Nonmonotonic Reasoning, Action and Change
Proceedings of the Tenth International Workshop (NRAC 2013)

Edited by

Jianmin Ji

University of Science and Technology of China, China

Hannes Strass

Leipzig University, Germany

Xun Wang
University of Technology, Sydney, Australia

Preface

We present here the informal proceedings for the Tenth International Workshop on Non-Monotonic Reasoning, Action and
Change (NRAC 2013). NRAC is a well-established forum to foster discussion and sharing of experiences among researchers
interested in the broad areas of nonmonotonic reasoning and reasoning about action and change, including belief revision,
planning, logic programming, argumentation, causality, probabilistic and possibilistic approaches to KR, and other related
topics.

Since its inception in 1995, NRAC has always been held in conjunction with the International Joint Conference on Artificial
Intelligence (IJCAI). Previous editions were held in 2011 in Barcelona, Spain; in 2009 in Pasadena, USA; in 2007 in Hyderabad,
India; in 2005 in Edinburgh, Scotland; in 2003 in Acapulco, Mexico; in 2001 in Seattle, USA; in 1999 in Stockholm, Sweden;
in 1997 in Nagoya, Japan; and in 1995 in Montreal, Canada. This time, NRAC 2013 is held as a one-day satellite workshop of
IJCAI 2013, in Beijing, China, and will take place on 5 August 2013.

In addition to the paper sessions, this year’s workshop features invited talks by two internationally renowned researchers:
Xiaoping Chen from the University of Science and Technology of China, and Joohyung Lee from Arizona State University,
USA.

The programme chairs would like to thank all authors for their contributions and are also very grateful to the programme
committee for their work during the review phase and for providing excellent feedback to the authors. This is especially notable
as the review phase was unusually short this time. The programme chairs are also very grateful to Mary-Anne Williams, Maurice
Pagnucco, Gerhard Brewka and Leora Morgenstern from the steering committee for always being available for consultation.

May 2013 Jianmin Ji
Hannes Strass
Xun Wang

Programme Chairs

Jianmin Ji
Hannes Strass
Xun Wang

Programme Committee

Xiaoping Chen
Jens ClaBBen
Eduardo Fermé
Alfredo Gabaldon
Laura Giordano
Jérome Lang
Joohyung Lee
Fangzhen Lin
Thomas Meyer
Leora Morgenstern
Sebastian Sardifia
Eugenia Ternovska
Matthias Thimm

Ivan José Varzinczak

Stavros Vassos
Renata Wassermann
Dongmo Zhang

Additional Reviewers

Gavin Rens

NRAC Steering Committee

Gerhard Brewka
Michael Thielscher
Leora Morgenstern
Maurice Pagnucco
Pavlos Peppas

Mary-Anne Williams

Andreas Herzig
Benjamin Johnston

School of CS, University of Science and Technology of China, China
Leipzig University, Germany
University of Technology, Sydney, Australia

University of Science and Technology of China, China
RWTH Aachen University, Germany

University of Madeira, Portugal

New University of Lisbon, Portugal

Universita del Piemonte Orientale, Italy

Université Paris-Dauphine, France

Arizona State University, USA

Hong Kong University of Science and Technology, Hong Kong
Meraka Institute, South Africa

SAIC Advanced Systems and Concepts, USA

RMIT University, Australia

Simon Fraser University, Canada

University of Koblenz-Landau, Germany

Meraka Institute, South Africa

Sapienza University of Rome, Italy

University of Sao Paulo, Brazil

University of Western Sydney, Australia

Meraka Institute, South Africa

Leipzig University, Germany

The University of New South Wales, Australia
SAIC Advanced Systems and Concepts, USA
The University of New South Wales, Australia
University of Patras, Greece

University of Technology, Sydney, Australia
Université Paul Sabatier, France

University of Technology, Sydney, Australia

Table of Contents

Reasoning about Motion Kinematics with Continuous Uncertainty in the Situation Calculus............, 5
Vaishak Belle and Hector Levesque

On Decidable Verification of Non-terminating Golog Programs. e 13
Jens Claf3en, Martin Liebenberg and Gerhard Lakemeyer

Experiments in Infinite States Verification in Game-Theoretic Logics i i 21
Slawomir Kmiec and Yves Lespérance

Towards Action Languages with Norms and Deadlineso e i 29
Matthias Knorr, Alfredo Gabaldon, Ricardo Gongalves, Joao Leite and Martin Slota

Reasoning about Robot Epistemic Ability to Use the Cloudo i e 37
David Rajaratnam, Hector Levesque, Maurice Pagnucco and Michael Thielscher

Point-Sensitive Circumscription Computation via Answer Set Programming and Application (Preliminary Report) 45
Hai Wan, Zhanhao Xiao, Rui Yang and Pu Wang

Translating Action Knowledge into High-Level Semantic Representations for Cognitive Robots 53

Jiongkun Xie, Xiaoping Chen and Zhigiang Sui

Reasoning about Motion Kinematics with Continuous Uncertainty
in the Situation Calculus”

Vaishak Belle and Hector J. Levesque
Dept. of Computer Science
University of Toronto
Toronto, Ontario M5S 3HS5, Canada

{vaishak, hector}@cs.toronto.edu

Abstract

Motion kinematics and probabilistic state estimation
tasks are fundamental reasoning concerns in robotic ap-
plications, where the world is uncertain, and sensors and
effectors are noisy. Most systems make various assump-
tions about the dependencies between state variables, and
especially about how these dependencies change as a re-
sult of actions. Building on a general framework by Bac-
chus, Halpern and Levesque for reasoning about degrees
of belief in the situation calculus, and a recent extension
to it for continuous domains, in this paper we investi-
gate the above reasoning concerns in the presence of a
rich theory of actions using an example. We also show
that while actions might affect prior distributions in non-
standard ways, suitable posterior beliefs are nonetheless
entailed as a side-effect of the overall specification.

1 Introduction

An intelligent agent operating in a dynamic and uncertain
world faces at least two major sorts of reasoning prob-
lems.! First, because the world is dynamic, actions per-
petually change the properties of the state. Second, be-
cause little in the world is definite, the agent has to mod-
ify its beliefs based on the actions it performs and its sen-
sor measurements, both of which are prone to noise. At
one extreme, for representing incomplete knowledge, dy-
namical behavior using high-level actions, and control im-
peratives, logical formalisms seem appropriate. The situa-
tion calculus [McCarthy and Hayes, 19691, which serves as
the foundation for many planning approaches [Reiter, 2001;
Fritz and Mcllraith, 20071, is one such candidate. The lan-
guage is first-order and it exploits regularities in the effects
that actions have on propositions to describe physical laws
compactly. For example, the breaking of a fragile object held
by the agent against a broken one getting fixed is written as

Ya, s. Broken(x,do(a,s)) =
a = drop(x) A Holding(x, s) A Fragile(x) V
Broken(x, s) A\ a # repair(x).

“The authors would like to thank the reviewers for constructive
feedback, and the Natural Sciences and Engineering Research Coun-
cil of Canada for financial support.

'The following discussion is taken, with modifications, from
[Belle and Levesque, 2013c].

Figure 2: Pose of the robot on the planar surface (the overhead
view).

At the other extreme, revising beliefs after noisy observations
and similar temporal phenomena is effortlessly addressed
using probabilistic models such as Kalman filtering and
Dynamic Bayesian Networks [Dean and Kanazawa, 1989;
Dean and Wellman, 1991]. Unfortunately, while belief up-
date of known priors over Gaussian and other continuous er-
ror models is treated appropriately there, very little is said
about how actions might change values of certain state vari-
ables while not affecting others. These formalisms also as-
sume a full specification of the dependencies between vari-
ables, making it difficult to deal with other forms of incom-
plete knowledge, and strict uncertainty in particular.

