Exercise 7: Query Optimisation and First-Order Query Expressivity

Database Theory
2022-05-24
Maximilian Marx, Markus Krötzsch

Exercise 1

Exercise. For the following pairs of structures, find the maximal r such that $I \sim_{r} \mathcal{J}$:

(i)

(iii)

(ii)

(iv)

Exercise 1

Exercise. For the following pairs of structures, find the maximal r such that $I \sim_{r} \mathcal{J}$:

(ii)

(iv)

(i)

(iii)

Solution.

Exercise 1

Exercise. For the following pairs of structures, find the maximal r such that $I \sim_{r} \mathcal{J}$:

(i)

(iii)

(iv)

Solution.

(i) $r \leq 1$,

Exercise 1

Exercise. For the following pairs of structures, find the maximal r such that $I \sim_{r} \mathcal{J}$:

(i)

(iii)

(ii)

(iv)

Solution.

(i) $r \leq 1$,
(ii) $r \leq 2$,

Exercise 1

Exercise. For the following pairs of structures, find the maximal r such that $I \sim_{r} \mathcal{J}$:

(i)

(iii)

Solution.
 Solution.

(i) $r \leq 1$,
(ii) $r \leq 2$,
(iii) $r=0$, and

(ii)

(iv)

Exercise 1

Exercise. For the following pairs of structures, find the maximal r such that $I \sim_{r} \mathcal{J}$:

(i)

(iii)

Solution.

(i) $r \leq 1$,
(ii) $r \leq 2$,
(iii) $r=0$, and
(iv) $r \geq 0$.

(ii)

(iv)

Exercise 2

Exercise. A linear order is a relational structure with one binary relational symbol \leq that is interpreted as a reflexive, asymmetric, transitive and total relation over the domain. Up to renaming of domain elements there is exactly one linear order for every finite domain, which can be depicted as a chain of elements. We denote the linear order of size n by \mathcal{L}_{n}. For example:

$$
\mathcal{L}_{6}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \quad \text { and } \quad \mathcal{L}_{7}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \leq 7
$$

Exercise 2

Exercise. A linear order is a relational structure with one binary relational symbol \leq that is interpreted as a reflexive, asymmetric, transitive and total relation over the domain. Up to renaming of domain elements there is exactly one linear order for every finite domain, which can be depicted as a chain of elements. We denote the linear order of size n by \mathcal{L}_{n}. For example:

$$
\mathcal{L}_{6}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \quad \text { and } \quad \mathcal{L}_{7}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \leq 7
$$

1. For which r are $\mathcal{L}_{6} \sim_{r} \mathcal{L}_{7}$, i.e., for which $r \geq 0$ does the Duplicator win the r-round EF game on \mathcal{L}_{6} and \mathcal{L}_{7} ?

Exercise 2

Exercise. A linear order is a relational structure with one binary relational symbol \leq that is interpreted as a reflexive, asymmetric, transitive and total relation over the domain. Up to renaming of domain elements there is exactly one linear order for every finite domain, which can be depicted as a chain of elements. We denote the linear order of size n by \mathcal{L}_{n}. For example:

$$
\mathcal{L}_{6}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \quad \text { and } \quad \mathcal{L}_{7}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \leq 7
$$

1. For which r are $\mathcal{L}_{6} \sim_{r} \mathcal{L}_{7}$, i.e., for which $r \geq 0$ does the Duplicator win the r-round EF game on \mathcal{L}_{6} and \mathcal{L}_{7} ?
2. More generally, for which r are $\mathcal{L}_{n} \sim_{r} \mathcal{L}_{n+1}$?

Exercise 2

Exercise. A linear order is a relational structure with one binary relational symbol \leq that is interpreted as a reflexive, asymmetric, transitive and total relation over the domain. Up to renaming of domain elements there is exactly one linear order for every finite domain, which can be depicted as a chain of elements. We denote the linear order of size n by \mathcal{L}_{n}. For example:

$$
\mathcal{L}_{6}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \quad \text { and } \quad \mathcal{L}_{7}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \leq 7
$$

1. For which r are $\mathcal{L}_{6} \sim_{r} \mathcal{L}_{7}$, i.e., for which $r \geq 0$ does the Duplicator win the r-round EF game on \mathcal{L}_{6} and \mathcal{L}_{7} ?
2. More generally, for which r are $\mathcal{L}_{n} \sim_{r} \mathcal{L}_{n+1}$?

Theorem (11.10; Lecture 11, Slide 24)
The following are equivalent:

- $\mathcal{L}_{m} \sim_{r} \mathcal{L}_{n}$, and
- either (1) $m=n$, or (2) $m \geq 2^{r}-1$ and $n \geq 2^{r}-1$.

Exercise 2

Exercise. A linear order is a relational structure with one binary relational symbol \leq that is interpreted as a reflexive, asymmetric, transitive and total relation over the domain. Up to renaming of domain elements there is exactly one linear order for every finite domain, which can be depicted as a chain of elements. We denote the linear order of size n by \mathcal{L}_{n}. For example:

$$
\mathcal{L}_{6}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \quad \text { and } \quad \mathcal{L}_{7}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \leq 7
$$

1. For which r are $\mathcal{L}_{6} \sim_{r} \mathcal{L}_{7}$, i.e., for which $r \geq 0$ does the Duplicator win the r-round EF game on \mathcal{L}_{6} and \mathcal{L}_{7} ?
2. More generally, for which r are $\mathcal{L}_{n} \sim_{r} \mathcal{L}_{n+1}$?

