
SEMANTIC COMPUTING

Lecture 3: Natural Language Processing and Language
Modeling

Dagmar Gromann

International Center For Computational Logic

TU Dresden, 2 November 2018

https://iccl.inf.tu-dresden.de/web/Semantic_Computing_(SS2018)
https://iccl.inf.tu-dresden.de/web/Semantic_Computing_(SS2018)
https://iccl.inf.tu-dresden.de/web/Dagmar_Gromann

Overview

• NLP pipeline continued

• NLP applications

• Language Modeling

Dagmar Gromann, 2 November 2018 Semantic Computing 2

NLP pipeline continued

Dagmar Gromann, 2 November 2018 Semantic Computing 3

Basic NLP pipeline - Syntactic Analysis
Input: Apple took its annual spring event to Chicago this year.

Examples generated with the Stanford Core NLP toolset (http://corenlp.run/).

Dagmar Gromann, 2 November 2018 Semantic Computing 4

http://corenlp.run/

Basic NLP pipeline - Semantic Analysis
Input: Apple took its annual spring event to Chicago this year.

Examples generated with the Stanford Core NLP toolset (http://corenlp.run/).

Dagmar Gromann, 2 November 2018 Semantic Computing 5

http://corenlp.run/

Named Entity Recognition
Subtask of information extraction that locates and classifies named
entities, i.e., a real-world object that can be denoted with a proper
name - person, organization, location, products, etc.
from nltk.tag.perceptron import PerceptronTagger
tagger = PerceptronTagger()

sent = "Apple took its annual spring event to Chicago this year."
tags = tagger.tag(nltk.word_tokenize(sent))
sent = nltk.ne_chunk(tags, binary=True) #
print(sent)

(S
(NE Apple/NNP)
took/VBD
its/PRP$
annual/JJ
spring/NN

event/NN
to/TO
(NE Chicago/NNP)
this/DT
year/NN
./.)

Dagmar Gromann, 2 November 2018 Semantic Computing 6

Relation Extraction from Text
Also a subtask of information extraction with two main processes:

1 extraction of entities (NER)
– People, organizations, locations, times, dates, prices,

etc.
2 extraction of relations between those entities

– Located in, employed by, part of, etc.

How?

• lexico-syntactic patterns (X is_a Y: “A dog is_a mammal.”)

• patterns and rules (PERSON [be]? (born) PREP PLACE,
“Trump was born in New York City.")

• Machine learning (supervised, unsupervision,...)

• Deep learning (all potential architectures)

Dagmar Gromann, 2 November 2018 Semantic Computing 7

Code Example Relex
Running Stanford CoreNLP from the command line 1.
java -cp "*" -Xmx2g edu.stanford.nlp.pipeline.StanfordCoreNLP
-annotators tokenize ,ssplit,pos,lemma,ner,parse,relation -file input.txt
Java 9: java --add-modules java.se.ee
Alternative: java -mx2g -cp "*" edu.stanford.nlp.naturalli.OpenIE

<MachineReading >
<entities >
<entity id="EntityMention -1">LOCATION

<probabilities/>

</entity>
<entity id="EntityMention -2">O

<probabilities/>

</entity>
<entity id="EntityMention -3">O

<probabilities/>

</entity>
</entities >
<relations/>

</MachineReading >
Alternative: TU Dresden is located in Germany

1https://stanfordnlp.github.io/CoreNLP/cmdline.html

Dagmar Gromann, 2 November 2018 Semantic Computing 8

https://stanfordnlp.github.io/CoreNLP/cmdline.html

Coreference Resolution

Coreference resolution is the task of identifying all expressions
(mentions) in a text that refer to the same real-world entity, such as

“She has not told her friend about that story because it is too
embarrassing for her.”

Dagmar Gromann, 2 November 2018 Semantic Computing 9

Code Example Coref
Running StanfordCoreNLP from the command line 1.
“She has not told her friend about that story because it is too
embarrassing for her.”
java -cp "*" -Xmx3g edu.stanford.nlp.pipeline.StanfordCoreNLP
-annotators tokenize ,ssplit,pos,lemma,ner,parse,dcoref -file input.txt
Java 9: java --add-modules java.se.ee

<coreference >
<coreference >
<mention representative="true">
<text>She</text>
...

</mention>
<mention>
<text>her</text>
....

</mention>
</coreference >

<coreference >
<mention representative="true">

...
<text>that story</text>

</mention>
<mention>
<text>it</text>
....

</mention>
</coreference >

</coreference >

1https://stanfordnlp.github.io/CoreNLP/cmdline.html
Dagmar Gromann, 2 November 2018 Semantic Computing 10

https://stanfordnlp.github.io/CoreNLP/cmdline.html

Sentiment Analysis

Computational study of opinions, sentiments, evaluations, attitudes,
affects, emotions, etc. found in text. Also called opinion mining.

