment with the set of its literals
- Given this, we access *true* and *false* propositions in A via

$$A^{T} = \{ v \in dom(A) \mid Tv \in A \} \text{ and } A^{F} = \{ v \in dom(A) \mid Fv \in A \}$$

■ An assignment A over $dom(A) = atom(P) \cup body(P)$ is a sequence $(\sigma_1, \ldots, \sigma_n)$

- **T**v expresses that v is *true* and **F**v that it is *false*
- The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{Tv} = Fv$ and $\overline{Fv} = Tv$
- $A \circ \sigma$ stands for the result of appending σ to A
- Given $A = (\sigma_1, \dots, \sigma_{k-1}, \sigma_k, \dots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \dots, \sigma_{k-1}]$
- We sometimes identify an assignment with the set of its literals
- Given this, we access *true* and *false* propositions in A via

$$A^{T} = \{ v \in dom(A) \mid Tv \in A \} \text{ and } A^{F} = \{ v \in dom(A) \mid Fv \in A \}$$

■ An assignment A over $dom(A) = atom(P) \cup body(P)$ is a sequence $(\sigma_1, \ldots, \sigma_n)$

- Tv expresses that v is true and Fv that it is false
- The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{Tv} = Fv$ and $\overline{Fv} = Tv$
- $A \circ \sigma$ stands for the result of appending σ to A
- Given $A = (\sigma_1, \dots, \sigma_{k-1}, \sigma_k, \dots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \dots, \sigma_{k-1})$
- We sometimes identify an assignment with the set of its literals
- Given this, we access *true* and *false* propositions in A via

$$A^{T} = \{ v \in dom(A) \mid Tv \in A \} \text{ and } A^{F} = \{ v \in dom(A) \mid Fv \in A \}$$

■ An assignment A over $dom(A) = atom(P) \cup body(P)$ is a sequence $(\sigma_1, \ldots, \sigma_n)$

- **T**v expresses that v is true and **F**v that it is false
- The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{Tv} = Fv$ and $\overline{Fv} = Tv$
- $A \circ \sigma$ stands for the result of appending σ to A
- Given $A = (\sigma_1, \dots, \sigma_{k-1}, \sigma_k, \dots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \dots, \sigma_{k-1})$
- We sometimes identify an assignment with the set of its literals
- Given this, we access *true* and *false* propositions in A via

$$A^{\mathsf{T}} = \{ v \in dom(A) \mid \mathsf{T}v \in A \} \text{ and } A^{\mathsf{F}} = \{ v \in dom(A) \mid \mathsf{F}v \in A \}$$

■ An assignment A over $dom(A) = atom(P) \cup body(P)$ is a sequence $(\sigma_1, \dots, \sigma_n)$

- **T** v expresses that v is true and Fv that it is false
- The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{Tv} = Fv$ and $\overline{Fv} = Tv$
- $A \circ \sigma$ stands for the result of appending σ to A
- Given $A = (\sigma_1, \dots, \sigma_{k-1}, \sigma_k, \dots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \dots, \sigma_{k-1})$
- We sometimes identify an assignment with the set of its literals
- Given this, we access *true* and *false* propositions in A via

$$A^{T} = \{ v \in dom(A) \mid Tv \in A \} \text{ and } A^{F} = \{ v \in dom(A) \mid Fv \in A \}$$

■ An assignment A over $dom(A) = atom(P) \cup body(P)$ is a sequence

$$(\sigma_1,\ldots,\sigma_n)$$

- Tv expresses that v is true and Fv that it is false
- The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{Tv} = Fv$ and $\overline{Fv} = Tv$
- $A \circ \sigma$ stands for the result of appending σ to A
- Given $A = (\sigma_1, \dots, \sigma_{k-1}, \sigma_k, \dots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \dots, \sigma_{k-1})$
- We sometimes identify an assignment with the set of its literals
- Given this, we access true and false propositions in A via

$$A^{T} = \{ v \in dom(A) \mid Tv \in A \} \text{ and } A^{F} = \{ v \in dom(A) \mid Fv \in A \}$$

- A nogood is a set $\{\sigma_1, \ldots, \sigma_n\}$ of signed literals, expressing a constraint violated by any assignment containing $\sigma_1, \ldots, \sigma_n$
- An assignment A such that $A^T \cup A^F = dom(A)$ and $A^T \cap A^F = \emptyset$ is a solution for a set Δ of nogoods, if $\delta \not\subseteq A$ for all $\delta \in \Delta$
- For a nogood δ , a literal $\sigma \in \delta$, and an assignment A, we say that $\overline{\sigma}$ is unit-resulting for δ wrt A, if
 - 1 $\delta \setminus A = \{\sigma\}$ and
 - $\overline{\sigma} \notin A$
- For a set Δ of nogoods and an assignment A, unit propagation is the iterated process of extending A with unit-resulting literals until no further literal is unit-resulting for any nogood in Δ

- A nogood is a set $\{\sigma_1, \ldots, \sigma_n\}$ of signed literals, expressing a constraint violated by any assignment containing $\sigma_1, \ldots, \sigma_n$
- An assignment A such that $A^T \cup A^F = dom(A)$ and $A^T \cap A^F = \emptyset$ is a solution for a set Δ of nogoods, if $\delta \not\subseteq A$ for all $\delta \in \Delta$
- For a nogood δ , a literal $\sigma \in \delta$, and an assignment A, we say that $\overline{\sigma}$ is unit-resulting for δ wrt A, if
 - 1 $\delta \setminus A = \{\sigma\}$ and
 - $\overline{\sigma} \notin A$
- For a set Δ of nogoods and an assignment A, unit propagation is the iterated process of extending A with unit-resulting literals until no further literal is unit-resulting for any nogood in Δ

- A nogood is a set $\{\sigma_1, \ldots, \sigma_n\}$ of signed literals, expressing a constraint violated by any assignment containing $\sigma_1, \ldots, \sigma_n$
- An assignment A such that $A^T \cup A^F = dom(A)$ and $A^T \cap A^F = \emptyset$ is a solution for a set Δ of nogoods, if $\delta \not\subseteq A$ for all $\delta \in \Delta$
- For a nogood δ , a literal $\sigma \in \delta$, and an assignment A, we say that $\overline{\sigma}$ is unit-resulting for δ wrt A, if

 - $\overline{\sigma} \notin A$
- For a set Δ of nogoods and an assignment A, unit propagation is the iterated process of extending A with unit-resulting literals until no further literal is unit-resulting for any nogood in Δ