The above issues bring to forefront concerns about inte-
grating high-level actions, incomplete information, and prob-
abilistic state estimation in a general way. To see a simple
example, imagine a robot operating in a planar surface, lo-
cated at a certain distance 4 to the right of a wall and oriented
at a certain angle, as in Figure 1 and Figure 2. Suppose the
robot initially believes that 6 = 0 and that / is drawn from a
uniform distribution on [2, 12]. Among the robot’s many ca-
pabilities, we imagine the ability of moving, which might be
predicated on factors such as the ground’s slipperiness. Then,
a leftwards motion of 1 unit would shift the uniform distribu-

tion on A to [1, 11], but a leftward motion of 5 units would
change the distribution more radically. The point #=0 would
now obtain a weight of .3, while & € (0, 7] would retain their
densities. This mixed distribution would then be preserved by
a subsequent rightward motion. Likewise, we might imagine
the robot to be equipped with two onboard sensors: a laser
unit aimed at the wall estimating 4, and a sonar unit that also
estimates the distance between the robot and the wall. Each
of these might be characterized by Gaussian error models,
and the effect of a reading from any sensor would revise the
distribution on & from uniform to an appropriate Gaussian.
Of course, if the robot is uncertain about 8’s value, its belief
about 4 after moving and sensing would be some non-trivial
function of 8. In the end, the robot is left with the difficult task
of adjusting its beliefs as it operates and obtains competing
(perhaps conflicting) measurements from individual sensors.

Perhaps the most general formalism for dealing with prob-
abilistic belief in formulas, and how that should evolve in the
presence of noisy acting and sensing, is a logical account by
Bacchus, Halpern and Levesque (BHL) [1999]. In the BHL
approach, besides quantifiers and other logical connectives,
one has the provision for specifying the degrees of belief in
formulas in the initial state. This specification may be com-
patible with one or very many initial distributions and sets of
independence assumptions. All the properties of belief will
then follow at a corresponding level of specificity.

Subjective uncertainty is captured in the BHL scheme us-
ing a possible-world model of belief [Fagin et al., 1995]. In
classical possible-world semantics, a formula ¢ is believed
to be true when ¢ comes out true in all possible worlds that
are deemed accessible. In BHL, the degree of belief in ¢ is
defined as a normalized sum over the possible worlds where
¢ is true of some nonnegative weights associated with those
worlds. To reason about belief change, the BHL model is
then embedded in a rich theory of action and sensing pro-
vided by the situation calculus [McCarthy and Hayes, 1969;
Reiter, 2001; Scherl and Levesque, 2003]. The BHL account
provides axioms in the situation calculus regarding how the
weight associated with a possible world changes as the re-
sult of acting and sensing. The properties of belief and belief
change then emerge as a direct logical consequence of the
initial specifications and these changes in weights.

However, in contrast to the earlier mentioned Bayesian for-
malisms, one of the limitations of the BHL approach is that
it is restricted to fluents whose values are drawn from dis-
crete countable domains. One could say, for example, that
h e {2,3,...,11} is given an equal weight of .1, but stipu-
lating a continuous uniform distribution and Gaussian sen-
sor error models (and not discrete approximations thereof) is
quite beyond the BHL approach. In recent work [Belle and
Levesque, 2013al, it is shown how with minimal additional
assumptions this serious limitation of BHL can be lifted.

In this paper, we investigate how the (generalized) BHL
scheme might be utilized for kinematic configurations and
state estimation using our example consisting of a robot, a
laser and a sonar device.> Our example supposes that the

2For a demonstration of the formalism in a slightly simpler set-
ting, see [Belle and Levesque, 2013c].

robot is capable of deterministic physical actions, while the
sensors are characterized by continuous error models. We
first consider the case where the robot is certain about its ori-
entation, and demonstrate properties about belief change. We
then move to a case where the robot has uncertainty regarding
its orientation, and show how beliefs behave in this more diffi-
cult setting. Thus, the domain formalization illustrates belief
change wrt shifting densities as logical properties of actions,
competing sensors, and uncertain orientations, among others.
Since no assumptions need to be made in general regarding
the kind of distributions that initial state variables are drawn
from, nor about dependencies between state variables, this
work illustrates how beliefs about the robot’s location would
change after acting and sensing in complex noisy domains.

The paper is structured as follows. In the next section, we
briefly review formal preliminaries, such as the situation cal-
culus, the BHL scheme as well as the essentials of its gen-
eralization to continuous domains. We then model the robot
domain and illustrate properties about belief change. In the
final sections, we discuss related and future work.

2 Preliminaries

The language £ of the situation calculus [McCarthy and
Hayes, 1969] is a many-sorted dialect of predicate calculus,
with sorts for actions, situations and objects (for everything
else, and includes the set of reals R as a subsort). A situa-
tion represents a world history as a sequence of actions. A set
of initial situations correspond to the ways the world might
be initially. Successor situations are the result of doing ac-
tions, where the term do(a, s) denotes the unique situation
obtained on doing a in s. The term do(«, 5), where « is the se-
quence [ay,...,a,] abbreviates do(a,,do(...,do(ay,s)...)).
Initial situations are defined as those without a predecessor:

Init(s) = =da, s’. s = do(a, §).

We let the constant Sy denote the actual initial situation, and
we use the variable ¢ to range over initial situations only.

In general, the situations can be structured into a set of
trees, where the root of each tree is an initial situation and the
edges are actions. In dynamical domains, we want the values
of predicate and functions to vary from situation to situation.
For this purpose, L includes fluents whose last argument is
always a situation. For example, if f is a fluent, we under-
stand f(s) < 12 as “f < 12 at situation s”. Here we assume
without loss of generality that all fluents are functional.

Basic action theory
Following [Reiter, 2001], we model dynamic domains in £
by means of a basic action theory D, which consists of 3
1. axioms 9Dy that describe what is true in the initial states,
including So;
2. precondition axioms that describe the conditions under
which actions are executable;

3. successor state axioms that describe the changes to flu-
ents on executing actions;

3 As usual, free variables in any of these axioms should be under-
stood as universally quantified from the outside.

4. domain-independent foundational axioms, the details of
which need not concern us here. See [Reiter, 2001].

An agent reasons about actions by means of the entailments
of D, for which standard Tarskian models suffice. We assume
henceforth that models also assign the usual interpretations to
=,<,>,0,1,+,%,/,—,e,mand ¥’ (exponentials).*

Likelihood and degree of belief
The BHL model of belief builds on a treatment of knowledge
by Scherl and Levesque [2003]. Here we present a simpler
variant based on just two distinguished binary fluents / and p.
The term [(a, s) is intended to denote the likelihood of ac-
tion a in situation s. For example, suppose sonar(z) is the
action of reading the value z from a sensor that measures the
distance to the wall, h.° We might assume that this action is
characterized by a Gaussian error model:®

l(sonar(z),s) =u =
@>20Au=NGEZ-h(s);u,c)V(z<0Au=0)

which stipulates that the difference between a nonnegative
reading of z and the true value 4 is normally distributed with a
variance of > and mean of y. In general, the action theory D
is assumed to contain for each action A an additional action
likelihood axiom of the form

I(A(X), 5) = u = ¢pa(X,u,s)

where ¢, is a formula that characterizes the conditions under
which action A has likelihood u in 5. (Actions that have no
sensing aspect should be given a likelihood of 1.)

Next, the p fluent determines a probability distribution on
situations. The term p(s’, s) denotes the relative weight ac-
corded to situation s* when the agent happens to be in situa-
tion s. The properties of p in initial states, which vary from
domain to domain, are specified by axioms as part of Dy. The
following nonnegative constraint is also included in Dy:

Vi, 5. p(s,0) =0 A (p(s,0) > 0D Init(s)) (P1)

While this is a stipulation about initial states ¢ only, BHL pro-
vide a successor state axiom for p, and show that with an ap-
propriate action likelihood axiom, the nonnegative constraint
then continues to hold everywhere:

p(s’,do(a,s)) =u =
ds” [s" = do(a, s”) A Poss(a, s”) A
u=p(s”,s)xla,s"”)]
Vv =ds” [s' =do(a, s”) A Poss(a,s”) A u = 0]

(P2)

Now if ¢ is a formula with a single free variable of sort situ-
ation,” then the degree of belief in ¢ is simply defined as the

* Alternatively, one could specify axioms for characterizing the
field of real numbers in 9. Whether or not reals with exponentiation
is first-order axiomatizable remains a major open question.