• Polarity detection: positive, negative, neutral or on a scale of 1
to 5 how positive, negative or neutral

• Valence detection: valence is the "goodness" or "badness" of
an emotion, which means it takes sentiment intensity into
account (e.g. 0.83 negative on a scale from 0 to 1)

• Objectivity: how objective or subjective is a statement?

• Emotion classification: anger, fear, sadness, joy, etc.

• Stance classification: for or against a position

Dagmar Gromann, 2 November 2018 Semantic Computing 11

Sentiment Analysis - Example

Massive business value for all sentiment analysis applications -
complaint management, product improvement, word-of-mouth
marketing analysis, brand awareness, etc.
Movie reviews

• “Get off the screen.” ,

• “I watched the screening tonight and I really loved it.” -

Product rating

• �����“The echo dot turned Alexa into a douchebag
salesman.”

• �����“A fun gadget, but the jury is still out on how useful
it actually is."

• �����“The Smartest of Them All!!!”
Dagmar Gromann, 2 November 2018 Semantic Computing 12

Sentiment Analysis on Twtitter

Twitter analysis
Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the
stock market. Journal of computational science, 2(1), 1-8.

Measurement of the collective
mood state based on
large-scale Twitter feeds
analysis and its correlation to
the value of the Dow Jones
Industrial Average (DJIA) over
time.
Comparison: presidential
election and Thanksgiving (as
baseline)

Dagmar Gromann, 2 November 2018 Semantic Computing 13

SenticNet: Concept-Level Sentiment Analysis
Cambria, E., Poria, S., Hazarika, D., & Kwok, K. (2018). SenticNet 5: discovering conceptual primitives for
sentiment analysis by means of context embeddings. In AAAI.

Dagmar Gromann, 2 November 2018 Semantic Computing 14

Basic Code Example using NLTK Vader
VADER = Valence Aware Dictionary and sEntiment Reasoner

from nltk.sentiment.vader import SentimentIntensityAnalyzer

sia = SentimentIntensityAnalyzer()

sentences = ["Get off the screen.", "I watched the screening
tonight and I really loved it.", "The Smartest of Them All",
"Very bad movie!"]

for sentence in sentences:
print(sentence)
ss = sia.polarity_scores(sentence)
for k in sorted(ss):

print(’{0}: {1}, ’.format(k, ss[k], end=’’))

Get off the screen.
compound: 0.0, neg: 0.0, neu: 1.0, pos: 0.0
I watched the screening tonight and I really loved it.
compound: 0.6361, neg: 0.0, neu: 0.625, pos: 0.375
The Smartest of Them All
compound: 0.6124, neg: 0.0, neu: 0.5, pos: 0.5
Very bad movie!

compound: -0.623, neg: 0.671, neu: 0.329, pos: 0.0

Dagmar Gromann, 2 November 2018 Semantic Computing 15

NLP tasks

Each of the presented processing steps in the NLP pipeline is a
whole research field in its own right with many different approaches
to tackle its core problems. Some more:

• Word Sense Disambiguation: identify the correct sense of a
word in a context, e.g. Tutorial 1 Exercise on WordNet

• Semantic Role Labeling (shallow parsing): assigning labels to
elements of a sentence that indicate their role, e.g. agent,
goal, means. Demo: Curator

• Spelling correction: automatically correct spelling mistakes

• Many more...

Dagmar Gromann, 2 November 2018 Semantic Computing 16

https://cogcomp.org/page/demo_view/SRL

Language Modeling

Dagmar Gromann, 2 November 2018 Semantic Computing 17

Prediction

Humans are incredibly good at predicting:

• Once upon a ?

• And the haters gonna hate, Baby, I’m just gonna?

• Don’t stop me know, I’m having ?

• Shall I compare thee to ?

Dagmar Gromann, 2 November 2018 Semantic Computing 18

Prediction
Humans are incredibly good at predicting:

• Once upon a time

• And the haters gonna hate, Baby, I’m just gonna shake

• Don’t stop me know, I’m having such a good time

• Shall I compare thee to a summer’s day

What comes before “computing”?
Grid computing 207011
parallel computing 101732
performance computing 229510
etc.
We can predict the next word given its history using language
models. Source: http://norvig.com/ngrams/count_2w.txt

Dagmar Gromann, 2 November 2018 Semantic Computing 19

http://norvig.com/ngrams/count_2w.txt

Language Modeling
Specify a language model that learns from examples rather than
specifying the rules of a language using formal grammar.

Language Model
Models that assign probabilities to sequences of words are called
language models: P(w1, w2, w3, ..., wn)

Useful in real-world applications, for example:
• machine translation

P(I didn′t do anything) > P(I didn′t do nothing)
• speech recognition

P(I ramble) > P(I Rambo)
• spelling correction

P(Please pay before exiting) > P(Please pai before existing)
Dagmar Gromann, 2 November 2018 Semantic Computing 20

Traditional Language Models

Probability is usually conditioned on a window of n previous words:

• We can calculate the probability of a sentence by calculating
the joint probability of each element in the sentence:
P(S) = P(w1, w2, ...wn)

• Chain rule: Any member of a joint distribution of random
variables can be calculated using conditional probabilities:
P(S) = P(w1), P(w2|w1)P(w3|w1, w2)...P(wn|w1, ..., wn−1)

• Markov assumption: only the last n words are considered in
the history and can be utilized to approximate the probability

P(w1, ..., wm) ≈
m∏

i=1
P(wi|wi − (n − 1), ..., wi)

Dagmar Gromann, 2 November 2018 Semantic Computing 21

N-Gram Models

The simplest type of language model is the N-gram model. The N
specifies the number of swords in a sequence: 2-gram (bigrams),
3-gram (trigrams), etc.

• to estimate the probabilities for unigrams (probabilities only
depend on the probability of the word): p(w1) = count(w1)∑

w count(w)

• to estimate the probabilities for bigrams (conditioning on one
previous word): p(w2|w1) = count(w1,w2)

count(w1)

• to estimate the probabilities for trigrams (conditioning on two
previous words): p(w3|w1, w2) = count(w1,w2,w3)

count(w1,w2)

This is why those models are usually today referred to as
count-based models.

Dagmar Gromann, 2 November 2018 Semantic Computing 22

Example

<s>I live in Dresden</s>
<s>Dresden is a city</s>
<s>I do not like pigeons in the city</s>

• Unigram? P(live) = 1
22 = 0.04

• Bigram? P(Dresden| < s >) = 1
3 = 0.33

• Trigram? P(Dresden|live in) = 1
2 = 0.5

Dagmar Gromann, 2 November 2018 Semantic Computing 23

In practice

• Trigrams are more common than bigrams

• Log probabilities are used to avoid underflow (the more
probabilities we multiply, the smaller the product)

• Model based on frequency counts only do not perform well on
unseen items. Instead:

– back-off (e.g. if 4-gram not found, use 3-gram, etc.)
– Laplace smoothing (add-one: p(w2|w1) = count(w1,w2)+1

count(w1)+Vocab)

• Computation: Recent example of a Kneser-Ney language
model training was 140 GB Ram in 2.8 days for one model of
128 billion tokens

Dagmar Gromann, 2 November 2018 Semantic Computing 24

Bigram Model in Python

from nltk.corpus import reuters
from nltk import bigrams
from collections import Counter, defaultdict

first_sentence = reuters.sents()[0]
print(first_sentence)
#Output: [’ASIAN’, ’EXPORTERS’, ’FEAR’, ’DAMAGE’, ’FROM’, ’U’, ’.’, ’S’, ...]
print(list(bigrams(first_sentence , pad_left=True, pad_right=True)))
#Output: [(None, ’ASIAN’), (’ASIAN’, ’EXPORTERS’), (’EXPORTERS’, ’FEAR’),]

model = defaultdict(lambda: defaultdict(lambda : 0))

#Generate a dictionary of counts
for sentence in reuters.sents():

for w1, w2 in bigrams(sentence , pad_right=True, pad_left=True):
model[w1][w2] += 1

print(model["the"]["economists"])
Output: "economist" follows "the" 8 times
print("Example why padding is useful", model[None]["The"])
Output: "The" starts a sentence 8839 times

Dagmar Gromann, 2 November 2018 Semantic Computing 25

Bigram Model in Python - continued

#Transform counts into probabilities
for w1 in model:

total_count = float(sum(model[w1].values()))
for w2 in model[w1]:

model[w1][w2] /= total_count

print(model["the"]["economists"]) #0.00013733669808243634
print(model[None]["The"]) #0.16154324146501936

Dagmar Gromann, 2 November 2018 Semantic Computing 26

Evaluation
Main two evaluation methods for most computational linguistic
models:

• Extrinsic evaluation: measure how much a specific
application improves by using your model as compared to the
standard baseline (time-consuming!)

• Intrinsic evaluation: measure the quality of the model
independent of any application

For the intrinsic evaluation, the corpus is split into a:

• Training set: data used to train the model

• Test set: data used to test the trained model using a specific
accuracy measure

The model that more accurately predicts the test set is the better
model.
Dagmar Gromann, 2 November 2018 Semantic Computing 27

Review of Lecture 3

• What is Named Entity Recognition?

• Which two processes are needed for relation extraction?

• What is sentiment analysis?

• What is the difference between emotion classification and
polarity detection?

• What is a language model?

• How can the chain rule and the Markov assumption be used
in a language model? What are they?

• What happens when we want to compute a bigram that a
model has not seen before?

• How can a language model be evaluated?

Dagmar Gromann, 2 November 2018 Semantic Computing 28

