

 Hannes Strass
 (based on slides by Bernardo Cuenca Grau, Ian Horrocks, Przemysław Wałęga)

 Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Introduction and Overview

Lecture 1, 10th Oct 2022 // Foundations of Knowledge Representation, WS 2022/23

 seats on an aeroplane

British Airway	s oear maps		Arts	a A319 (319) Domostic VI
Overview Planes & Seat Maps Arbus A339 (108)	There are 4 versions of this aircraft.	Check Version	노 Seating details	Seat map key
Arbus A329 (319) Domertic V1 Arbus A329 (319) Domertic V2			Pitch Wo	
Anton A319 (319) Dormestic 1/3			ux comestic 29-30 17.	
Arbus A319 (315) European				
Check-in			in-flight amenities	
Baggage				
Infanta	14		11 Feed	
Minors	VII -		British Airward offers a variety	of complementary from and
Peta	« »)	beverages, based on the time of	day and departure location.
		1.0	Click here for more informatio	a about faod offered ondoard.
			Overview	
Business				
Class			This British Airways Airbus A; short-baul Domestic routes.	19 is primarily operated on
Flights				
0			This Agap features a one class standard UK Demorie seats.	configuration with Leg
Save 50%				
On Business Class Flights,				
All	,		Featured user comme	ants
Destinations			Read user reviews for British Area	
& Airlines	IL ABC DEF	2	Vial Vi	eys Autous Ashie (shie) Doniesto
Herel	12		Submitted by Dan R on 2012/01/ There is no air passie above sea	19 for Seat 135
business lassintern.	11 (111) (111) e	ĕ	There is no an easily above soo	
\bigcirc	и (ПП) (ПП)		Front row stat was good for spo fixtra legroom was velocine too	of a boarding and diamharks
(>)	95 CIII (III)	÷	seat at check in at no extra cost. for a short flight. On board serve	
\sim	n 🛄 🛄	è.	adoptate for the datation. Plan	e was clean and comfortable.
	17 L.L.		Seat map key	
	18		Cood seat	Crew seat
	12		De Aware - See	B Power port
	20		commenta	Company est
	28 Later 18		Bod seat	Calley
	22		Mood Review	
	23		Standard seat	tevelory
	N 11		Booked seat	Cost.
				- bassivet
		-	Premium seat	

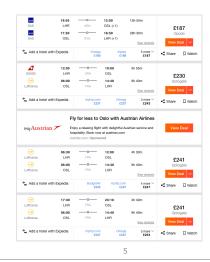
Introduction and Overview (Lecture 1) Computational Logic Group // Hannes Strass Foundations of Knowledge Representation, WS 2022/23

Slide 2 of 56

- seats on an aeroplane
- account transactions

- seats on an aeroplane
- account transactions
- tall buildings

Name •	City e	State ¢	Height +	Feet •	Floors •	Completed
Federation Tower: East Tower	Moscow	Russia	373.7	1,226	95	2016
OKO: South Tower	Moscow	Bussia	354.1	1,162	85	2015
Mercury City Tower	Moscow	Bussia	338.8	1,112	75	2013
The Shard ^[1]	London	an United Kingdom	309.7	1,017	87	2012
Eurasia ^[2]	Moscow	Bussia	308.9	1,014	72	2014
CoC: Moscow Tower ⁽³⁾	Moscow	Bussia	301.6	990	76	2010
Skyland İstanbul 1 ⁽⁴⁾⁽⁵⁾	Istanbul	C- Turkey	293.1	932	65	2017
Skyland Istanbul 2 ⁽⁴⁾⁽⁵⁾	Istanbul	C- Turkey	293.1	932	65	2017
Metropol İstanbul ⁶	Istanbul	C Turkey	280	919	66	2017
Emaar Square	Istanbul	C- Turkey	280	920	62	2018
Naberezhnaya Tower C	Moscow	Russia	268.4	881	59	2007
Triumph Palace ^[7]	Moscow	Russia	264.1	867	57	2005
Commerzbank Tower ⁽⁸⁽⁹⁾	Frankfurt	Germany	258.7	848	56	1997
CoC: Saint Petersburg Tower ^[10]	Moscow	Russia	256.9	843	65	2010
Messeturm	Frankfurt	Germany	256.5	842	55	1990
Nurol Life ^{(11)[12]}	Istanbul	C- Turkey	252	827	60	2017
Torre de Cristal	Madrid	Spain	249	817	45	2008
Torre Cepsa	Madrid	Spain	248.3	815	45	2008
Evolution Tower ^[13]	Moscow	Russia	245.9	807	53	2014
OKO: North Tower ^[14]	Moscow	Russia	245	804	49	2014
Federation: West Tower	Moscow	Bussia	243.2	798	62	2007
Main building of Moscow State University	Moscow	Russia	240	787	36	1953
Imperia Tower	Moscow	Russia	238.7	783	60	2011
Palace of Culture and Science	Warsaw	Poland	237	777	43	1955
Torre PwC	Madrid	Spain	238	774	52	2008
1 Canada Square	London	an United Kingdom	235	771	50	1991
Istanbul Sapphire[15][16]	Istanbul	C. Turkey	234.9	770	54	2010
Tour First	Paris ^B	France	231	758	56	2011
Unicredit Tower	Milan	taly	231	758	35	2011
Heron Tower	London	United Kingdom	230	755	46	2011