Naturally, we assume that the value z being read is not under the
agent’s control. See BHL for a precise rendering of this nondeter-
minism in terms of GOLOG operators [Reiter, 2001].

®Note that A is a continuous distribution involving 7, e, exponen-
tiation, and so on. Therefore, BHL always consider discrete proba-
bility distributions that approximate the continuous ones.

"The ¢ is usually written either with the situation variable sup-
pressed or with a distinguished variable now. Either way, @[] is used
to denote the formula with that variable replaced by ¢.

following abbreviation:®

Bel.s) = ~ 3 p(s's) ®)
{s":¢[s}

where 7y, the normalization factor, is understood throughout
as the same expression as the numerator but with ¢ replaced
by true. For example, here y is Y, p(s’, s). We do not have to
insist that s” and s share histories since p(s’, s) will be 0 oth-
erwise. BHL show how summations can be expressed using
second-order logic, see the appendix. That is, neither Bel’s
definition nor summations are special axioms of 9, but sim-
ply convenient abbreviations for logical terms. To summa-
rize, in the BHL scheme, an action theory consists of:

1. Dy as before, but now also including (P1);
2. precondition axioms as before;

3. successor state axioms as before, but now also including
one for p viz. (P2);

4. foundational domain-independent axioms as before; and

5. action likelihood axioms.

From sums to integrals

While the definition of belief in BHL has many desirable
properties, it is defined in terms of a summation over situa-
tions, and therefore precludes fluents whose values range over
the reals. The continuous analogue of (B) then requires inte-
grating over some suitable space of values.

As it turns out, a suitable space can be found. First, some
notation. We use a form of conditional if-then-else expres-
sions, by taking some liberties with notation and the scope of
variables as follows. We write f = Ir dx. ¢ THen #; ELSE 7, to
mean the logical formula

f=u=Ax. [pAu=1t)]V[(u=1t)A-dx. ¢]

Now, assume that there are n fluents fi, ..., f, in £, and that
these take no arguments other than a situation.” Next, sup-
pose that there is exactly one initial situation for any vector
of fluent values [Levesque er al., 1998]:

Y\ 0 = x] A VL0 \ FO = AW D e=01 ()

Under these assumptions, it can be shown [Belle and
Levesque, 2013a] that the summation over all situations in
(B) can be recast as a summation over all possible initial val-
ues X, ..., x, for the fluents:

1
Bel(.5) = - D P(E4.5) (B
x

8As in probability logics [Fagin and Halpern, 1994], belief in ¢
is simply the total weight of worlds satisfying ¢.

9Basically, if we were to assume that the arguments of all fluents,
even k-ary ones, are taken from finite sets then this would allow us
to enumerate the n random variables of the domain (for some large
n). Note that, from the point of view of situation calculus basic
action theories, fluents are typically allowed to take arguments from
any set, including infinite ones. In probabilistic terms, this would
correspond to having a joint probability distribution over infinitely
many, perhaps uncountably many, random variables. We know of no
existing work of this sort, and we have as yet no good ideas about
how to deal with it.

where P(f, ¢, s) is the (unnormalized) weight accorded to the
successor of an initial world where f; equals ¢;:

P(X, ¢,do(a, Sy)) =
Ir . A fi(0) = x; A pldo(a, 1))
THEN p(do(a,t),do(a, Sp))
Eise 0

where « is an action sequence. In a nutshell, because every
situation has an initial situation as an ancestor, and because
there is a bijection between initial situations and possible flu-
ent values, it is sufficient to sum over fluent values to obtain
the belief even for non-initial situations. Note that unlike (B),
this one expects the final situation term do(a, Sy) mention-
ing what actions and observations took place to be explicitly
specified, but that is just what one expects when the agent rea-
sons about its belief after doing things, and for the projection
problem in particular [Reiter, 2001].

The generalization to the continuous case then proceeds as
follows. First, we observe that some (though possibly not
all) fluents will be real-valued, and that p(s’, s) will now be
a measure of density not weight. Similarly, the P term above
now measures (unnormalized) density rather than weight.

Now suppose fluents are partitioned into two groups: the
first k take their values xi, ..., x; from R, while the rest take
their values yi41, . .., Yy, from countable domains, then the de-
gree of belief in ¢ is an abbreviation for:

1
Bl, = — PA'Ass
el(g, 5) yffzy (*-5,¢,9)

The belief'” in ¢ is obtained by ranging over all possible flu-
ent values, and integrating and summing the densities of situ-
ations where ¢ holds.!! In [Belle and Levesque, 2013al, it is
shown that belief change in this formalism is identical, under
certain conditions, to Bayesian conditioning over continuous
variables [Pearl, 1988]. This is precisely what is desired to
capture standard probabilistic belief update mechanisms.

The appendix shows how integrals can be formulated using
second-order quantification. That is, as before, Bel, P, inte-
grals and sums are simply convenient abbreviations, and do
not involve special axioms in . More precisely, the continu-
ous extension to BHL has the same components from earlier,
with a single revision:

1. Dy additionally includes (x).

Note that likelihood axioms are specified as before, but we
will no longer have to approximate Gaussian error models (or
any other continuous models) as would BHL.

3 Motion Kinematics and State Estimation

We build a basic action theory D for a robot on a planar sur-
face. We imagine three fluents 4, v and 6 in addition to Poss,
[and p. The fluent & gives the distance to the wall along the

10We write ¥ - ¥ to mean the concatenation of variables.

""We are assuming here that the density function is (Riemann)
integrable. If it is not, belief is clearly not defined, nor should it be.
Similarly, if the normalization factor is O, which corresponds to the
case of conditioning on an event that has 0 probability, belief should
not be (and is not) defined.

horizontal axis and v gives the position of the robot along the
vertical axis. The fluent 6 gives the orientation of the robot,
and is assumed to be between —180° and 180°. We postulate
6 = 0 to mean that the robot is parallel to the X-axis, facing
the wall. By extension, when 6 = 90 the robot is parallel to
the Y-axis, and if the robot is above the X-axis then motion
along this orientation would move the robot away from the
X-axis. See Figure 2 for the geometric configuration.

We consider two physical actions mv(z) and orient(z), and
two sensing actions sonar(z) and laser(z). The mv action
moves the robot along its current orientation 6, which can be
manipulated in-place by means of orient. Both sensors esti-
mate the distance to the wall.

For simplicity, we assume that actions are always exe-
cutable. Therefore, 9 will not contain any precondition ax-
ioms. D’s successor state axioms are the following. There is
a fixed one for p, which is (P2). For i, we have:

h(do(a, s)) =u =
—dz(a = mv(2)) Au = h(s) V (1
dz(a = mv(z) A u = max(0, h(s) — z - cos(8(s)))).

This says an action mv(z) reduces the horizontal distance be-
tween the robot and the wall by z - cos(6(s)) units, but that
the motion stops if the robot hits the wall. It is also as-
sumed that mv(z) is the only action that affects 4. Of course,
to move away from the wall, z can be any negative value. The
cos((s)) factor is by trigonometry, and comes from the ob-
servation that the robot moves z units while being at an angle
6(s) to the X-axis.
Similarly, for v we have:

v(do(a, s)) =u =
=dz(a = mv(2)) Au=v(s) vV 2)
dz(a = mv(z) A u = v(s) + z - sin(6(s))).

This captures the effect on v after moving, while assuming
that mv(z) is the only action affecting v. As for the fluent 6,
we naturally assume that orient is the only action affecting it,
incrementing the current value between [—180, 180]:

6(do(a, s)) =u =
=dz(a = orient(z)) A u = 6(s) Vv
dz(a = orient(z) A u = [(8(s) + z) mod 360] — 180).
(3)
Finally, we specify the likelihood axioms in . We will
suppose that the laser unit is very accurate:

l(laser(z),s) =u =
(z=20A10(s) <10 Au=N(h(s)—z0,.25)V 4
(z<0Au=0)v @
(16(s)| > 10 Au = 0).

This stipulates that when the robot is facing the wall, captured
by the 0’s absolute value being with a certain range (chosen
arbitrarily to be 10 here), the difference between a nonnega-
tive reading of z and the true value % is normally distributed
with a variance of .25 and mean of 0. (A mean of 0 indicates
that there is no systematic bias in the reading.) If the robot is
not in the direction of the wall, due to reflections and similar
factors [Thrun et al., 2005] we simply assume that sensors do
not return any value.