Theorem (11.10; Lecture 11, Slide 24)
The following are equivalent:

- $\mathcal{L}_{m} \sim_{r} \mathcal{L}_{n}$, and
- either (1) $m=n$, or (2) $m \geq 2^{r}-1$ and $n \geq 2^{r}-1$.

Solution.

Exercise 2

Exercise. A linear order is a relational structure with one binary relational symbol \leq that is interpreted as a reflexive, asymmetric, transitive and total relation over the domain. Up to renaming of domain elements there is exactly one linear order for every finite domain, which can be depicted as a chain of elements. We denote the linear order of size n by \mathcal{L}_{n}. For example:

$$
\mathcal{L}_{6}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \quad \text { and } \quad \mathcal{L}_{7}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \leq 7
$$

1. For which r are $\mathcal{L}_{6} \sim_{r} \mathcal{L}_{7}$, i.e., for which $r \geq 0$ does the Duplicator win the r-round EF game on \mathcal{L}_{6} and \mathcal{L}_{7} ?
2. More generally, for which r are $\mathcal{L}_{n} \sim_{r} \mathcal{L}_{n+1}$?

Theorem (11.10; Lecture 11, Slide 24)
The following are equivalent:

- $\mathcal{L}_{m} \sim_{r} \mathcal{L}_{n}$, and
- either (1) $m=n$, or (2) $m \geq 2^{r}-1$ and $n \geq 2^{r}-1$.

Solution.

1. $r \leq 2$.

Exercise 2

Exercise. A linear order is a relational structure with one binary relational symbol \leq that is interpreted as a reflexive, asymmetric, transitive and total relation over the domain. Up to renaming of domain elements there is exactly one linear order for every finite domain, which can be depicted as a chain of elements. We denote the linear order of size n by \mathcal{L}_{n}. For example:

$$
\mathcal{L}_{6}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \quad \text { and } \quad \mathcal{L}_{7}: 1 \leq 2 \leq 3 \leq 4 \leq 5 \leq 6 \leq 7
$$

1. For which r are $\mathcal{L}_{6} \sim_{r} \mathcal{L}_{7}$, i.e., for which $r \geq 0$ does the Duplicator win the r-round EF game on \mathcal{L}_{6} and \mathcal{L}_{7} ?
2. More generally, for which r are $\mathcal{L}_{n} \sim_{r} \mathcal{L}_{n+1}$?

Theorem (11.10; Lecture 11, Slide 24)
The following are equivalent:

- $\mathcal{L}_{m} \sim_{r} \mathcal{L}_{n}$, and
- either (1) $m=n$, or (2) $m \geq 2^{r}-1$ and $n \geq 2^{r}-1$.

Solution.

1. $r \leq 2$.
2. $n \geq 2^{r}-1 \Longrightarrow r \leq\left\lfloor\log _{2}(n+1)\right\rfloor$.

Exercise 3

Exercise. A graph is planar if it can be drawn on the plane without intersections of edges. For example, the following graph A is planar, while graph B is not:

Figure: A

Figure: B

1. Can the graphs A and B be distinguished by a FO query?
2. Show that planarity is not FO-definable by using locality.

Exercise 3

Exercise. A graph is planar if it can be drawn on the plane without intersections of edges. For example, the following graph A is planar, while graph B is not:

Figure: A

Figure: B

1. Can the graphs A and B be distinguished by a FO query?
2. Show that planarity is not FO-definable by using locality.

Solution.

Exercise 3

Exercise. A graph is planar if it can be drawn on the plane without intersections of edges. For example, the following graph A is planar, while graph B is not:

Figure: A

Figure: B

1. Can the graphs A and B be distinguished by a FO query?
2. Show that planarity is not FO-definable by using locality.

Solution.

1. This query matches B but not A :

$$
\exists x, y, z, w, v . \mathrm{E}(x, y) \wedge \mathrm{E}(y, z) \wedge \mathrm{E}(z, w) \wedge \mathrm{E}(w, x) \wedge \mathrm{E}(x, v) \wedge \mathrm{E}(y, v) \wedge \mathrm{E}(z, v) \wedge \mathrm{E}(w, v) \wedge \mathrm{E}(x, z) \wedge \mathrm{E}(y, w)
$$

Exercise 3

Exercise. A graph is planar if it can be drawn on the plane without intersections of edges. For example, the following graph A is planar, while graph B is not:

Figure: A

Figure: B

1. Can the graphs A and B be distinguished by a FO query?
2. Show that planarity is not FO-definable by using locality.

Solution.

1. This query matches B but not A :

$$
\exists x, y, z, w, v . \mathrm{E}(x, y) \wedge \mathrm{E}(y, z) \wedge \mathrm{E}(z, w) \wedge \mathrm{E}(w, x) \wedge \mathrm{E}(x, v) \wedge \mathrm{E}(y, v) \wedge \mathrm{E}(z, v) \wedge \mathrm{E}(w, v) \wedge \mathrm{E}(x, z) \wedge \mathrm{E}(y, w)
$$

2. For φ with quantifier rank r, consider counterexamples of size $d=3^{r}$:

