

SEMANTIC COMPUTING

Lecture 3: Natural Language Processing and Language Modeling

Dagmar Gromann

International Center For Computational Logic

TU Dresden, 2 November 2018

Overview

- NLP pipeline continued
- NLP applications
- Language Modeling

NLP pipeline continued

Basic NLP pipeline - Syntactic Analysis

Input: Apple took its annual spring event to Chicago this year.

Tokenization Apple / took / its / annual / spring / event / to / Chicago / this / year
Part-of-Speech Tagging NNP VBD PRPS II NN TO NNP DT NN I Apple took its annual spring event to Chicago this year .
Lemmatization Apple take [ts] annual spring event to Chicago this year index Apple took its annual spring event to Chicago this year index
Dependency Parsing punct amod nmod.tmod nmod.tmod nmod.tmod nmod.tmod nmod.tmod nmod.tmod nmod.tmod nmod.tmod nmod.tmod nmod.tmod nmod.tmod Apple took its annual spring event to Chicago this year .

Examples generated with the Stanford Core NLP toolset (http://corenlp.run/).

Basic NLP pipeline - Semantic Analysis

Input: Apple took its annual spring event to Chicago this year.

Named Entity Recognition

Subtask of information extraction that locates and classifies named entities, i.e., a real-world object that can be denoted with a proper name - person, organization, location, products, etc.

```
from nltk.tag.perceptron import PerceptronTagger
tagger = PerceptronTagger()
sent = "Apple took its annual spring event to Chicago this year."
tags = tagger.tag(nltk.word_tokenize(sent))
sent = nltk.ne_chunk(tags, binary=True) #
print(sent)
```

(S (NE Apple/NNP) took/VBD its/PRP\$ annual/JJ spring/NN event/NN to/TO (NE Chicago/NNP) this/DT year/NN ./.)

Dagmar Gromann, 2 November 2018

Relation Extraction from Text

Also a subtask of information extraction with two main processes:

- extraction of entities (NER)
 - People, organizations, locations, times, dates, prices, etc.

extraction of relations between those entities

- Located in, employed by, part of, etc.

How?

- lexico-syntactic patterns (X is_a Y: "A dog is_a mammal.")
- patterns and rules (PERSON [be]? (born) PREP PLACE, "Trump was born in New York City.")
- Machine learning (supervised, unsupervision,...)
- Deep learning (all potential architectures)

Code Example Relex

Running Stanford CoreNLP from the command line ¹.

```
java -cp "*" -Xmx2g edu.stanford.nlp.pipeline.StanfordCoreNLP
-annotators tokenize,ssplit,pos,lemma,ner,parse,relation -file input.txt
Java 9: java --add-modules java.se.ee
Alternative: java -mx2g -cp "*" edu.stanford.nlp.naturalli.OpenIE
```

```
<MachineReading>
  <entities>
    <entity id="EntityMention-1">LOCATION
      <span start="0" end="1"/>
      <probabilities/>
    </entity>
    <entity id="EntityMention-2">0
      <span start="1" end="2"/>
      <probabilities/>
    </entity>
    <entity id="EntityMention-3">0
      <span start="5" end="6"/>
      <probabilities/>
    </entity>
  </entities>
  <relations/>
</MachineReading>
Alternative: TU Dresden
                        is located in
                                                 Germanv
Dagmar Gromann, 2 November 2018 Semantic Computing
```

¹https://stanfordnlp.github.io/CoreNLP/cmdline.html

Coreference Resolution

Coreference resolution is the task of identifying all expressions (mentions) in a text that refer to the same real-world entity, such as

"She has not told her friend about that story because it is too embarrassing for her."

Code Example Coref

Running StanfordCoreNLP from the command line ¹. "She has not told her friend about that story because it is too embarrassing for her."

java -cp "*" -Xmx3g edu.stanford.nlp.pipeline.StanfordCoreNLP -annotators tokenize,ssplit,pos,lemma,ner,parse,dcoref -file input.txt Java 9: java --add-modules java.se.ee

```
<coreference>
<coreference>
<mention representative="true">
<text>She</text>
....
</mention>
<mention>
<text>her</text>
....
</mention>
</coreference>
```

```
<coreference>
  <mention representative="true">
    ...
    <text>that story</text>
    </mention>
    <text>it</text>
    ....
    ./mention>
    </coreference>
</coreference>
```

¹https://stanfordnlp.github.io/CoreNLP/cmdline.html

Semantic Computing

Sentiment Analysis

Computational study of opinions, sentiments, evaluations, attitudes, affects, emotions, etc. found in text. Also called opinion mining.