- seats on an aeroplane
- account transactions
- tall buildings

and to answer questions

 seats available on flight?

- seats on an aeroplane
- account transactions
- tall buildings

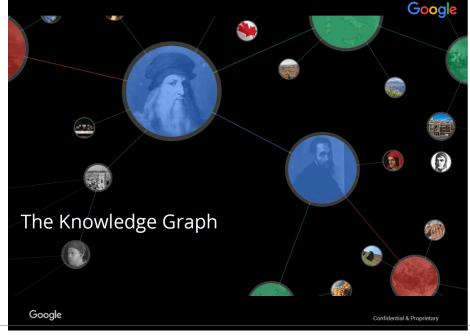
and to answer questions

- seats available on flight?
- · can afford to pay rent?

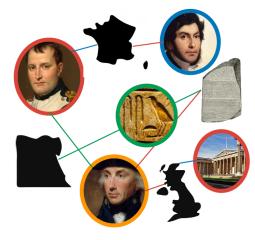
- · seats on an aeroplane
- account transactions
- tall buildings

and to answer questions

- seats available on flight?
- can afford to pay rent?
- tallest building in Europe?



What kind of representation?



Slide 9 of 56

The Knowledge Graph

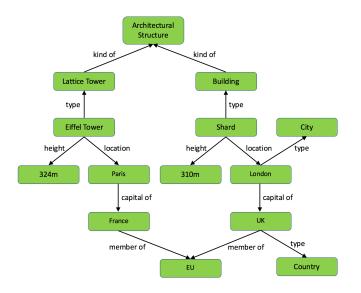
The Knowledge Graph is a comprehensive collection of real-world entities (people, places, things, and concepts) along with relationships and factual attributes that describe them.

Google

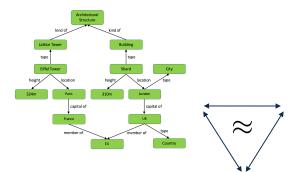
Confidential & Proprietary

Introduction and Overview (Lecture 1) Computational Logic Group // Hannes Strass Foundations of Knowledge Representation, WS 2022/23

Slide 10 of 56



Slide 11 of 56

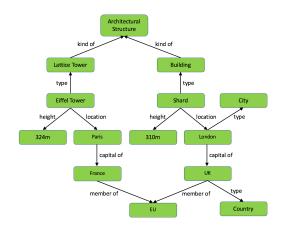


Slide 12 of 56

Architectural Structure			
name	location	height	kind
Shard	London	310m	Building
Eiffel Tower	Paris	324m	Lattice Tower

City		
name	capital of	
London	UK	
Paris	France	

member of		
country	organisation	
France	EU	
UK	EU	


Building(Shard) City(London) location(Shard,London) height(Shard,310m) capitalOf(London,UK)

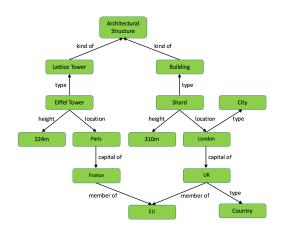
13

...

Reasoning is the process of **answering queries** w.r.t. the represented knowledge

What is the height of the Eiffel Tower?

SELECT ?x WHERE { EiffelTower height ? x. }

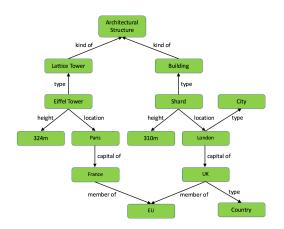

14

Introduction and Overview (Lecture 1) Computational Logic Group // Hannes Strass Foundations of Knowledge Representation, WS 2022/23

Slide 14 of 56

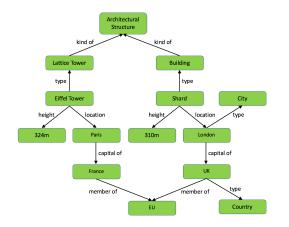
Reasoning is the process of **answering queries** w.r.t. the represented knowledge

What is the height of the Eiffel Tower?


15

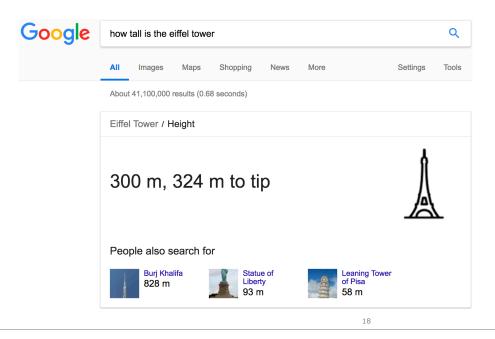
Introduction and Overview (Lecture 1) Computational Logic Group // Hannes Strass Foundations of Knowledge Representation, WS 2022/23

Slide 15 of 56

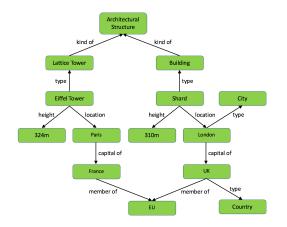

- Reasoning is the process of answering queries w.r.t. the represented knowledge
- What is the height of the Eiffel Tower?

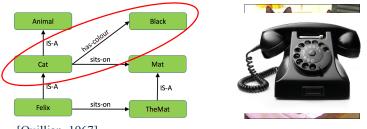
Slide 16 of 56

- Reasoning is the process of answering queries w.r.t. the represented knowledge
- What is the height of the Eiffel Tower?


• 324m

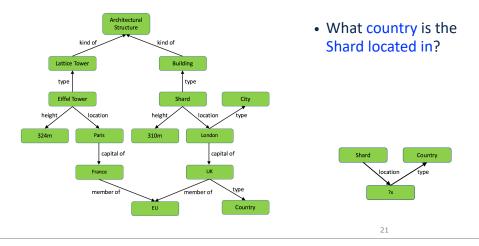
Introduction and Overview (Lecture 1) Computational Logic Group // Hannes Strass Foundations of Knowledge Representation, WS 2022/23


Slide 17 of 56



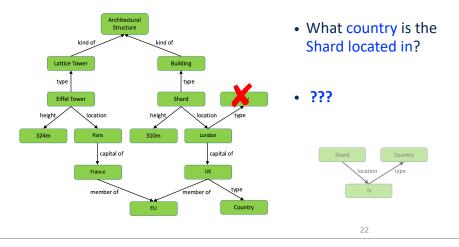
- What is the difference between a Building, a Lattice Tower and an Architectural Structure?
- Is the Eiffel Tower a Building; is it an Architectural Structure?
- Special meaning of, e.g., type and kind of edges?

• Semantics: the study of meaning

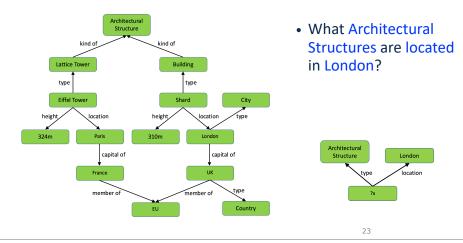

[Quillian, 1967]

(Precise) semantics needed in order to define what (correct) query answers should be

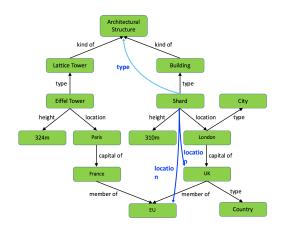
20



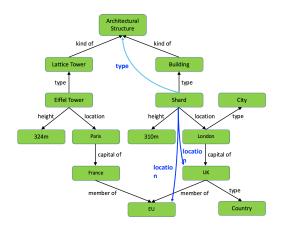
Slide 21 of 56



Slide 22 of 56



Slide 23 of 56



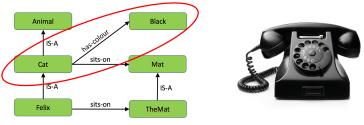
Slide 24 of 56

- Every Building located in London is also located in
 - UK
 - EU
 - England
 - Northern Hemisphere
 - ...
- Need to add a very
 large number of edges

Slide 25 of 56

A city that is the capital of a country is a (geographical) part of that country⁺

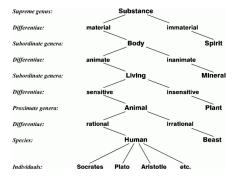
- A thing that is located in a city that is a (geographical) part of a country is also located in that country
- A thing that is located in a country that is a member of a supranational union is also located in that supranational union


⁺ Part-whole relationships are complicated! They are the subject of a whole field of study in logic and philosophy: mereology

26

• Semantics: the study of meaning

[Quillian, 1967]

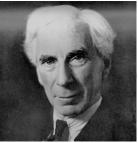

(Precise) semantics needed in order to define what (correct) query answers should be

7

"All men are mortal, all Greeks are men, therefore all Greeks are mortal" (syllogism)

28

Introduction and Overview (Lecture 1) Computational Logic Group // Hannes Strass Foundations of Knowledge Representation, WS 2022/23

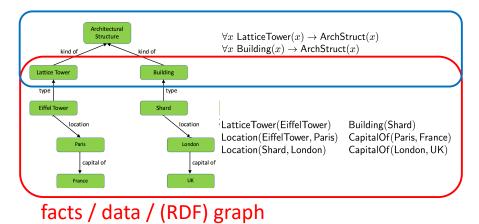


Modern KR languages are often based on logic

Typically (subsets of) First Order Predicate Calculus

Gottlob Frege

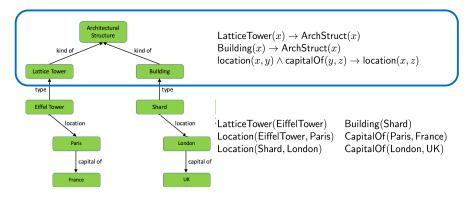
Charles Sanders Peirce


Bertrand Russell 29

Introduction and Overview (Lecture 1) Computational Logic Group // Hannes Strass Foundations of Knowledge Representation, WS 2022/23

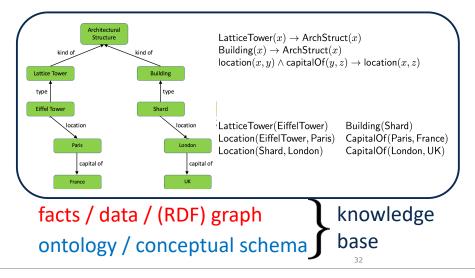
Slide 29 of 56

ontology / conceptual schema


30

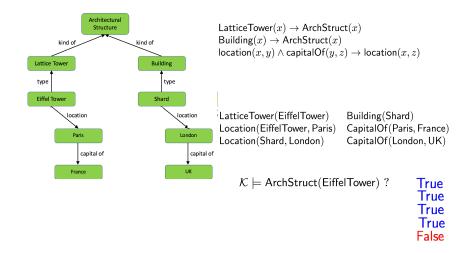
Introduction and Overview (Lecture 1) Computational Logic Group // Hannes Strass Foundations of Knowledge Representation, WS 2022/23

Slide 30 of 56



facts / data / (RDF) graph ontology / conceptual schema

31



Slide 32 of 56

Devise algorithms that compute query answers E.g., using natural deduction rules:

 $\begin{array}{c|c} & \forall x P(x) \rightarrow R(x) & \forall x \mathsf{Greek}(x) \rightarrow \mathsf{Mortal}(x) \\ \hline \forall x Q(x) \rightarrow R(x) & \forall x P(x) \rightarrow Q(x) & \forall x \mathsf{Man}(x) \rightarrow \mathsf{Mortal}(x) & \forall x \mathsf{Greek}(x) \rightarrow \mathsf{Man}(x) \\ \hline Q(a) & & \mathsf{ArchStruct}(\mathsf{EiffelTower}) \\ \hline \forall x P(x) \rightarrow Q(x) & P(a) & & \forall x \mathsf{Building}(x) \rightarrow \mathsf{ArchStruct}(x) & \mathsf{Building}(\mathsf{EiffelTower}) \\ \hline \mathsf{Can \ check/prove \ algorithms \ are \ sound \ and \\ \hline \mathsf{complete \ w.r.t. \ semantics} \end{array}$

Turing showed that some problems cannot be completely solved using standard computational model

- halting problem
- FOL entailment problem

Even if decidable, reasoning might be of inherently high complexity and so take an infeasibly long time

35

Slide 35 of 56

"Scruffy" approach:

Ad-hoc representation Efficient but (at least) incomplete algorithms

- ✓ Can use arbitrarily powerful representation
- ✓ Favourable scalability properties
- X Incomplete answers
 - X Degree of incompleteness unknown
 - X Incompleteness can easily become unsoundness

36

"Neat" approach:

Study KR languages to find appropriate balance of expressive power and computability Design algorithms that work well in typical cases Develop highly optimised implementations

- ✓ Precisely defined semantics
- ✓ Formal properties well understood
- ✓ Sound and complete reasoning
- X Limited representation power
- X Optimisations may not offer robust scalability

Family of logic-based KR languages Most are decidable subsets of FO logic Provide a range of different constructors

- Booleans (and, or, not)
- Restricted forms of quantification (exists, forall)
- Counting (atmost, atleast)
- ...

Decidability/complexity and (efficient) algorithms known for many combinations of constructors Highly optimised implementations for various "sweet spot" languages

38

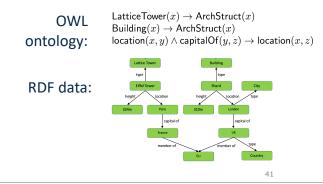
Slide 38 of 56

X -	Note: the information here is (Base description logic: Attri	ning in Description Logics always) Incomplete and <u>updated</u> often sutive <i>L</i> anguage with <i>C</i> omplements	-8-	
Concept constructors:	$\mathcal{ALC} ::= \perp \mid A \mid \neg C$	C A D C V D BR.C VR.C	(trans) (reg)	
$ \begin{array}{l} & \mathcal{F} - \mbox{ functionality}^2: (\leq 1 \ R) \\ & & \\ & & \\ & \mathcal{N} - \mbox{ (unqualified) number restrictions: } (\geq n \ R.C) \\ & & \\$), (≤n R.C)	 ✓ <i>I</i> role inverses: <i>R</i>⁻ ∩ role intersection³: <i>R</i>∩S ∪ role union: <i>R</i>∪S □ role complement: not to the complement: 		
$\begin{array}{l} \square \ \mu \ - \ \text{least fixpoint operator: } \mu X.C \\ \hline R \subseteq S \ - \ \text{role-value-maps} \\ \hline f = g \ - \ \text{agreement of functional role chains} \end{array}$	("same-as")	 o - role chain (composition): RoS * - reflexive-transitive closure⁴: R* id - concept identity: id(C) rented : complex roles⁵ in number restrictions⁶ 		
TBox is internalized in extensions of ALCIO, [54, p.3] [©] Empty TBox Acyclic TBox (A≡C, A is a concept name; na [©] General TBox (C⊆D for arbitrary concepts 0	o cycles)	Role axioms (RBox): ^S J ⁻ Role transitivity: Trans(R) ^S J ^L Role hierarchy: R ⊆ S ^R L ⁻ Complex role inclusions: RoS ⊆ R, RoS ⊆ S ^S J ⁻ complex role inclusions: RoS ⊆ R, RoS ⊆ S	OWL-Lite OWL-DL OWL 1.1	
Reset You hav	e selected the Description Lo	gic: SHOLN		

Complexity of reasoning problems ²						
Reasoning problem	Complexity ⁸	Comments and references				
Concept satisfiability	NExpTime-complete	 <u>Iacadess of even <i>ALCOVID</i> is proved in [25, Corollary 4.13]. In that pages, the result is formulated for <i>ALCOVID</i>, but only number restrictions of the form (<i>SLR</i>) are used in the proof.</u> A different proof of the NExpTime-hardness for <i>ALCOVID</i> is given in [54] (even with 1 nominal, and role inverses not used in number restrictions). <u>Upper Loand for <i>SJDOV</i></u> is provide in [25, Corollary 6.31] with numbers coded in unary (for binary coding, the upper bound remains an open problem for all logics in between <i>ALCOVID</i> and <i>JDOV</i>[20, <u>Important</u>: In number restrictions, only <i>single</i> relies (i.e. which are neither transitive nor have a transitive subroles) are allowed; otherwise we gain undecidability even in <i>JDOV</i>[5 sec [6]. Remark: result [42] it was between <i>MLCOVID</i> and <i>xploVID</i>. 				
ABox consistency	NExpTime-complete	By reduction to concept satisfiability problem in presence of nominals shown in [69, Theorem 3.7].				

List of reasoners

Download									
		DistEL	Wright State University	Download	Core publication	HermiT	University of Oxford	Download	Core publication
Download	I Core publication	DRAOn	University of Paris 8, IUT of Montreuil	Download	Core publication	jcel	Technische Universität Dresden	Download	Core
Download	i Core publication	DReW	Vienna University of Technology	Download	Core	JFact	The University of Manchester	Download	Core
Download	Core publication	ELepHant	Not given	Download	Core	Konclude	University of Ulm, derivo	Download	Core
Download	Core publication	ELK	University of Ulm,	Download	publication	LIFR	GmbH Centre for Research and	Download	publication
Download	Core publication	ELOG	Germany	Download	publication		Technology Helias (CERTH)		publication
Download	i Core				publication	Mastro	Sapienza University of Rome	Download	Core publication
Download	publication I Core	FaCT++	The University of Manchester	Download	Core publication	MORe	University of Oxford	Download	Core
	publication	fuzzyDL.	ISTI – CNR	Download	Core publication	ontop	Free University of	Download	Core
	Download					publication fuzzyDL ISTI - CNR Download Core	publication fuzzyDL ISTI - CNR Download Core	publication fuzzyDL ISTI - CNR Download Core	publication tuzzyOL ISTI-CNR Download Core publication ontop Free University of Download



Standardised KR language

- RDF provides a graphical data model
- OWL provides a DL-based ontology language

Introduction and Overview (Lecture 1) Computational Logic Group // Hannes Strass Foundations of Knowledge Representation, WS 2022/23

Standardised KR language

- RDF provides a graphical data model
- OWL provides a DL-based ontology language
 Developed as part of W3C's Semantic
 Web project

"A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities" (!)

42

Introduction and Overview (Lecture 1) Computational Logic Group // Hannes Strass Foundations of Knowledge Representation, WS 2022/23

Slide 42 of 56

Standardised KR language

- RDF provides a graphical data model
- OWL provides a DL-based ontology language

Developed as part of W3C's Semantic Web project

Now **widely used** in science, healthcare and Industry Often referred to as "**semantic technology**"

43

Introduction and Overview (Lecture 1) Computational Logic Group // Hannes Strass Foundations of Knowledge Representation, WS 2022/23

Slide 43 of 56

Based on powerful but still decidable DL (SROIQ)

Three "profiles" based on tractable subsets

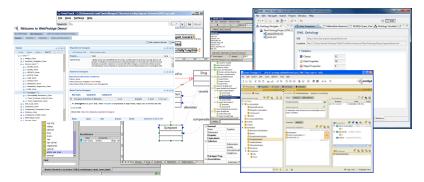
- QL: based on the DL-Lite description logic
- EL: based on the EL description logic
- RL: based on the DL fragment of Datalog (aka DLP)

Different algorithmic techniques

- (Hyper-) Tableau for full language
- Query rewriting for QL
- Consequence-based for EL
- Materialisation for RL

Highly optimised implementations

· Several of which have been developed here at Oxford



Tools:

45

Introduction and Overview (Lecture 1) Computational Logic Group // Hannes Strass Foundations of Knowledge Representation, WS 2022/23

Slide 45 of 56

Introduction and Overview (Lecture 1) Computational Logic Group // Hannes Strass Foundations of Knowledge Representation, WS 2022/23

Slide 46 of 56

Applications: Question Answering

Google what country is the shard located in?

Q

Introduction and Overview (Lecture 1) Computational Logic Group // Hannes Strass Foundations of Knowledge Representation, WS 2022/23

Slide 47 of 56

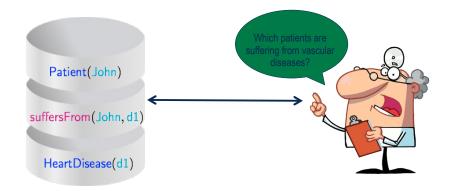
Google	what country is the shard located in?							
	All	Maps	News	Images	Shopping	More	Settings	Tools

About 6,400,000 results (0.81 seconds)

Introduction and Overview (Lecture 1) Computational Logic Group // Hannes Strass Foundations of Knowledge Representation, WS 2022/23

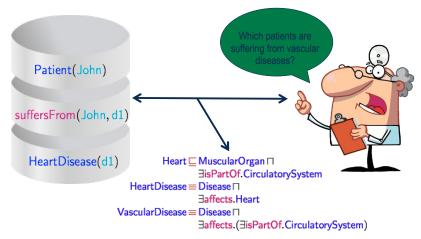
SNOMED is a huge medical ontology

More than 500,000 terms!


Why SNOMED? Let's ask Healthcare experts!

- "We need a clinical ontology that is universal, so any term I use is the same as every other colleague around the country"
- "SNOMED is the glue that binds the clinical community together and is the platform for all clinically relevant information"

Used to annotate patient records in more than 20 countries, including UK, USA, New Zealand, \ldots



Introduction and Overview (Lecture 1) Computational Logic Group // Hannes Strass Foundations of Knowledge Representation, WS 2022/23

Slide 50 of 56

51

Introduction and Overview (Lecture 1) Computational Logic Group // Hannes Strass Foundations of Knowledge Representation, WS 2022/23

Slide 51 of 56

The end?

Extensions

- · Arithmetic functions and aggregation
- · Reasoning about time
- Data streams

Algorithms

- Consequence-based reasoning
- · Hybrid rewriting/materialisation

Optimisation and implementation

- · Incremental reasoning
- Query planning
- HPC, including large-scale and distributed architectures

Tools and applications

Course Structure

Logics for KRR

- Propositional and First Order Logic
- Ontological modelling
- The role of reasoning

Horn logics and Datalog

- Expressivity and formal properties
- Reasoning

Description Logic

- Motivation and foundations
- Model theory
- Tableau reasoning
- Reasoning with data
- Lightweight description logics
- Ontology based data access

Course Structure

Description Logic -v- Datalog

- Expressiveness and decidability
- Combining DL and Datalog
- Other decidable fragments of FOL

Ontology Languages and Semantic Technologies

- RDF & OWL
- SROIQ
- Non-DL features
- Profiles
- Tools and Reasoners

Nonmonotonic Reasoning

- Limitations of FOL
- · Closed World Assumption and negation as failure
- Stable model semantics

Reading List

Primary Text

 An Introduction to Description Logic. Franz Baader, Ian Horrocks, Carsten Lutz, Uli Sattler

Supplementary Texts

- Handbook of Knowledge Representation. Frank van Harmelen, Vladimir Lifschitz and Bruce Porter (Eds). Foundations of Artificial Intelligence, 2008.
- Foundations of Semantic Web Technologies. Chapman & Hall/ CRC Textbooks in Computing. Pascal Hitzler, Markus Kroetsch, and Sebastian Rudolph, 2009.