- A nogood is a set $\{\sigma_1, \ldots, \sigma_n\}$ of signed literals, expressing a constraint violated by any assignment containing $\sigma_1, \ldots, \sigma_n$
- An assignment A such that $A^T \cup A^F = dom(A)$ and $A^T \cap A^F = \emptyset$ is a solution for a set Δ of nogoods, if $\delta \not\subseteq A$ for all $\delta \in \Delta$
- For a nogood δ , a literal $\sigma \in \delta$, and an assignment A, we say that $\overline{\sigma}$ is unit-resulting for δ wrt A, if

 - $\overline{\sigma} \notin A$
- For a set Δ of nogoods and an assignment A, unit propagation is the iterated process of extending A with unit-resulting literals until no further literal is unit-resulting for any nogood in Δ

Outline

- 1 Motivation
- 2 Boolean constraints
- 3 Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas
- 4 Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis

Outline

- 1 Motivation
- 2 Boolean constraints
- 3 Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas
- 4 Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis

Nogoods from logic programs via program completion

The completion of a logic program P can be defined as follows:

$$\{v_B \leftrightarrow a_1 \land \dots \land a_m \land \neg a_{m+1} \land \dots \land \neg a_n \mid \\ B \in body(P) \text{ and } B = \{a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n\} \}$$

$$\cup \quad \{a \leftrightarrow v_{B_1} \lor \dots \lor v_{B_k} \mid \\ a \in atom(P) \text{ and } body_P(a) = \{B_1, \dots, B_k\} \} ,$$
 where $body_P(a) = \{body(r) \mid r \in P \text{ and } head(r) = a\}$

Nogoods from logic programs via program completion

■ The (body-oriented) equivalence

$$v_B \leftrightarrow a_1 \wedge \cdots \wedge a_m \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_n$$

can be decomposed into two implications:

Nogoods from logic programs via program completion

■ The (body-oriented) equivalence

$$v_B \leftrightarrow a_1 \wedge \cdots \wedge a_m \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_n$$

can be decomposed into two implications:

1 $V_R \rightarrow a_1 \wedge \cdots \wedge a_m \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_n$ is equivalent to the conjunction of

$$\neg v_B \lor a_1, \ldots, \neg v_B \lor a_m, \neg v_B \lor \neg a_{m+1}, \ldots, \neg v_B \lor \neg a_n$$

and induces the set of nogoods

$$\Delta(B) = \{ \{ TB, Fa_1 \}, \dots, \{ TB, Fa_m \}, \{ TB, Ta_{m+1} \}, \dots, \{ TB, Ta_n \} \}$$

Nogoods from logic programs via program completion

■ The (body-oriented) equivalence

$$v_B \leftrightarrow a_1 \wedge \cdots \wedge a_m \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_n$$

can be decomposed into two implications:

2 $a_1 \wedge \cdots \wedge a_m \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_n \rightarrow v_B$ gives rise to the nogood

$$\delta(B) = \{ \mathbf{F}B, \mathbf{T}a_1, \dots, \mathbf{T}a_m, \mathbf{F}a_{m+1}, \dots, \mathbf{F}a_n \}$$

Nogoods from logic programs via program completion

Analogously, the (atom-oriented) equivalence

$$a \leftrightarrow v_{B_1} \lor \cdots \lor v_{B_k}$$

yields the nogoods

1
$$\Delta(a) = \{ \{ Fa, TB_1 \}, \dots, \{ Fa, TB_k \} \}$$
 and

2
$$\delta(a) = \{ Ta, FB_1, \dots, FB_k \}$$

Outline

- 1 Motivation
- 2 Boolean constraints
- 3 Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas
- 4 Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis

Nogoods from logic programs via loop formulas

Let P be a normal logic program and recall that:

■ For $L \subseteq atom(P)$, the external supports of L for P are $ES_P(L) = \{r \in P \mid head(r) \in L \text{ and } body(r)^+ \cap L = \emptyset\}$

■ The (disjunctive) loop formula of L for P is

$$LF_{P}(L) = (\bigvee_{A \in L} A) \to (\bigvee_{r \in ES_{P}(L)} body(r))$$
$$\equiv (\bigwedge_{r \in ES_{P}(L)} \neg body(r)) \to (\bigwedge_{A \in L} \neg A)$$

- Note The loop formula of *L* enforces all atoms in *L* to be *false* whenever *L* is not externally supported
- \blacksquare The external bodies of L for P are

$$EB_P(L) = \{body(r) \mid r \in ES_P(L)\}$$

Nogoods from logic programs via loop formulas

Let *P* be a normal logic program and recall that:

■ For $L \subseteq atom(P)$, the external supports of L for P are

$$ES_P(L) = \{r \in P \mid head(r) \in L \text{ and } body(r)^+ \cap L = \emptyset\}$$

■ The (disjunctive) loop formula of *L* for *P* is

$$LF_{P}(L) = (\bigvee_{A \in L} A) \to (\bigvee_{r \in ES_{P}(L)} body(r))$$

$$\equiv (\bigwedge_{r \in ES_{P}(L)} \neg body(r)) \to (\bigwedge_{A \in L} \neg A)$$

- Note The loop formula of *L* enforces all atoms in *L* to be *false* whenever *L* is not externally supported
- The external bodies of L for P are

$$EB_P(L) = \{body(r) \mid r \in ES_P(L)\}$$

Nogoods from logic programs via loop formulas

Let *P* be a normal logic program and recall that:

- For $L \subseteq atom(P)$, the external supports of L for P are $ES_P(L) = \{r \in P \mid head(r) \in L \text{ and } body(r)^+ \cap L = \emptyset\}$
- The (disjunctive) loop formula of L for P is

$$\begin{array}{lcl} LF_P(L) & = & \left(\bigvee_{A \in L} A\right) \to \left(\bigvee_{r \in ES_P(L)} body(r)\right) \\ & \equiv & \left(\bigwedge_{r \in ES_P(L)} \neg body(r)\right) \to \left(\bigwedge_{A \in L} \neg A\right) \end{array}$$

- Note The loop formula of *L* enforces all atoms in *L* to be *false* whenever *L* is not externally supported
- The external bodies of L for P are

$$EB_P(L) = \{body(r) \mid r \in ES_P(L)\}$$

Nogoods from logic programs

■ For a logic program P and some $\emptyset \subset U \subseteq atom(P)$, define the loop nogood of an atom $a \in U$ as

$$\lambda(a, U) = \{ Ta, FB_1, \dots, FB_k \}$$

where $EB_P(U) = \{ B_1, \dots, B_k \}$

■ We get the following set of loop nogoods for *P*:

$$\Lambda_P = \bigcup_{\emptyset \subset U \subset atom(P)} \{\lambda(a, U) \mid a \in U\}$$

■ The set Λ_P of loop nogoods denies cyclic support among true atoms

Nogoods from logic programs

■ For a logic program P and some $\emptyset \subset U \subseteq atom(P)$, define the loop nogood of an atom $a \in U$ as

$$\lambda(a,U) = \{ Ta, FB_1, \dots, FB_k \}$$

where $EB_P(U) = \{ B_1, \dots, B_k \}$

• We get the following set of loop nogoods for *P*:

$$\Lambda_P = \bigcup_{\emptyset \subset U \subset atom(P)} \{ \lambda(a, U) \mid a \in U \}$$

■ The set Λ_P of loop nogoods denies cyclic support among true atoms

Nogoods from logic programs loop nogoods

■ For a logic program P and some $\emptyset \subset U \subseteq atom(P)$, define the loop nogood of an atom $a \in U$ as

$$\lambda(a, U) = \{ Ta, FB_1, \dots, FB_k \}$$

where $EB_P(U) = \{ B_1, \dots, B_k \}$

■ We get the following set of loop nogoods for *P*:

$$\Lambda_P = \bigcup_{\emptyset \subset U \subset atom(P)} \{\lambda(a, U) \mid a \in U\}$$

■ The set Λ_P of loop nogoods denies cyclic support among true atoms

Example

Consider the program

$$\left\{ \begin{array}{ll}
x \leftarrow \sim y & u \leftarrow x \\
y \leftarrow \sim x & u \leftarrow v \\
y \leftarrow \sim x & v \leftarrow u, y
\end{array} \right\}$$

For u in the set $\{u, v\}$, we obtain the loop nogood:

$$\lambda(u, \{u, v\}) = \{Tu, F\{x\}\}$$

ilarly for v in $\{u, v\}$, we get:

$$\lambda(v, \{u, v\}) = \{Tv, F\{x\}\}$$

Example

Consider the program

$$\left\{ \begin{array}{ll}
x \leftarrow \sim y & u \leftarrow x \\
y \leftarrow \sim x & u \leftarrow v \\
y \leftarrow \sim x & v \leftarrow u, y
\end{array} \right\}$$

■ For u in the set $\{u, v\}$, we obtain the loop nogood:

$$\lambda(u, \{u, v\}) = \{Tu, F\{x\}\}$$

Similarly for v in $\{u, v\}$, we get:

$$\lambda(v, \{u, v\}) = \{Tv, F\{x\}\}$$

Example

Consider the program

$$\left\{ \begin{array}{ll}
x \leftarrow \sim y & u \leftarrow x \\
y \leftarrow \sim x & u \leftarrow v \\
y \leftarrow \sim x & v \leftarrow u, y
\end{array} \right\}$$

■ For u in the set $\{u, v\}$, we obtain the loop nogood:

$$\lambda(u, \{u, v\}) = \{ \mathbf{T}u, \mathbf{F}\{x\} \}$$

Similarly for v in $\{u, v\}$, we get:

$$\lambda(v, \{u, v\}) = \{Tv, F\{x\}\}$$

Characterization of stable models

Theorem

Let P be a logic program. Then,

 $X \subseteq atom(P)$ is a stable model of P iff

 $X = A^{\mathsf{T}} \cap \mathsf{atom}(P)$ for a (unique) solution A for $\Delta_P \cup \Lambda_P$

Some remarks

- Nogoods in Λ_P augment Δ_P with conditions checking for unfounded sets, in particular, those being loops
- While $|\Delta_P|$ is linear in the size of P, Λ_P may contain exponentially many (non-redundant) loop nogoods

Characterization of stable models

Theorem

Let P be a logic program. Then,

 $X \subseteq atom(P)$ is a stable model of P iff

 $X = A^{\mathsf{T}} \cap \mathsf{atom}(P)$ for a (unique) solution A for $\Delta_P \cup \Lambda_P$

Some remarks

- Nogoods in Λ_P augment Δ_P with conditions checking for unfounded sets, in particular, those being loops
- While $|\Delta_P|$ is linear in the size of P, Λ_P may contain exponentially many (non-redundant) loop nogoods

Outline

- 1 Motivation
- 2 Boolean constraints
- 3 Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas
- 4 Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis

Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

- Traditional DPLL-style approach (DPLL stands for 'Davis-Putnam-Logemann-Loveland')
 - (Unit) propagation
 - (Chronological) backtracking
 - in ASP, eg smodels
- Modern CDCL-style approach (CDCL stands for 'Conflict-Driven Constraint Learning')
 - (Unit) propagation
 - Conflict analysis (via resolution)
 - Learning + Backjumping + Assertion
 - in ASP, eg clasp

DPLL-style solving

loop

```
propagate // deterministically assign literals

if no conflict then

if all variables assigned then return solution

else decide // non-deterministically assign some literal

else

if top-level conflict then return unsatisfiable

else

backtrack // unassign literals propagated after last decision

flip // assign complement of last decision literal
```

CDCL-style solving

loop

```
propagate // deterministically assign literals

if no conflict then

if all variables assigned then return solution

else decide // non-deterministically assign some literal

else

if top-level conflict then return unsatisfiable

else

analyze // analyze conflict and add conflict constraint

backjump // unassign literals until conflict constraint is unit
```

Outline

- 1 Motivation
- 2 Boolean constraints
- 3 Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas
- 4 Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis

Outline of CDNL-ASP algorithm

- Keep track of deterministic consequences by unit propagation on:
 - Program completion

 $[\Delta_P]$

Loop nogoods, determined and recorded on demand

 $[\Lambda_P]$

- Dynamic nogoods, derived from conflicts and unfounded sets

Outline of CDNL-ASP algorithm

- Keep track of deterministic consequences by unit propagation on:
 - Program completion

 $[\Delta_P]$ $[\Lambda_P]$

Loop nogoods, determined and recorded on demand Dynamic nogoods, derived from conflicts and unfounded sets

- When a nogood in $\Delta_P \cup \nabla$ becomes violated:
 - Analyze the conflict by resolution (until reaching a Unique Implication Point, short: UIP)
 - **Learn** the derived conflict nogood δ
 - Backjump to the earliest (heuristic) choice such that the complement of the UIP is unit-resulting for δ
 - Assert the complement of the UIP and proceed (by unit propagation)

Outline of CDNL-ASP algorithm

- Keep track of deterministic consequences by unit propagation on:
 - Program completion

 $[\Delta_P]$

Loop nogoods, determined and recorded on demand

- Dynamic nogoods, derived from conflicts and unfounded sets
- When a nogood in $\Delta_P \cup \nabla$ becomes violated:
 - Analyze the conflict by resolution (until reaching a Unique Implication Point, short: UIP)
 - Learn the derived conflict nogood δ
 - Backjump to the earliest (heuristic) choice such that the complement of the UIP is unit-resulting for δ
 - Assert the complement of the UIP and proceed (by unit propagation)
- Terminate when either:
 - Finding a stable model (a solution for $\Delta_P \cup \Lambda_P$)
 - Deriving a conflict independently of (heuristic) choices

Algorithm 1: CDNL-ASP

```
Input
          : A normal program P
              : A stable model of P or "no stable model"
Output
A := \emptyset
                                                                // assignment over atom(P) \cup body(P)
\nabla := \emptyset
                                                                                  // set of recorded nogoods
dl := 0
                                                                                                // decision level
loop
      (A, \nabla) := \text{NogoodPropagation}(P, \nabla, A)
     if \varepsilon \subseteq A for some \varepsilon \in \Delta_P \cup \nabla then
                                                                                                        // conflict
            if \max(\{dlevel(\sigma) \mid \sigma \in \varepsilon\} \cup \{0\}) = 0 then return no stable model
            (\delta, dl) := \text{ConflictAnalysis}(\varepsilon, P, \nabla, A)
            \nabla := \nabla \cup \{\delta\}
                                                                 // (temporarily) record conflict nogood
            A := A \setminus \{ \overset{\circ}{\sigma} \in A \mid dl < dlevel(\sigma) \}
                                                                                                 // backjumping
      else if A^T \cup A^F = atom(P) \cup body(P) then
                                                                                                 // stable model
            return A^T \cap atom(P)
      else
            \sigma_d := \text{Select}(P, \nabla, A)
                                                                                                       // decision
            dl := dl + 1
            dlevel(\sigma_d) := dl
            A := A \circ \sigma_d
```

Observations

- Decision level dl, initially set to 0, is used to count the number of heuristically chosen literals in assignment A
- For a heuristically chosen literal $\sigma_d = Ta$ or $\sigma_d = Fa$, respectively, we require $a \in (atom(P) \cup body(P)) \setminus (A^T \cup A^F)$
- For any literal $\sigma \in A$, $dl(\sigma)$ denotes the decision level of σ , viz. the value dl had when σ was assigned
- lacksquare A conflict is detected from violation of a nogood $arepsilon\subseteq\Delta_P\cup
 abla$
- A conflict at decision level 0 (where *A* contains no heuristically chosen literals) indicates non-existence of stable models
- A nogood δ derived by conflict analysis is asserting, that is, some literal is unit-resulting for δ at a decision level k < dl
 - After learning δ and backjumping to decision level k, at least one literal is newly derivable by unit propagation
 - No explicit flipping of heuristically chosen literals!

Observations

- Decision level dl, initially set to 0, is used to count the number of heuristically chosen literals in assignment A
- For a heuristically chosen literal $\sigma_d = Ta$ or $\sigma_d = Fa$, respectively, we require $a \in (atom(P) \cup body(P)) \setminus (A^T \cup A^F)$
- For any literal $\sigma \in A$, $dl(\sigma)$ denotes the decision level of σ , viz. the value dl had when σ was assigned
- A conflict is detected from violation of a nogood $\varepsilon \subseteq \Delta_P \cup \nabla$
- A conflict at decision level 0 (where A contains no heuristically chosen literals) indicates non-existence of stable models
- A nogood δ derived by conflict analysis is asserting, that is, some literal is unit-resulting for δ at a decision level k < dl
 - After learning δ and backjumping to decision level k, at least one literal is newly derivable by unit propagation
 - No explicit flipping of heuristically chosen literals!

Observations

- Decision level dl, initially set to 0, is used to count the number of heuristically chosen literals in assignment A
- For a heuristically chosen literal $\sigma_d = Ta$ or $\sigma_d = Fa$, respectively, we require $a \in (atom(P) \cup body(P)) \setminus (A^T \cup A^F)$
- For any literal $\sigma \in A$, $dI(\sigma)$ denotes the decision level of σ , viz. the value dl had when σ was assigned
- A conflict is detected from violation of a nogood $\varepsilon \subseteq \Delta_P \cup \nabla$
- A conflict at decision level 0 (where A contains no heuristically chosen literals) indicates non-existence of stable models
- \blacksquare A nogood δ derived by conflict analysis is asserting, that is, some literal is unit-resulting for δ at a decision level k < dl
 - After learning δ and backjumping to decision level k, at least one literal is newly derivable by unit propagation
 - No explicit flipping of heuristically chosen literals!

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

dl	$\sigma_{\sf d}$	$\overline{\sigma}$	δ
1	T u		
2	$F\{\sim x, \sim y\}$		
			$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$
3	F{~y}	Fx F{x} F{x,y}	$\{Tx, F\{\sim y\}\} = \delta(x) \{T\{x\}, Fx\} \in \Delta(\{x\}) \{T\{x, y\}, Fx\} \in \Delta(\{x, y\}) \vdots \{Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\})$

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

dl	$\sigma_{\sf d}$	$\overline{\sigma}$	δ
1	T u		
2	$F\{\sim x, \sim y\}$		
			$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$
3	F {~y}		
			$\{Tx, F\{\sim y\}\} = \delta(x)$
			$\{T\{x\}, Fx\} \in \Delta(\{x\})$
			$\{T\{x,y\},Fx\}\in\Delta(\{x,y\})$
			$\{Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\})$

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

dl	$\sigma_{\sf d}$	$\overline{\sigma}$	δ
1	T u		
2	$F\{\sim x, \sim y\}$		
		Fw	$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$
3	$F\{\sim y\}$		
			$\{Tx, F\{\sim y\}\} = \delta(x)$
			$\{T\{x\},Fx\}\in\Delta(\{x\})$
			$\{T\{x,y\},Fx\}\in\Delta(\{x,y\})$
			$\{Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\})$

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

dl	$\sigma_{\sf d}$	$\overline{\sigma}$	δ
1	T u		
2	$F\{\sim x, \sim y\}$		
		F w	$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$
3	$F\{\sim y\}$		
			$\{Tx, F\{\sim y\}\} = \delta(x)$
			$\{T\{x\}, Fx\} \in \Delta(\{x\})$
			$\{T\{x,y\},Fx\}\in\Delta(\{x,y\})$
			:
			$\{Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\})$

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

dl	$\sigma_{\sf d}$	$\overline{\sigma}$	δ
1	T u		
2	$F\{\sim x, \sim y\}$		
		F w	$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$
3	F {~y}		
			$\{Tx, F\{\sim y\}\} = \delta(x)$
			$\{T\{x\},Fx\}\in\Delta(\{x\})$
			$\{T\{x,y\},Fx\}\in\Delta(\{x,y\})$
			$\{Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\})$

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

	1		
dl	σ_d	$\overline{\sigma}$	δ
1	T u		
2	$F\{\sim x, \sim y\}$		
		F w	$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$
3	F {~y}		
		F ×	$\{Tx, F\{\sim y\}\} = \delta(x)$
		$F\{x\}$	$\{T\{x\},Fx\}\in\Delta(\{x\})$
		$F\{x,y\}$	$\{T\{x,y\},Fx\}\in\Delta(\{x,y\})$
			:
			$\{Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\})$

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

dl	σ_d	$\overline{\sigma}$	δ
1	T u		
2	$F\{\sim x, \sim y\}$		
		F w	$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$
3	F {~y}		
		F x	$\{Tx, F\{\sim y\}\} = \delta(x)$
		$F\{x\}$	$\{T\{x\},Fx\}\in\Delta(\{x\})$
		$F\{x,y\}$	$\{T\{x,y\},Fx\}\in\Delta(\{x,y\})$
		•	:
			$\{Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\})$

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

dl	$\sigma_{\sf d}$	$\overline{\sigma}$	δ
1	T u		
		$T \times$	$\{Tu, Fx\} \in \nabla$
		T_V	$\{Fv, T\{x\}\} \in \Delta(v)$
			$\{Ty, F\{\sim x\}\} = \delta(y)$
			$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right. \quad w \leftarrow \sim x, \sim y \left. \right\}$$

dl	σ_{d}	$\overline{\sigma}$	δ
1	T u		
		T_X	$\{Tu, Fx\} \in \nabla$
			<u>:</u>
		T_V	$\{Fv, T\{x\}\} \in \Delta(v)$
			$\{Ty, F\{\sim x\}\} = \delta(y)$
			$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

dl	σ_{d}	$\overline{\sigma}$	δ
1	T u		
		T_X	$\{Tu, Fx\} \in \nabla$
		:	:
		T_V	$\{Fv,T\{x\}\}\in\Delta(v)$
		F y	$\{Ty, F\{\sim x\}\} = \delta(y)$
		F w	$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right. \quad w \leftarrow \sim x, \sim y \left. \right\}$$

dl	$\sigma_{\sf d}$	$\overline{\sigma}$	δ
1	T u		
		T ×	$\{Tu, Fx\} \in \nabla$
		:	:
		T v	$\{Fv,T\{x\}\}\in\Delta(v)$
		F y	$\{Ty, F\{\sim x\}\} = \delta(y)$
		F w	$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$

Outline

- 1 Motivation
- 2 Boolean constraints
- 3 Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas
- 4 Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis

- Derive deterministic consequences via:
 - Unit propagation on Δ_P and ∇ ;
 - Unfounded sets $U \subseteq atom(P)$
- Note that *U* is unfounded if $EB_P(U) \subseteq A^F$
 - Note For any $a \in U$, we have $(\lambda(a, U) \setminus \{Ta\}) \subseteq A$
- An "interesting" unfounded set U satisfies:

$$\emptyset \subset U \subseteq (atom(P) \setminus A^F)$$

- Wrt a fixpoint of unit propagation, such an unfounded set contains some loop of P
 - Note Tight programs do not yield "interesting" unfounded sets!
- Given an unfounded set U and some $a \in U$, adding $\lambda(a, U)$ to ∇ triggers a conflict or further derivations by unit propagation
 - Note Add loop nogoods atom by atom to eventually falsify all $a \in U$

- Derive deterministic consequences via:
 - Unit propagation on Δ_P and ∇ ;
 - Unfounded sets $U \subseteq atom(P)$
- Note that *U* is unfounded if $EB_P(U) \subseteq A^F$
 - Note For any $a \in U$, we have $(\lambda(a, U) \setminus \{Ta\}) \subseteq A$
- An "interesting" unfounded set *U* satisfies:

$$\emptyset \subset U \subseteq (atom(P) \setminus A^{\mathbf{F}})$$

- Wrt a fixpoint of unit propagation,
 - such an unfounded set contains some loop of P
 - Note Tight programs do not yield "interesting" unfounded sets
- Given an unfounded set U and some $a \in U$, adding $\lambda(a, U)$ to ∇ triggers a conflict or further derivations by unit propagation
 - Note Add loop nogoods atom by atom to eventually falsify all $a \in U$

- Derive deterministic consequences via:
 - Unit propagation on Δ_P and ∇ ;
 - Unfounded sets $U \subseteq atom(P)$
- Note that *U* is unfounded if $EB_P(U) \subseteq A^F$
 - Note For any $a \in U$, we have $(\lambda(a, U) \setminus \{Ta\}) \subseteq A$
- An "interesting" unfounded set *U* satisfies:

$$\emptyset \subset U \subseteq (atom(P) \setminus A^{\mathbf{F}})$$

- Wrt a fixpoint of unit propagation, such an unfounded set contains some loop of P
 - Note Tight programs do not yield "interesting" unfounded sets!
- Given an unfounded set U and some $a \in U$, adding $\lambda(a, U)$ to ∇ triggers a conflict or further derivations by unit propagation
 - Note Add loop nogoods atom by atom to eventually falsify all $a \in U$

- Derive deterministic consequences via:
 - Unit propagation on Δ_P and ∇ ;
 - Unfounded sets $U \subseteq atom(P)$
- Note that *U* is unfounded if $EB_P(U) \subseteq A^F$
 - Note For any $a \in U$, we have $(\lambda(a, U) \setminus \{Ta\}) \subseteq A$
- An "interesting" unfounded set *U* satisfies:

$$\emptyset \subset U \subseteq (atom(P) \setminus A^{\mathbf{F}})$$

- Wrt a fixpoint of unit propagation, such an unfounded set contains some loop of P
 - Note Tight programs do not yield "interesting" unfounded sets!
- Given an unfounded set U and some $a \in U$, adding $\lambda(a, U)$ to ∇ triggers a conflict or further derivations by unit propagation
 - Note Add loop nogoods atom by atom to eventually falsify all $a \in U$

Algorithm 2: NogoodPropagation

Input : A normal program P, a set ∇ of nogoods, and an assignment A.

Output: An extended assignment and set of nogoods.

 $U := \emptyset$ // unfounded set

loop

```
repeat
       if \delta \subseteq A for some \delta \in \Delta_P \cup \nabla then return (A, \nabla)
                                                                                                                  // conflict
       \Sigma := \{ \delta \in \Delta_P \cup \nabla \mid \delta \setminus A = \{ \overline{\sigma} \}, \sigma \notin A \} // unit-resulting nogoods
       if \Sigma \neq \emptyset then let \overline{\sigma} \in \delta \setminus A for some \delta \in \Sigma in
         dlevel(\sigma) := \max(\{dlevel(\rho) \mid \rho \in \delta \setminus \{\overline{\sigma}\}\} \cup \{0\})
A := A \circ \sigma
until \Sigma = \emptyset
if loop(P) = \emptyset then return (A, \nabla)
U:=U\setminus A^F
if U = \emptyset then U := \text{UnfoundedSet}(P, A)
if U = \emptyset then return (A, \nabla) // no unfounded set \emptyset \subset U \subset atom(P) \setminus A^F
```

\$ebastian Rudolph (TUD)

Requirements for UnfoundedSet

- Implementations of ${
 m UnfoundedSet}$ must guarantee the following for a result U
 - 1 $U \subseteq (atom(P) \setminus A^F)$
 - $EB_P(U) \subseteq A^{F'}$
 - 3 $U = \emptyset$ iff there is no nonempty unfounded subset of $(atom(P) \setminus A^F)$
- Beyond that, there are various alternatives, such as
 - Calculating the greatest unfounded set
 - Calculating unfounded sets within strongly connected components of the positive atom dependency graph of P
 - Usually, the latter option is implemented in ASP solvers

Requirements for UnfoundedSet

- Implementations of ${
 m UnfoundedSet}$ must guarantee the following for a result U
 - 1 $U \subseteq (atom(P) \setminus A^F)$
 - $EB_P(U) \subseteq A^F$
 - 3 $U = \emptyset$ iff there is no nonempty unfounded subset of $(atom(P) \setminus A^F)$
- Beyond that, there are various alternatives, such as:
 - Calculating the greatest unfounded set
 - Calculating unfounded sets within strongly connected components of the positive atom dependency graph of P
 - Usually, the latter option is implemented in ASP solvers

Example: NogoodPropagation

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

dl	σ_{d}	$\overline{\sigma}$	δ
1	T u		
2	$F\{\sim x, \sim y\}$		
		F w	$ \{Tw, F\{\sim x, \sim y\}\} = \delta(w) $
3	F {~y}		
		F ×	$\{Tx, F\{\sim y\}\} = \delta(x)$
		F {x}	$\mid \{ T\{x\}, Fx\} \in \Delta(\{x\}) $
		$F\{x,y\}$	$\mid \{ T\{x,y\}, Fx\} \in \Delta(\{x,y\}) $
		$T\{\sim x\}$	$ \{ \mathbf{F} \{ \sim x \}, \mathbf{F} x \} = \delta(\{ \sim x \}) $
		Ty	$ \{ \mathbf{F} \{ \sim \mathbf{y} \}, \mathbf{F} \mathbf{y} \} = \delta(\{ \sim \mathbf{y} \}) $
		$T\{v\}$	$ \{ \mathbf{T} u, \mathbf{F} \{ x, y \}, \mathbf{F} \{ v \} \} = \delta(u) $
		$T\{u,y\}$	$ \{ \mathbf{F}\{u,y\}, \mathbf{T}u, \mathbf{T}y\} = \delta(\{u,y\}) $
		Tv	$\{Fv, T\{u, y\}\} \in \Delta(v)$
			$ \{Tu, F\{x\}, F\{x,y\}\} = \lambda(u, \{u,v\}) $

Outline

- 1 Motivation
- 2 Boolean constraints
- 3 Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas
- 4 Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis

Outline of ConflictAnalysis

- Conflict analysis is triggered whenever some nogood $\delta \in \Delta_P \cup \nabla$ becomes violated, viz. $\delta \subseteq A$, at a decision level dl > 0
 - Note that all but the first literal assigned at dl have been unit-resulting for nogoods $\varepsilon \in \Delta_P \cup \nabla$
 - If $\sigma \in \delta$ has been unit-resulting for ε , we obtain a new violated nogood by resolving δ and ε as follows:

$$(\delta \setminus \{\sigma\}) \cup (\varepsilon \setminus \{\overline{\sigma}\})$$

- Resolution is directed by resolving first over the literal $\sigma \in \delta$ derived last, viz. $(\delta \setminus A[\sigma]) = \{\sigma\}$
 - Iterated resolution progresses in inverse order of assignment
- Iterated resolution stops as soon as it generates a nogood δ containing exactly one literal σ assigned at decision level dl
 - This literal σ is called First Unique Implication Point (First-UIP)
 - All literals in $(\delta \setminus \{\sigma\})$ are assigned at decision levels smaller than dl

Outline of ConflictAnalysis

- Conflict analysis is triggered whenever some nogood $\delta \in \Delta_P \cup \nabla$ becomes violated, viz. $\delta \subseteq A$, at a decision level dI > 0
 - Note that all but the first literal assigned at dl have been unit-resulting for nogoods $\varepsilon \in \Delta_P \cup \nabla$
 - If $\sigma \in \delta$ has been unit-resulting for ε , we obtain a new violated nogood by resolving δ and ε as follows:

$$(\delta \setminus \{\sigma\}) \cup (\varepsilon \setminus \{\overline{\sigma}\})$$

- Resolution is directed by resolving first over the literal $\sigma \in \delta$ derived last, viz. $(\delta \setminus A[\sigma]) = \{\sigma\}$
 - Iterated resolution progresses in inverse order of assignment
- Iterated resolution stops as soon as it generates a nogood δ containing exactly one literal σ assigned at decision level dl
 - This literal σ is called First Unique Implication Point (First-UIP)
 - All literals in $(\delta \setminus \{\sigma\})$ are assigned at decision levels smaller than dl

Outline of ConflictAnalysis

- Conflict analysis is triggered whenever some nogood $\delta \in \Delta_P \cup \nabla$ becomes violated, viz. $\delta \subseteq A$, at a decision level dl > 0
 - Note that all but the first literal assigned at dl have been unit-resulting for nogoods $\varepsilon \in \Delta_P \cup \nabla$
 - If $\sigma \in \delta$ has been unit-resulting for ε , we obtain a new violated nogood by resolving δ and ε as follows:

$$(\delta \setminus \{\sigma\}) \cup (\varepsilon \setminus \{\overline{\sigma}\})$$

- Resolution is directed by resolving first over the literal $\sigma \in \delta$ derived last, viz. $(\delta \setminus A[\sigma]) = \{\sigma\}$
 - Iterated resolution progresses in inverse order of assignment
- lacksquare Iterated resolution stops as soon as it generates a nogood δ containing exactly one literal σ assigned at decision level dl
 - This literal σ is called First Unique Implication Point (First-UIP)
 - All literals in $(\delta \setminus \{\sigma\})$ are assigned at decision levels smaller than dl

Algorithm 3: ConflictAnalysis

Input : A non-empty violated nogood δ , a normal program P, a set ∇ of nogoods, and an assignment A.

Output: A derived nogood and a decision level.

loop

```
\begin{array}{l} \mathbf{let} \ \sigma \in \delta \ \mathbf{such} \ \mathbf{that} \ \delta \setminus A[\sigma] = \{\sigma\} \ \mathbf{in} \\ k := \max(\{\mathit{dlevel}(\rho) \mid \rho \in \delta \setminus \{\sigma\}\} \cup \{0\}) \\ \mathbf{if} \ k = \mathit{dlevel}(\sigma) \ \mathbf{then} \\ k := (\delta \setminus \{\sigma\}) \cup (\varepsilon \setminus \{\overline{\sigma}\}) \\ k := (\delta \setminus \{\sigma\}) \cup (\varepsilon \setminus \{\overline{\sigma}\}) \\ \mathbf{else} \ \mathbf{return} \ (\delta, k) \end{array}
```

Example: ConflictAnalysis

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

dI	σ_{d}	$\overline{\sigma}$	δ	
1	T u			
2	$F\{\sim x, \sim y\}$			
		F w	$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$	
3	F {~y}			
		Fx	$\{Tx, F\{\sim y\}\} = \delta(x)$	
		$F\{x\}$	$\{T\{x\},Fx\}\in\Delta(\{x\})$	
		$F{x,y}$	$\{T\{x,y\},Fx\}\in\Delta(\{x,y\})$	
		$T\{\sim x\}$	$\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F}x\} = \delta(\{\sim x\})$	
		T_y	$\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F}y\} = \delta(\{\sim y\})$	
		$T\{v\}$	$\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$	
		$T{u,y}$	$\{\boldsymbol{F}\{u,y\},\boldsymbol{T}u,\boldsymbol{T}y\}=\delta(\{u,y\})$	
		Tv	$\{Fv, T\{u, y\}\} \in \Delta(v)$	
			$\{Tu, F\{x\}, F\{x,y\}\} = \lambda(u, \{u,v\})$	X

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

dl	$\sigma_{\sf d}$	$\overline{\sigma}$	δ	
1	T u			
2	$F\{\sim x, \sim y\}$			
		F w	$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$	
3	F {~y}			
			$\{Tx, F\{\sim y\}\} = \delta(x)$	
		$F\{x\}$	$\{T\{x\},Fx\}\in\Delta(\{x\})$	
		$F\{x,y\}$	$\{T\{x,y\},Fx\}\in\Delta(\{x,y\})$	
		$T\{\sim x\}$	$\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F}x\} = \delta(\{\sim x\})$	
		T y	$\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F}y\} = \delta(\{\sim y\})$	
		$T\{v\}$	$\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$	
		$T{u,y}$	$\{\boldsymbol{F}\{u,y\},\boldsymbol{T}u,\boldsymbol{T}y\}=\delta(\{u,y\})$	
		T_V	$\{Fv, T\{u,y\}\} \in \Delta(v)$	
			$\{Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\})$	X

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right. \quad w \leftarrow \sim x, \sim y \left. \right\}$$

dI	σ_d	$\overline{\sigma}$	δ	
1	T u			
2	$F\{\sim x, \sim y\}$			
		F w	$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$	
3	F {~y}			
		F ×	$\{Tx, F\{\sim y\}\} = \delta(x)$	
		$F\{x\}$	$\{T\{x\}, Fx\} \in \Delta(\{x\})$	
		$F\{x,y\}$	$\{T\{x,y\},Fx\}\in\Delta(\{x,y\})$	
		$T\{\sim x\}$	$\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F}x\} = \delta(\{\sim x\})$	
		Ty	$\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F}y\} = \delta(\{\sim y\})$	
		$T\{v\}$	$\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$	
		$T{u,y}$	$\{F\{u,y\}, Tu, Ty\} = \delta(\{u,y\})$	
		T_V	$\{Fv, T\{u, y\}\} \in \Delta(v)$	
			$ \{Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\})$	X

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right. \quad w \leftarrow \sim x, \sim y \left. \right\}$$

dI	σ_d	$\overline{\sigma}$	δ	
1	T u			
2	$F\{\sim x, \sim y\}$			
		F w	$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$	
3	F {~y}			
		Fx	$\{Tx, F\{\sim y\}\} = \delta(x)$	
		$F\{x\}$	$\{T\{x\},Fx\}\in\Delta(\{x\})$	
		$F\{x,y\}$	$\{T\{x,y\},Fx\}\in\Delta(\{x,y\})$	
		$T\{\sim x\}$	$\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F}x\} = \delta(\{\sim x\})$	
		Ty	$\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F}y\} = \delta(\{\sim y\})$	
		$T\{v\}$	$\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$	
		$T{u,y}$	$\{F\{u,y\},Tu,Ty\}=\delta(\{u,y\})$	
		T_V	$\{Fv, T\{u, y\}\} \in \Delta(v)$	
			$\{Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\})$	X

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right. \quad w \leftarrow \sim x, \sim y \left. \right\}$$

di	σ_d	$\overline{\sigma}$	δ	
1	T u			
2	$F\{\sim x, \sim y\}$			
		F w	$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$	
3	F {~y}			
		F ×	$\{Tx, F\{\sim y\}\} = \delta(x)$	
		$F\{x\}$	$\{T\{x\}, Fx\} \in \Delta(\{x\})$	$\{Tu, Fx\}$
		$F\{x,y\}$	$\{T\{x,y\}, Fx\} \in \Delta(\{x,y\})$	$\{Tu, Fx, F\{x\}\}\$
		$T\{\sim x\}$	$\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F}x\} = \delta(\{\sim x\})$	
		Ty	$\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F}y\} = \delta(\{\sim y\})$	
		$T\{v\}$	$\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$	
		$T{u,y}$	$\{F\{u,y\}, Tu, Ty\} = \delta(\{u,y\})$	
		T_V	$\{Fv, T\{u, y\}\} \in \Delta(v)$	
			$\left \left\{ \mathbf{T}u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\} \right\} = \lambda(u, \{u, v\}) \right $	X

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

di	σ_d	$\overline{\sigma}$	δ	
1	T u			
2	$F\{\sim x, \sim y\}$			
		F w	$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$	
3	F {~y}			
		F ×	$\{Tx, F\{\sim y\}\} = \delta(x)$	
		$F\{x\}$	$\{T\{x\}, Fx\} \in \Delta(\{x\})$	$\{Tu, Fx\}$
		$F\{x,y\}$	$\{T\{x,y\},Fx\}\in\Delta(\{x,y\})$	$\{Tu, Fx, F\{x\}\}$
		$T\{\sim x\}$	$\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F}x\} = \delta(\{\sim x\})$	
		Тy	$\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F}y\} = \delta(\{\sim y\})$	
		$T\{v\}$	$\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$	
		$T{u,y}$	$\{F\{u,y\}, Tu, Ty\} = \delta(\{u,y\})$	
		T_V	$\{Fv, T\{u, y\}\} \in \Delta(v)$	
			$ \{Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\})$	X

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right. \quad w \leftarrow \sim x, \sim y \left. \right\}$$

dl	σ_d	$\overline{\sigma}$	δ	
1	Tu			
2	$F{\sim x, \sim y}$			
		F w	$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$	
3	F {~y}			
		F ×	$\{Tx, F\{\sim y\}\} = \delta(x)$	
		$F\{x\}$	$\{T\{x\}, Fx\} \in \Delta(\{x\})$	$\{Tu, Fx\}$
		$F\{x,y\}$	$\{T\{x,y\},Fx\}\in\Delta(\{x,y\})$	$\{Tu, Fx, F\{x\}\}$
		$T\{\sim x\}$	$\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F}x\} = \delta(\{\sim x\})$	
		Тy	$\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F}y\} = \delta(\{\sim y\})$	
		$T\{v\}$	$\{Tu, F\{x,y\}, F\{v\}\} = \delta(u)$	
		$T{u,y}$	$\{F\{u,y\}, Tu, Ty\} = \delta(\{u,y\})$	
		Tv	$\{Fv, T\{u,y\}\} \in \Delta(v)$	
			$\{Tu, F\{x\}, F\{x,y\}\} = \lambda(u, \{u,v\})$	X

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

dI	$\sigma_{\sf d}$	$\overline{\sigma}$	δ	
1	T u			
2	$F\{\sim x, \sim y\}$			
		F w	$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$	
3	F {~y}			
		F ×	$\{Tx, F\{\sim y\}\} = \delta(x)$	
		$F\{x\}$	$\{T\{x\}, Fx\} \in \Delta(\{x\})$	$\{Tu, Fx\}$
		$F{x,y}$	$\{T\{x,y\},Fx\}\in\Delta(\{x,y\})$	$\{Tu, Fx, F\{x\}\}$
		$T\{\sim x\}$	$\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F}x\} = \delta(\{\sim x\})$	
		T y	$\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F}y\} = \delta(\{\sim y\})$	
		$T\{v\}$	$\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$	
		$T{u,y}$	$\{F\{u,y\}, Tu, Ty\} = \delta(\{u,y\})$	
		T_V	$\{Fv, T\{u, y\}\} \in \Delta(v)$	
			$\{Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\})$	X

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

dl	σ_{d}	$\overline{\sigma}$	δ	
1	T u			
2	$F\{\sim x, \sim y\}$			
		F w	$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$	
3	F {~y}			
		F ×	$\{Tx, F\{\sim y\}\} = \delta(x)$	
		$F\{x\}$	$\{T\{x\},Fx\}\in\Delta(\{x\})$	$\{Tu, Fx\}$
		$F{x,y}$	$\{T\{x,y\},Fx\}\in\Delta(\{x,y\})$	$\{Tu, Fx, F\{x\}\}$
		$T\{\sim x\}$	$\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F}x\} = \delta(\{\sim x\})$	
		T y	$\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F}y\} = \delta(\{\sim y\})$	
		$T\{v\}$	$\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$	
		$T{u,y}$	$\{\boldsymbol{F}\{u,y\},\boldsymbol{T}u,\boldsymbol{T}y\}=\delta(\{u,y\})$	
		T_V	$\{Fv, T\{u,y\}\} \in \Delta(v)$	
			$\{Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\})$	X

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

dl	$\sigma_{\sf d}$	$\overline{\sigma}$	δ	
1	T u			
2	$F\{\sim x, \sim y\}$			
		F w	$\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$	
3	$F{\sim y}$			
			$\{Tx, F\{\sim y\}\} = \delta(x)$	
		$F\{x\}$	$\{T\{x\},Fx\}\in\Delta(\{x\})$	$\{Tu, Fx\}$
		$F{x, y}$	$\{T\{x,y\},Fx\}\in\Delta(\{x,y\})$	$\{Tu, Fx, F\{x\}\}$
		$T\{\sim x\}$	$\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F}x\} = \delta(\{\sim x\})$	
		T y	$\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F}y\} = \delta(\{\sim y\})$	
		$T\{v\}$	$\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$	
		$T{u,y}$	$\{F\{u,y\}, Tu, Ty\} = \delta(\{u,y\})$	
		T_V	$\{Fv, T\{u, y\}\} \in \Delta(v)$	
			$\{Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\})$	X

- There always is a First-UIP at which conflict analysis terminates
 - In the worst, resolution stops at the heuristically chosen literal assigned at decision level *dl*
- lacksquare The nogood δ containing First-UIP σ is violated by A, viz. $\delta\subseteq A$
- We have $k = max(\{dl(\rho) \mid \rho \in \delta \setminus \{\sigma\}\} \cup \{0\}) < dl$
 - After recording δ in ∇ and backjumping to decision level k $\overline{\sigma}$ is unit-resulting for δ !
 - \blacksquare Such a nogood δ is called asserting
- Asserting nogoods direct conflict-driven search into a different region of the search space than traversed before, without explicitly flipping any heuristically chosen literal!

- There always is a First-UIP at which conflict analysis terminates
 - In the worst, resolution stops at the heuristically chosen literal assigned at decision level *dl*
- The nogood δ containing First-UIP σ is violated by A, viz. $\delta \subseteq A$
- We have $k = max(\{dl(\rho) \mid \rho \in \delta \setminus \{\sigma\}\} \cup \{0\}) < dl$
 - After recording δ in ∇ and backjumping to decision level k $\overline{\sigma}$ is unit-resulting for δ !
 - \blacksquare Such a nogood δ is called asserting
- Asserting nogoods direct conflict-driven search into a different region of the search space than traversed before, without explicitly flipping any heuristically chosen literal!

- There always is a First-UIP at which conflict analysis terminates
 - In the worst, resolution stops at the heuristically chosen literal assigned at decision level *dl*
- The nogood δ containing First-UIP σ is violated by A, viz. $\delta \subseteq A$
- We have $k = max(\{dl(\rho) \mid \rho \in \delta \setminus \{\sigma\}\} \cup \{0\}) < dl$
 - After recording δ in ∇ and backjumping to decision level k, $\overline{\sigma}$ is unit-resulting for δ !
 - \blacksquare Such a nogood δ is called asserting
- Asserting nogoods direct conflict-driven search into a different region of the search space than traversed before, without explicitly flipping any heuristically chosen literal!

- There always is a First-UIP at which conflict analysis terminates
 - In the worst, resolution stops at the heuristically chosen literal assigned at decision level *dl*
- The nogood δ containing First-UIP σ is violated by A, viz. $\delta \subseteq A$
- We have $k = max(\{dl(\rho) \mid \rho \in \delta \setminus \{\sigma\}\} \cup \{0\}) < dl$
 - After recording δ in ∇ and backjumping to decision level k, $\overline{\sigma}$ is unit-resulting for δ !
 - \blacksquare Such a nogood δ is called asserting
- Asserting nogoods direct conflict-driven search into a different region of the search space than traversed before, without explicitly flipping any heuristically chosen literal!