- Polarity detection: positive, negative, neutral or on a scale of 1 to 5 how positive, negative or neutral
- Valence detection: valence is the "goodness" or "badness" of an emotion, which means it takes sentiment intensity into account (e.g. 0.83 negative on a scale from 0 to 1)
- Objectivity: how objective or subjective is a statement?
- Emotion classification: anger, fear, sadness, joy, etc.
- Stance classification: for or against a position

Sentiment Analysis - Example

Massive business value for all sentiment analysis applications complaint management, product improvement, word-of-mouth marketing analysis, brand awareness, etc.

Movie reviews

- "Get off the screen." $\mathbf{\nabla}$
- "I watched the screening tonight and I really loved it." \mathcal{O}

Product rating

- ★☆☆☆"The echo dot turned Alexa into a douchebag salesman."
- ★★★☆☆"A fun gadget, but the jury is still out on how useful it actually is."
- ★★★★* "The Smartest of Them All!!!"

Sentiment Analysis on Twtitter

Twitter analysis

Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of computational science, 2(1), 1-8.

Measurement of the collective mood state based on large-scale Twitter feeds analysis and its correlation to the value of the Dow Jones Industrial Average (DJIA) over time.

Comparison: presidential election and Thanksgiving (as baseline)

SenticNet: Concept-Level Sentiment Analysis

Cambria, E., Poria, S., Hazarika, D., & Kwok, K. (2018). SenticNet 5: discovering conceptual primitives for sentiment analysis by means of context embeddings. In AAAI.

Basic Code Example using NLTK Vader

VADER = Valence Aware Dictionary and sEntiment Reasoner

Get off the screen. compound: 0.0, neg: 0.0, neu: 1.0, pos: 0.0 I watched the screening tonight and I really loved it. compound: 0.6361, neg: 0.0, neu: 0.625, pos: 0.375 The Smartest of Them All compound: 0.6124, neg: 0.0, neu: 0.5, pos: 0.5 Very bad movie! compound: -0.623, neg: 0.671, neu: 0.329, pos: 0.0

NLP tasks

Each of the presented processing steps in the NLP pipeline is a whole research field in its own right with many different approaches to tackle its core problems. Some more:

- Word Sense Disambiguation: identify the correct sense of a word in a context, e.g. Tutorial 1 Exercise on WordNet
- Semantic Role Labeling (shallow parsing): assigning labels to elements of a sentence that indicate their role, e.g. agent, goal, means. Demo: Curator
- Spelling correction: automatically correct spelling mistakes
- Many more...

Language Modeling

Prediction

Humans are incredibly good at predicting:

- Once upon a ?
- And the haters gonna hate, Baby, I'm just gonna?
- Don't stop me know, I'm having ?
- Shall I compare thee to ?

Prediction

Humans are incredibly good at predicting:

- Once upon a time
- And the haters gonna hate, Baby, I'm just gonna shake
- Don't stop me know, I'm having such a good time
- Shall I compare thee to a summer's day

What comes before "computing"? Grid computing 207011 parallel computing 101732 performance computing 229510 etc.

We can predict the next word given its history using language

models. Source: http://norvig.com/ngrams/count_2w.txt

Language Modeling

Specify a language model that learns from examples rather than specifying the rules of a language using formal grammar.

Language Model

Models that assign probabilities to sequences of words are called language models: $P(w_1, w_2, w_3, ..., w_n)$

Useful in real-world applications, for example:

- machine translation
 P(I didn't do anything) > P(I didn't do nothing)
- speech recognition *P*(*I ramble*) > *P*(*I Rambo*)
- spelling correction *P*(*Please pay before exiting*) > *P*(*Please pai before existing*)

Traditional Language Models

Probability is usually conditioned on a window of n previous words:

- We can calculate the probability of a sentence by calculating the joint probability of each element in the sentence:
 P(S) = P(w₁, w₂, ...w_n)
- Chain rule: Any member of a joint distribution of random variables can be calculated using conditional probabilities:
 P(S) = P(w₁), P(w₂|w₁)P(w₃|w₁, w₂)...P(w_n|w₁, ..., w_{n-1})
- Markov assumption: only the last *n* words are considered in the history and can be utilized to approximate the probability $P(w_1, ..., w_m) \approx \prod_{i=1}^m P(w_i|w_i (n-1), ..., w_i)$

N-Gram Models

The simplest type of language model is the N-gram model. The N specifies the number of swords in a sequence: 2-gram (bigrams), 3-gram (trigrams), etc.

- to estimate the probabilities for **unigrams** (probabilities only depend on the probability of the word): $p(w_1) = \frac{count(w_1)}{\sum_{w} count(w)}$
- to estimate the probabilities for **bigrams** (conditioning on one previous word): p(w₂|w₁) = count(w₁,w₂)/count(w₁)
- to estimate the probabilities for trigrams (conditioning on two previous words): p(w₃|w₁, w₂) = count(w₁, w₂)/count(w₁, w₂)

This is why those models are usually today referred to as **count-based models**.

Example

<s>I live in Dresden</s> <s>Dresden is a city</s> <s>I do not like pigeons in the city</s>

- Unigram? $P(live) = \frac{1}{22} = 0.04$
- Bigram? $P(Dresden | < s >) = \frac{1}{3} = 0.33$
- Trigram? $P(Dresden|live in) = \frac{1}{2} = 0.5$

In practice

- Trigrams are more common than bigrams
- Log probabilities are used to avoid underflow (the more probabilities we multiply, the smaller the product)
- Model based on frequency counts only do not perform well on unseen items. Instead:
 - back-off (e.g. if 4-gram not found, use 3-gram, etc.)
 - Laplace smoothing (add-one: $p(w_2|w_1) = \frac{count(w_1,w_2)+1}{count(w_1)+Vocab}$)
- Computation: Recent example of a Kneser-Ney language model training was 140 GB Ram in 2.8 days for one model of 128 billion tokens

Bigram Model in Python

```
from nltk.corpus import reuters
from nltk import bigrams
from collections import Counter, defaultdict
first sentence = reuters.sents()[0]
print(first sentence)
#Output: ['ASIAN', 'EXPORTERS', 'FEAR', 'DAMAGE', 'FROM', 'U', '.', 'S', ...]
print(list(bigrams(first_sentence, pad_left=True, pad_right=True)))
#Output: [(None, 'ASIAN'), ('ASIAN', 'EXPORTERS'), ('EXPORTERS', 'FEAR'), ]
model = defaultdict(lambda: defaultdict(lambda : 0))
#Generate a dictionary of counts
for sentence in reuters.sents():
    for w1, w2 in bigrams(sentence, pad_right=True, pad_left=True):
        model[w1][w2] += 1
print(model["the"]["economists"])
# Output: "economist" follows "the" 8 times
print("Example why padding is useful", model[None]["The"])
# Output: "The" starts a sentence 8839 times
```


Bigram Model in Python - continued

```
#Transform counts into probabilities
for w1 in model:
    total_count = float(sum(model[w1].values()))
    for w2 in model[w1]:
        model[w1][w2] /= total_count
print(model["the"]["economists"]) #0.00013733669808243634
print(model[None]["The"]) #0.16154324146501936
```


Evaluation

Main two evaluation methods for most computational linguistic models:

- Extrinsic evaluation: measure how much a specific application improves by using your model as compared to the standard baseline (time-consuming!)
- Intrinsic evaluation: measure the quality of the model independent of any application

For the intrinsic evaluation, the corpus is split into a:

- Training set: data used to train the model
- Test set: data used to test the trained model using a specific accuracy measure

The model that more accurately predicts the test set is the better model.

Review of Lecture 3

- What is Named Entity Recognition?
- Which two processes are needed for relation extraction?
- What is sentiment analysis?
- What is the difference between emotion classification and polarity detection?
- What is a language model?
- How can the chain rule and the Markov assumption be used in a language model? What are they?
- What happens when we want to compute a bigram that a model has not seen before?
- How can a language model be evaluated?