Complexity Theory Exercise 7: Diagonalisation and Alternation

Exercise 7.1. Show that Cook-reducibility is transitive. In other words, show that if **A** is Cook-reducible to **B** and **B** is Cook-reducible to **C**, then **A** is Cook-reducible to **C**.

Exercise 7.2. Show that there exists an oracle C such that $NP^{C} \neq CONP^{C}$.

Hint:

What kind of Turing machines exist for languages in CONP? Use the answer to adapt the proof of the Baker-Gill-Solovay Theorem for CONP instead of P.

Exercise 7.3. Describe a polynomial-time ATM solving EXACT INDEPENDENT SET:

Input:Given a graph G and some number k.Question:Does there exists a maximal independent set in G of size exactly k?

Exercise 7.4. Consider the Japanese game *go-moku* that is played by two players X and O on a 19x19 board. Players alternately place markers on the board, and the first one to have five of its markers in a row, column, or diagonal wins.

Consider the generalised version of go-moku on an $n \times n$ board. Say that a *position* of go-moku is a placement of markers on such a board as it could occur during the game. Define

GM = { $\langle B \rangle$ | *B* is a position of go-moku where X has a winning strategy}.

Describe a polynomial-time ATM solving **GM**.

Exercise 7.5. Show that AEXPTIME = EXPSPACE.

* **Exercise 7.6.** Show that $\Sigma_2 QBF$ is complete for $\Sigma_2 P$. Generalise your argument to show that $\Sigma_i QBF$ is complete for $\Sigma_i P$ for all $i \ge 1$.

Exercise 7.7. Show that if P = NP, then P = PH.