T 0.8

Figure 3: Belief density change for 4 at Sy in dotted-green, af-
ter a single reading of sonar (item 4) in dotted-blue, after a second
sonar reading (item 5) in blue, after a single laser reading (item 6) in
dotted-red, and after two laser readings (item 7) in red. Note that a
single laser reading is more effective than two sonar readings.

A sonar unit on the robot gives similar readings to the laser
unit but is less accurate:

l(sonar(z),s) =u =
Z=2O0AI8() <10Au=N((s)—z,0,1) Vv 5
z<0Au=0)v ®)
(16(s)| > 10 A u = 0).

As mentioned before, physical actions such as mv(z) and
orient(z) are assumed to be deterministic for this paper, and
so they are given trivial likelihoods:

I(mv(2), s) =1,
l(orient(z), s) = 1.

Finally, we turn to the initial theory. 9y includes the fol-
lowing domain-independent axioms: () and (P1). Specific to
the domain, imagine that 9, says that the robot is parallel to
the X-axis in the real world, i.e. 6(Sy) = 0. Dy also includes
the following for p:'?

Sy = AXNW@W;0,16) if2 <h() <12and 6(t) =0
PSo) =1 otherwise

(6)
This says that the value of v is normally distributed about
the horizontal axis with variance 16, and independently, 8 =
0 and the value of A is uniformly distributed between 2 and
12.13 This specification assumes that the agent has full belief
about § = 0. (Beliefs when there is uncertainty about 6 is
illustrated in the next example.) No other sentence is in Dy.
This completes the specification of D.

Theorem 1: The following are logical entailments of D:
Initial beliefs
1. Bel(true, Sy) = 1.
1Initial beliefs can also be specified for D, using Bel directly.
13We model a simple distribution for illustrative purposes. In gen-
eral, neither do the variables have to be independent, nor does the

specification need to be complete in the sense of mentioning all the
variables.

2. Belh=2Vh=3Vh=4Vvh=5,5)=0
Intuitively, although we are integrating a density func-
tion g(xy, xp, x3) over all real values, g(x;, x2,x3) = 0
unless x; € {2,3,4,5}.
3. Bel(5<h<55,5) =.05
We are integrating a function that is 0 except when 5 <
x| <5.5. Thisis f £ .1xXN(x2;0,16) dx; dx, = .05.14
Sensing by sonar

4. Bel(5 < h £5.5,do(sonar(5.3), Sp)) = .19

Compared to item 3, belief is sharpened by obtaining
a reading of 5.3 on the sonar. This is because the p
function incorporates the likelihood of a sonar(5.3) ac-
tion. Starting with the density function in item 3, the
sensor reading multiplies the expression to be integrated
by N(x; —5.3;0,1), as given by (5). This amounts to
evaluating the expression

ff.lXN(xl—5.3;0,1)XN()C2;0,16)C1)61 d)CQ
R JA

with A = [5,5.5] for the numerator, and A = [2, 12] for
the denominator.

5. Bel(5 < h <5.5,do[sonar(5.3), sonar(5.2)], So) = .27
Two successive readings around 5.3 sharpen belief about
[5,5.5] further. Compared to item 4, the density function
is additionally multiplied by N(x; — 5.2;0, 1), and inte-
grated for the denominator and numerator as before.

Sensing by Laser

6. Bel(5 < h <£5.5,do(laser(5.3), Sp)) = .38
Compared to item 3, and even item 4, the highly sensi-
tive laser increases the posterior belief for [5, 5.5] signif-
icantly. Using the error model (4), this is a result of

f f.l -N(x2;0,16) - N(x1 —5.3;0,.25) dx, dx;
R JA

with A for the numerator and denominator as before.
Competing sensors

7. Bel(5 < h <5.5,do([laser(5.2), laser(5.25)], Sp)) = .52
Bel(5 < h <£5.5,do([laser(5.3), sonar(3)], Sp)) = .29
The laser is more sensitive than the sonar, and so con-
secutive readings are far more effective. These changing
densities are shown in Figure 3. We also see that af-
ter applying the laser sensor, a sonar reading of 3 for A,
which is far from the previous observation, only slightly
redistributes the density. (Compare this to item 6.)

Physical actions

8. Bel(h = 0,do([orient(60), mv(10)], Sp)) = .3
Here a continuous distribution evolves into a mixed
one. By (1), h = 0 holds after the actions iff 7 <

10 - cos(60) held initially. This results in f .1 x
N(x;0,16) dx; dx, = .3.

4Strictly speaking, we would need to integrate the density func-
tion for 6 € [-180, 180]. Since the density function is O when 6 # 0
according to the p specification (6), we simplify the presentation
and show integration wrt the / and v variables only. See the next
example for cases where such simplifications are not possible.

9. Bel(h < 5,do([orient(60), mv(10)], Sp)) = .8
Bel’s definition is amenable to a set of & values, where
one value has a weight of .1, and all the other real values
have a uniformly distributed density of .1. This change
in weights is shown in Figure 4.

Bel(h = 5, do([orient(60), mv(10), mv(—10)], Sp)) = .3
Bel(h = 5,do([orient(60), mv(—10), mv(10)], Sp)) = 0
The point & = 5 has 0 weight initially (like in item 2).
Moving leftwards first means many points “collapse”,
and so this point (now having % value 0) gets .3 weight
which is retained on moving away. But not vice versa.

Bel(—1 < v £ 2,do(orient(60), Sp)) =

Bel(—1 < v <2,80) = [} N(x2:0,16)dx,
Owing to Reiter’s solution to the frame problem, be-
lief in v is unaffected on changing the orientation. For
v € [-1,2] it is the area between [—1, 2] bounded by the
specified Gaussian.

Bel(v < .5, do([orient(30), mv(5)], Sp)) =

Bel(v < -2,8))
Bel(v < —4.5, do([orient(30), mv(=5)], Sp)) =

Bel(v < -2,5))
After the action mv(5) when the robot is oriented at 30,
the Gaussian for v’s value has its mean “shifted” by
5 - sin(30) because the density associated with v = x;
initially is now associated with v = x, + 2.5. An analo-
gous shifting occurs when mv(=5) is executed.

10.
11.

12.

Nonstandard properties

13. Bel(h > Tv,Sp) = .6

Beliefs about any mathematical expression involving the
random variables, even when that does not correspond to
well known density functions, are entailed. In this case,
we are basically evaluating:

12 x1/7
f f 1 X N(x2; 0, 16) dx, dx;.
2 —00

14. Bel([3a, s. now=do(a, s) A h(s)> 1], do(mv(4), Sy)) = 1.
It is possible to refer to earlier or later situations using
now as the current situation. This says that after moving,
there is full belief that (A > 1) held before the action.

Uncertainty about 6
In the previous example, the agent had full belief about 6. The
formalism, of course, does not hinge on such assumptions.
We now sketch an example in a partial knowledge setting,
and discuss a few properties. Features similar to those above
can also be observed here.

To build the example, the only sentence we will replace in
D is the p specification. Let D be an action theory exactly
as before except for the following new initial axiom for p:

1 X N0 0,16) X .5

0 otherwise

p(t,So) = {

where the ellipses stands for:

if h()) € [2,12] and 6() € [-1,1].

10

0.4

03
do([orient(60), move(10)], So)

0.2

0.1

25 5 7.5

Figure 4: Belief update for 4 after physical actions. Initial belief at
So in blue, and after a move by 10 with an orientation of 60 (in red).

What this says is that the value of v is normally distributed,
independently % is uniformly distributed between 2 and 12,
and independently 6 is uniformly distributed between -1 and
1. (As we pointed out before, variants where the indepen-
dence assumption does not hold are also easy to sketch, but
will not be illustrated here.)

Theorem 2: The following are entailments of D*:
1. Bel(0<0,8y) =.5

This is the integral fxl fxz f—0180 q(x1, x2, x3)dx3dx,dxy,
with ¢ being the density function at the initial situation.
Since g(x1, x2, x3) is 0 except when x3 € [—1, 1] in which
caseitis.l X N(xp;0,16) x .5, the expression evaluates
to .5.
2. Bel(5 < h £5.5,do(sonar(5.3),5y)) ~ .19

According to (5), doing the sonar action means that the
density function g(xi, x2, x3) is multiplied by N(x; —
5.3;0,1) when 6 is between —10 and 10, but O other-
wise. Since g(x1, x2,x3) is 0 for 8 ¢ [—1, 1], we are left
with the expression:

1
fff q(x1, %2, x3) X N(x1 — 5.3;0, 1)dxsdx;dx;
R JA J-1

for A = [5,5.5] for the numerator, and for A = [2,12]
for the denominator. The end result is precisely the same
belief as in item 4 from the previous example.
3. Bel(h < 5,do(mv(3),S80)) = .55

We first observe that if the robot is oriented at angle 6,
then by means of (1), the belief in 2 < 5 on moving
3 units can be obtained from the initial belief in 7 <
5 + 3 - cos 6. Therefore, we are to evaluate the integral

1 p5+3-cosx;
kL k

o [NG2:0,16) - .15 [(5 + 3 cos x3) — 2]dxsdxs.

q(x1, x2, x3)dx1dxsdx, =

In contrast, it is easy to verify that the original basic ac-
tion theory D entails Bel(h < 5,do(mv(3),Sp)) = .6.
That is, as one would expect, due to the robot’s uncer-
tainty regarding its orientation in O, it has weaker be-
liefs about 2 < 5.

4 Related Work

Sensor fusion has been a primary concern in state estima-
tion approaches [Thrun et al., 2005]. Popular models include
variants of Kalman filtering [Fox et al., 2003], where priors
and likelihoods are assumed to be Gaussian. Our formal-
ism, however, does not require any constraints on the nature
of distributions, nor about how distributions and dependen-
cies may evolve after actions. Moreover, strict uncertainty
is allowed. This distinguishes the current method from nu-
merous probabilistic formalisms [Dean and Wellman, 1991;
Fox et al., 2003], including those that handle actions explic-
itly [Darwiche and Goldszmidt, 1994; Hajishirzi and Amir,
2010]. To the best of our knowledge, none of these handle
changes in state variables like those considered here.

Logical formalisms, such as [Halpern, 1990; Bacchus,
19901, are equipped to handle features such as disjunctions
and quantifiers, but they do not explicitly address actions. Re-
lational probabilistic languages and Markov logics [Ng and
Subrahmanian, 1992; Richardson and Domingos, 2006] also
do not model actions. Recent temporal extensions, such as
[Choi et al., 2011], specifically treat Kalman filtering, and
not complex actions. In this regard, action logics such as
dynamic and process logics are closely related. Recent pro-
posals, for example [Van Benthem et al., 2009], treat sensor
fusion. However, these and related frameworks [Halpern and
Tuttle, 1993; Kushmerick er al., 1995], are mostly proposi-
tional. In the last years, there have been extensions to the
PDDL planning language, so as to account for probabilistic
effects and partial observability [Younes and Littman, 2004;
Sanner, 2011], but limited to certain sorts of initial databases
rather than a specification that allows full first-order expres-
sivity.

Finally, proposals based on the situation and fluent cal-
culi are first-order [Bacchus et al., 1999; Poole, 1998;
Boutilier et al., 2000; Mateus et al., 2001; Shapiro, 2005;
Gabaldon and Lakemeyer, 2007; Fritz and Mcllraith, 2009;
Belle and Lakemeyer, 2011; Thielscher, 2001], but none of
them deal with continuous sensor noise, and nor do the ex-
tensions for continuous processes [Reiter, 2001; Herrmann
and Thielscher, 1996; Fox and Long, 2006]. We are also not
aware of any logical formalism that deals with the integration
of continuous variables within the language.

5 Conclusions

This paper investigates a kinematic setup and probabilis-
tic state estimation for a robot operating in an incompletely
known world, equipped with noisy sensors. In contrast to a
number of competing formalisms, where the modeler is left
with the difficult task of deciding how the dependencies and
distributions of state variables might evolve, here one need
only specify the initial beliefs and the physical laws. Suitable
posteriors are then entailed. The framework of the situation
calculus, and a recent generalization to the BHL scheme, al-
lows us to additionally specify situation-specific biases and
realistic continuous error models. Our example demonstrates
that belief changes appropriately even when one is interested
in nonstandard properties, such as logical relationships of
state variables, all of which emerges as a side-effect of the

11

general specification.

For the future, on the representation side, features such
as continuous time, exogenous actions, decision theory and
durative actions have been proposed in the situation calcu-
lus [Reiter, 2001], which could be imported to our formal-
ism. On the more computational side, we are interested in
studying formal constraints on action theories that would al-
low us to estimate posteriors efficiently under the assump-
tion that priors and likelihoods are drawn from tractable
distributions [Box and Tiao, 1973]. This would perhaps
need, among others, an account of regression [Reiter, 2001;
Scherl and Levesque, 20031, generalized for probabilistic be-
liefs and noisy sensing. Preliminary results in this direction
appear in [Belle and Levesque, 2013b].

Appendix: Sums and Integrals in Logic

Logical formulas can be used to characterize sums and a va-
riety of sorts of integrals. Here we show the simplest pos-
sible cases: the summing of a one variable function from 1
to n, and the definite integral from —co to co of a continuous
real-valued function of one variable. Other complications are
treated in a longer version of the paper.

First, sums. For any logical term ¢ and variable i, we intro-
duce the following notation to characterize summations:

thziaf[f(l)ztgAf(n)zzA '
= Vi< j<nd fG+1)=f()+1,,)]

where f is assumed to not appear in ¢, and j is understood to
be chosen not to conflict with any of the variables in ¢ and i.

Now, integrals. We begin by introducing a notation for
limits to positive infinity. For any logical term ¢ and variable
x, we let lim 7 stand for a term characterized by:

X—00
lim¢=z = Yu(u>0>ImVYn(n >m> |z— ;| <w)).
X—00

The variables u, m, and n are understood to be chosen here

not to conflict with any of the variables in x, 7, and z.

Then, for any variable x and terms a, b, and ¢, we introduce

aterm INT[x, a, b, t] to denote the definite integral of ¢ over x

from a to b:

n

INTLx,a,b,1] = Tim h- > £,
n—oo —

where h stands for (b — a)/n. The variable n is chosen not to
conflict with any of the other variables. Finally, we define the
definite integral of 7 over all real values of x by the following:

[

The main result for this logical abbreviation is the following:

lim lim INT[x, —u,v,¢].

U—00 V—00

Theorem 3: Let g be a function symbol of L standing for a
function from R to R, and let ¢ be a constant symbol of L. Let
M be any logical interpretation of L such that the function g™
is continuous everywhere. Then we have the following:

Iffoch(x).dx =M then M E (¢ =fg(x)).

References

[Bacchus et al., 1999] F. Bacchus, J. Y. Halpern, and H. J.
Levesque. Reasoning about noisy sensors and effectors in the
situation calculus. Artificial Intelligence, 111(1-2):171 — 208,
1999.

[Bacchus, 1990] F. Bacchus. Representing and Reasoning with
Probabilistic Knowledge. MIT Press, 1990.

[Belle and Lakemeyer, 2011] V. Belle and G. Lakemeyer. A seman-
tical account of progression in the presence of uncertainty. In
Proc. AAAI pages 165-170, 2011.

[Belle and Levesque, 2013a] V. Belle and H. J. Levesque. Reason-
ing about continuous uncertainty in the situation calculus. In
Proc. IJCAI 2013.

[Belle and Levesque, 2013b] V. Belle and H. J. Levesque. Reason-
ing about probabilities in dynamic systems using goal regression.
In Proc. UAI 2013.

[Belle and Levesque, 2013c] V. Belle and H. J. Levesque. Robot
location estimation in the situation calculus. In Symposium on
Logical Formalizations of Commonsense Reasoning, 2013.

[Boutilier et al., 2000] C. Boutilier, R. Reiter, M. Soutchanski, and
S. Thrun. Decision-theoretic, high-level agent programming in
the situation calculus. In Proc. AAAI pages 355-362, 2000.

[Box and Tiao, 1973] G. E. P. Box and G. C. Tiao. Bayesian infer-
ence in statistical analysis. Addison-Wesley, 1973.

[Choi et al., 2011] J. Choi, A. Guzman-Rivera, and E. Amir. Lifted
relational kalman filtering. In Proc. IJCAI, pages 2092-2099,
2011.

[Darwiche and Goldszmidt, 1994] A. Darwiche and M. Gold-
szmidt. Action networks: A framework for reasoning about ac-
tions and change under uncertainty. In Proc. UAI pages 136-144,
1994.

[Dean and Kanazawa, 1989] T. Dean and K. Kanazawa. A model
for reasoning about persistence and causation. Computational
intelligence, 5(2):142-150, 1989.

[Dean and Wellman, 1991] T. Dean and M. Wellman. Planning and
control. Morgan Kaufmann Publishers Inc., 1991.

[Fagin and Halpern, 1994] R. Fagin and J. Y. Halpern. Reasoning
about knowledge and probability. J. ACM, 41(2):340-367, 1994.

[Fagin et al., 1995] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y.
Vardi. Reasoning About Knowledge. MIT Press, 1995.

[Fox and Long, 2006] M. Fox and D. Long. Modelling mixed
discrete-continuous domains for planning. J. Artif. Intell. Res.
(JAIR), 27:235-297, 2006.

[Fox et al., 2003] D. Fox, J. Hightower, L. Liao, D. Schulz, and
G. Borriello. Bayesian filtering for location estimation. Pervasive
Computing, IEEE, 2(3):24-33, 2003.

[Fritz and Mcllraith, 2007] C. Fritz and S. A. Mcllraith. Monitor-

ing plan optimality during execution. In Proc. ICAPS, pages 144—
151, 2007.

[Fritz and Mcllraith, 2009] C. Fritz and S. A. Mcllraith. Computing
robust plans in continuous domains. In Proc. ICAPS, pages 346—
349, 2009.

[Gabaldon and Lakemeyer, 2007] A. Gabaldon and G. Lakemeyer.

ESP: A logic of only-knowing, noisy sensing and acting. In Proc.
AAAI pages 974-979, 2007.

[Hajishirzi and Amir, 2010] H. Hajishirzi and E. Amir. Reasoning
about deterministic actions with probabilistic prior and applica-
tion to stochastic filtering. In Proc. KR, 2010.

12

[Halpern and Tuttle, 1993] J. Y. Halpern and M. R. Tuttle. Knowl-
edge, probability, and adversaries. J. ACM, 40:917-960, 1993.

[Halpern, 1990] J.Y. Halpern. An analysis of first-order logics of
probability. Artificial Intelligence, 46(3):311-350, 1990.

[Herrmann and Thielscher, 1996] C. Herrmann and M. Thielscher.
Reasoning about continuous processes. In AAAIIAAL Vol. 1,
pages 639-644, 1996.

[Hughes and Cresswell, 1972] G. E. Hughes and M. J. Cresswell.
An introduction to modal logic. Methuen London, 1972.

[Kushmerick et al., 1995] N. Kushmerick, S. Hanks, and D.S.
Weld. An algorithm for probabilistic planning. Artificial Intelli-
gence, 76(1):239-286, 1995.

[Levesque er al., 1998] H. J. Levesque, F. Pirri, and R. Reiter.
Foundations for the situation calculus. Electron. Trans. Artif. In-
tell., 2:159-178, 1998.

[Mateus et al., 2001] P. Mateus, A. Pacheco, J. Pinto, A. Sernadas,
and C. Sernadas. Probabilistic situation calculus. Annals of Math.
and Artif. Intell., 32(1-4):393-431, 2001.

[McCarthy and Hayes, 1969] J. McCarthy and P. J. Hayes. Some
philosophical problems from the standpoint of artificial intelli-
gence. In Machine Intelligence, pages 463-502, 1969.

[Ng and Subrahmanian, 1992] R. Ng and V.S. Subrahmanian.
Probabilistic logic programming. Information and Computation,
101(2):150-201, 1992.

[Pearl, 1988] J. Pearl. Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. Morgan Kaufmann, 1988.

[Poole, 1998] D. Poole. Decision theory, the situation calculus and
conditional plans. Electron. Trans. Artif. Intell., 2:105-158, 1998.

[Reiter, 2001] R. Reiter. Knowledge in action: logical foundations
for specifying and implementing dynamical systems. MIT Press,
2001.

[Richardson and Domingos, 2006] M. Richardson and P. Domin-
gos. Markov logic networks. Machine learning, 62(1):107-136,
2006.

[Sanner, 2011] S. Sanner. Relational dynamic influence diagram
language (rddl): Language description. Technical report, Aus-
tralian National University, 2011.

[Scherl and Levesque, 2003] R. B. Scherl and H. J. Levesque.
Knowledge, action, and the frame problem. Artificial Intelli-
gence, 144(1-2):1-39, 2003.

[Shapiro, 2005] S. Shapiro. Belief change with noisy sensing and
introspection. In NRAC Workshop, pages 84-89, 2005.

[Thielscher, 2001] M. Thielscher. Planning with noisy actions (pre-
liminary report). In Proc. Australian Joint Conference on Artifi-
cial Intelligence, pages 27-45, 2001.

[Thrun et al., 2005] S. Thrun, W. Burgard, and D. Fox. Probabilis-
tic Robotics. MIT Press, 2005.

[Van Benthem et al., 2009] J. Van Benthem, J. Gerbrandy, and
B. Kooi. Dynamic update with probabilities. Studia Logica,
93(1):67-96, 2009.

[Younes and Littman, 2004] H. Younes and M. Littman. PPDDL 1.
0: An extension to pddl for expressing planning domains with

probabilistic effects. Technical report, Carnegie Mellon Univer-
sity, 2004.

On Decidable Verification of Non-terminating Golog Programs

Jens ClaBien, Martin Liebenberg and Gerhard Lakemeyer
Dept. of Computer Science
RWTH Aachen University
52056 Aachen
Germany
{classen, liebenberg, gerhard}@kbsg .rwth—-aachen.de

Abstract

The high-level action programming language
GOLOG has proven to be a useful means for
the control of autonomous agents such as mobile
robots. Usually, such agents perform open-ended
tasks, and their control programs are hence non-
terminating. Before deploying such a program to
the robot, it is often desirable if not crucial to ver-
ify that it meets certain requirements, preferably
by means of an automated method. For this pur-
pose, ClaBBen and Lakemeyer recently introduced
algorithms for the verification of temporal proper-
ties of non-terminating GOLOG programs, based
on the first-order modal Situation Calculus vari-
ant &S, and regression-based reasoning. However,
while GOLOG’s high expressiveness is a desirable
feature, it also means that their verification proce-
dures cannot be guaranteed to terminate in gen-
eral. In this paper, we address this problem by
showing that, for a relevant subset, the verification
of non-terminating GOLOG programs is indeed de-
cidable, which is achieved by means of three re-
strictions. First, we use the &S variant of a de-
cidable two-variable fragment of the Situation Cal-
culus that was introduced by Gu and Soutchanski.
Second, we have to restrict the GOLOG program to
contain ground action only. Finally, we consider
special classes of successor state axioms, namely
the context-free ones and those that only admit lo-
cal effects.

1 Introduction

The GOLOG [De Giacomo et al., 2000; Levesque et al.,
1997] family of high-level action programming languages
and its underlying logic, the Situation Calculus [McCarthy
and Hayes, 1969; Reiter, 2001], have proven to be useful
means for the control of autonomous agents such as mobile
robots [Burgard et al., 1999]. Usually, the task of such an
agent is open-ended, i.e. there is no predefined goal or termi-
nal state that the agent tries to reach, but (at least ideally) the
robot works indefinitely, and its corresponding control pro-
gram is hence non-terminating.

13

As a simple example, consider a mobile robot whose task
it is to remove dirty dishes from certain locations in an office
on request. A program for this robot might look like this:

loop : while (3x.OnRobot(x)) do

mx.unload(x)

endWhile;

my.goToRoom(y);

while (3z. DirtyDish(z,y)) do
mx.load(z,y)

endWhile;

goToKitchen

We assume that the robot is initially in the kitchen, its home
base. There is an infinite loop, where during each iteration the
robot first unloads all dishes it carries, then selects a room in
the office building, goes to this room, loads all dirty dishes in
this room, and returns to the kitchen. Here, DirtyDish(x,y)
should be read as “dirty dish x is in room y” and load (z, y) as
“load dish x in room y.” During the execution of the program,
people can send requests indicating that there is a dirty dish
in a certain room (not shown here).

Before actually deploying such a program on the robot and
executing it in the real world, it is often desirable if not cru-
cial to verify that it meets certain requirements such as safety,
liveness and fairness properties, for example that “every re-
quest will eventually be served by the robot” or whether “it
is possible that no request is ever served.” Moreover, the
verification is preferably done using an automated method,
since manual, meta-theoretic proofs such as done in [De Gi-
acomo et al., 1997] tend to be tedious and prone to errors.
For this purpose, ClaBen and Lakemeyer [2008] recently pro-
posed the logic £5G, an extension of the modal Situation Cal-
culus variant &S [Lakemeyer and Levesque, 2010] by con-
structs that allow to express temporal properties of GOLOG
programs. They moreover provided algorithms for the verifi-
cation of a subset of the logic that resembles the branching-
time temporal logic CTL. Their methods rely on regression-
based reasoning and a newly introduced graph representation
of GOLOG programs to do a systematic exploration of a pro-
gram’s configuration space within a fixpoint approximation
loop. While the procedures are proven to be sound, no gen-
eral guarantee can be given for termination.

There are two reasons for this. On the one hand, to de-
tect the convergence of the fixpoint loop, the algorithm has
to check the equivalence of formulas that encode reachable

program configurations. Since these may be arbitrary first-
order formulas, this already amounts to an undecidable prob-
lem. Furthermore, even if all equivalence checks can be per-
formed in finite time (or if we assume a first-order oracle), the
fixpoint computation may never converge.

A straight-forward approach to remedy this problem is to
restrict the input language such that verification becomes de-
cidable, as done for instance by Baader, Liu and ul Mehdi
[2010]. Instead of using the full first-order expressiveness of
the Situation Calculus or &S, they resort to a dynamic exten-
sion [Baader ef al., 2005] of the decidable description logic
ALC [Baader er al., 2003] to represent pre- and postcondi-
tions of actions, where properties are expressed by a variant
of LTL over ALC assertions [Baader er al., 2008]. Second,
they encode programs by finite Biichi automata instead of the
fully-fledged GOLOG language. They could show that under
these restrictions, verification reduces to a decidable reason-
ing task within the underlying description logic.

Although this is a step in the right direction, it requires
harsh restrictions in terms of expressiveness. In particular,
representing programs through Biichi automata loses one im-
portant feature of GOLOG, namely the possibility to include
test conditions in the form of formulas. Moreover, represent-
ing action effects within ALC only allows for basic STRIPS-
style addition and deletion of literals. While decidability can
obviously not be achieved without any restrictions on the in-
put languages, the high, first-order expressiveness of the Situ-
ation Calculus and GOLOG is typically considered a desirable
feature and the reason why these languages were chosen in
the first place, and one would rather give up as little as possi-
ble of it. Ideally, we could do the verification within the very
same expressive formalism and with the same reasoning tools
that are used for the actual control of the agent.

In this paper, we show that this is indeed possible for a rele-
vant subset of the formalism. In order to achieve decidability
for first-order equivalence checks, we rely on results by Gu
and Soutchanski [Gu and Soutchanski, 2010] who presented
a modified version of the Situation Calculus built using a two-
variable fragment of first-order logic and a variant of Reiter’s
regression operator such that the reasoning task of projection
becomes decidable. Since (as we will see later) this is in it-
self not sufficient to guarantee the termination of the over-
all verification method, we moreover consider special classes
of successor state axioms from the literature to be used in
the agent’s basic action theory, namely the context-free [Lin
and Reiter, 1997] ones as well as those that only admit lo-
cal effects [Liu and Levesque, 2005], and prove that under
these prerequisites, a termination guarantee can be given for
the verification methods if we restrict the GOLOG program
to contain ground actions only. Note that our restrictions al-
low us to retain a great deal of (first-order) expressiveness,
including test conditions in programs and conditional action
effects.

The remainder of this paper is organized as follows. In the
following section, we briefly recapitulate the logic £S5. Sec-
tion 3 then presents the verification procedures we consider.
In Section 4, we present a decidable subset of &S that is sim-
ilar to Gu and Soutchanski’s two-variable Situation Calculus
fragment. Sections 6 and 5 contain the main results of this

14

paper, namely the decidability of the verification methods for
the above mentioned classes of basic action theories. Section
7 reviews related work before we conclude in Section 8.

2 The Logic £5G

2.1 Syntax

The language is a first-order modal dialect with equality and
sorts of type object and action. It includes countably in-
finitely many standard names for each sort. Also included are
both fluent and rigid predicate and function symbols. Fluents
vary as the result of actions, but rigids do not. We assume that
the fluents include unary predicates Poss and Ezo, whose ar-
gument is of type action and which will be used to specify
when an action is executable or exogenous, respectively.

The logical connectives are A, —, V, together with these
modal operators: X, U, [4], and [d], where § is a program as
defined below. Other connectives like V, D, C, =, and J are
used as the usual abbreviations.

Program constructs are logical (built-in) symbols with a
fixed meaning. The programs we consider are the ones ad-
mitted by the following grammar:

o=t | a? | 61;(52 | 51‘52 | Tx.0 | (51"(52 | o (1)

That is we allow primitive actions ¢ (where ¢ can be any ac-
tion term), tests a? (where «v is a static situation formula as
defined below), sequence, nondeterministic branching, non-
deterministic choice of argument, concurrency, and nondeter-
ministic iteration. Moreover, conditionals and loops can be
defined in terms of the above constructs:

if ¢ then &, else &, endIf < [¢7,5,] | [~67: 6] (2)
3

The infinite loop, also abbreviated as §*, is further given by:

while ¢ do § endWhile 2 [¢7;5]"; —¢?

“

Formulas come in two different “flavours”, as given by the
following definitions:

loop § endLoop ““J while T do 5 endWhile

Definition 1 (Situation Formulas). The situation formulas are
the least set such that

e if t1,...,t; are terms and P is a (fluent or rigid) k-ary
predicate symbol, then P(¢q,...,¢x) is a situation for-
mula;

e if t; and ¢y are terms, then (¢; = t2) is a situation for-
mula;

e if & and § are situation formulas, x is a variable, P is a
(fluent or rigid) predicate symbol, § is a program, and ¢
is a trace formula (defined below), then oA 3, -, V. v,
VP.a, Oa, [0]a (“av holds after executing §”), and [0] ¢
(“temporal property ¢ holds for all executions of §”) are
situation formulas.

Situation formulas, roughly, express properties wrt a given
situation and possibly future situations, that is, the formu-
las may include references to future situations by means of
[-], O, or [-]. Moreover, let (6)a = —[§]—« and {(0))p =

—[6]—p. A situation formula « is called fluent when it con-
tains no [-], no [J, and no [-]| operators, nor any of the special
fluents Poss and Ezo. It is called static when it contains no
[-], no O and no [-] operators. It is bounded when it con-
tains no J operators, no [-]| operators, and [t] operators only
in case the argument is an action term t.

Definition 2 (Trace Formulas). The trace formulas are the
least set such that

e if v is a situation formula, then it is also a trace formula;

e if ¢ and ¢ are trace formulas and x is a variable, then ¢ A
¥, 2o, V., X¢ (“¢ holds in the next situation”), and
o U ¥ (“¢ holds until ¥ holds”) are also trace formulas.

Trace formulas, as the name suggests, are used to talk about
traces of situations, i.e. finite or infinite sequences of actions.
We will use them for representing the temporal properties of
program execution traces. In addition to the usual abbrevi-
ations, we also have F¢p = (T U ¢) (“eventually ¢”) and
Gp = - F-¢ (“always ¢”).

2.2 Semantics
Terms and formulas are interpreted with respect to worlds:

Definition 3 (Worlds). Let Pp and P 4 denote the set of prim-
itive terms of sort object, and action, respectively, where a
primitive term is of the form f(ny,...,n;), where all the n;
are standard names. Similarly, let Pr be the set of all prim-
itive formulas F'(nq,...,ng). Moreover, let No and A4 be
the sets of all standard names of sort object and action, re-
spectively, N' = Np UN 4, and Z = N4 * the set of all finite
sequences of action names. A world w then is a mapping

e w:PpxZ— Npand
e w:PyxZ—N4and
o w:PpxZ—{0,1}

satisfying the following constraints:

Rigidity: If R is a rigid function or predicate symbol,
then for all 2,2/ € 2Z, w[R(ny,...,ng),z2|
w[R(n1,...,nk), 2]

Unique names for actions: If g(7) and ¢/(77’) are two dis-
tinct primitive action terms, then for all z € 2Z,
wlg(ii), 2] # wlg' (), 2].

Let W denote the set of all worlds.

A world thus maps primitive terms to co-referring standard
names of the corresponding sort, and primitive formulas to
truth values. The rigidity constraint ensures that rigid sym-
bols do not take different values in different situations, as ex-
pected. We further incorporate the unique names assumption
for actions into our logic’s semantics, as opposed to the Situ-
ation Calculus where this is typically asserted axiomatically.

Definition 4 (Denotation of Terms). Given a ground term ¢, a
world w, and an action sequence z € Z, we define [t|Z (read:
“the co-referring standard name for ¢ given w and 2”) by:

1. If t € NV, then [t]Z, = ¢;

2. ift = f(tl, . ,tk), then |t|fu = w[f(nl, .
where n; = |t;]Z,

7nk)7 Z]a

15

To interpret programs, we need the notion of program con-
figurations. A configuration (z,d) consists of an action se-
quence z and a program ¢, where intuitively z is the history
of actions that have already been performed, while ¢ is the
program that remains to be executed. Then we define the
possible transitions and finality of programs as follows:

Definition 5 (Program Transition Semantics). The transition

relation > among configurations, given a world w, is the
least set satisfying

L (z,t) = <Z'p, T7),if p = [t]7;
2. (2,61362) 5 (2 p, 73 02), if (2,61) ~> (2 p,7)s
3. (2, 61,62) 2 (z-p,0"),
if (z,0,) € F¥ and (z,02) — (2 - p,8');
4. (z,01]|92) 2 (z-p,0"),
if (z,01) 2 (z-p,d') or (z,d2) = (2 -p,0');

(z,m2.6) 2 (2 p,d),

if (2,0%) 2 (2 - p,d') for some n € Np;
(2,6%) B (2 p,y;0%),if (2,6)
 A{2,61]02) = (2 - p, 8" |62), if (2,81) = (2 - p,d');
8. (2,0162) = (2 - p,81]|0"), if (2,00) > (z-p,).

Above, N, means the set of all standard names of the same
sort as x, and d;- refers to J with x replaced by n.

The set of final configurations F7* of a world w is the
smallest set such that

(z,a?) € F¥ ifw,z E a

z,01;02) € FVif (z,01) € F*¥ and (z,d3) € F¥;
z,01|02) € F¥ if (2,01) € F¥ or (z,02) € Fv;
z,mx.8) € FYif (z,0%) € F* for some n € Ny;
2,8%) € Fu;

. (z,01]02) € F*if (2,61) € F* and (z,02) € Fv.

Temporal properties that we express by situation formulas re-
fer to traces, as defined below.

<Z 'p7’y>;

= o

[y

(
(
(
(

wok v

)}

Definition 6 (Traces). A frace is a possibly infinite sequence
of action standard names. As a notational convention, we use
T to denote arbitrary traces, z for finite ones and 7 for infinite
ones. Let II = A4“ be the set of all infinite traces, and
T = Z UTI the set of all traces. Furthermore, let 7(*) stand
for the finite sequence that consists of the first ¢ elements of
7, where 7(%) is the empty sequence ().

We can now define the traces admitted by a given program:

Definition 7 (Traces of Programs). Let 2y * denote the re-

flexive and transitive closure of —. Given a world w and a
finite sequence of action standard names z, the set of traces
[0]|Z, of a program § is the set

{ € Z|(2,6) Bz-2,8), (- 2,8) e F*} U
{(rell] (2,0 5 (z-7W 6) & (-7 5,)

where foralli > 0, (z -7\ §;) & F}

In words, the finite traces admitted by some § given w and z
are those that correspond to a finite number of transitions by
means of which a final configuration is reachable. Its infinite
traces are given by all infinite sequences of transitions that
never visit any final configuration.

Situation and Trace Formulas
We are now equipped to define the truth of formulas:
Definition 8 (Truth of Situation and Trace Formulas). Given

a world w € W and a situation formula «, we define w = «
as w, () = a, where for any z € Z:

l. w,z &= F(t1,...,tg) iff w[F(ny,...,nk),2] = 1,
where n; = |t;|%;
2. w,z = (t1 = tg) iff ny and ny are identical, where

ni = [l

w,z EaANfiffw,zEaandw,z | F;
w,z | —aiffw, z E a;

w, z EVz.aiffw, z | of foralln € Ny;
w,z = Oaiffw,z- 2 Eaforal 2’ € Z;
w, z = [0)a iff for all finite 2’ € |J]Z, w,z- 2 |E «a;
8. w,z = [d]¢iff forall T € |]Z%, w,z,7T | ¢.

The truth of trace formulas ¢ is defined as follows for w € W,
z € Z,and traces 7 € T:

l. w,2z,7 E aiffw, z |E a, if « is a situation formula;
w,z, T EANYiffw,z, 7 |E dand w, z, T = 1;
w,z, T E o iff w, z, 7 = ¢

w,z, 7 EVr.giffw, 2,7 | ¢F forall n € N;
w,z, 7 = X¢iffr=p-7 andw,z - p, 7" = ¢;

w,z,7 = ¢ U 4 iff there is 2’ such that 7 = 2/ - 7/
and w,z - 2/, 7" = ¢ and for all 2" # 2’ with 2/
2w,z 2T =

N kW

AN

2.3 Basic Action Theories and Regression

Definition 9. A basic action theory (BAT) ¥ = ¥y U X, U
Ypost U Yexo describes the dynamics of a specific application
domain, where

1. Yo, the initial database, is a finite set of fluent sentences
describing the initial state of the world.

2. ¥, is a precondition axiom of the form OPoss(a) = ,
with 7 being a fluent formula, whose only free variable
is a, describing precisely the conditions under which a
is a possible action.

3. Ypos 1s a finite set of successor state axioms (SSAs), one
for each fluent relevant to the application domain, in-
corporating Reiter’s [Reiter, 2001] solution to the frame
problem, and encoding the effects the actions have on
the different fluents. The SSA for a fluent predicate has
the form O[a] F(Z) = v} V F(Z) A —j, whereas the
one for a functional fluent is of the form Ola]f(Z) =
Yy = 7? vV (f(Z) =y) A —Ey"y?z,, where 7}- and v
are fluent formulas with free variables &, and w;r one
with free variables among & and y.

16

4. ¥, 1s the exogenous actions axiom, having the form
OFEzo(a) = x, where x is again a fluent formula with
the free variable a. It is used to express the necessary
and sufficient conditions under which an action is exoge-
nous, i.e. not controlled by the agent, but by “nature”.

Our algorithm relies on the equivalent of Reiter’s regression
operator R[a]. Roughly, the idea is that, whenever we en-
counter a subformula of the form [¢]F'(Z) within o, where ¢ is
an action term, we may substitute it by the right-hand side of
the successor state axiom of the fluent F'. This is sound in the
sense that the axiom defines the two expressions to be equiv-
alent. The result of the substitution will be true in exactly
the same worlds satisfying the action theory ¥ as the origi-
nal one, but contains one less modal operator [¢]. Similarly,
Poss(t) and Exo(t) are replaced by the right-hand sides of
the corresponding axiom. By iteratively applying such sub-
stitutions, we eventually get a fluent formula that describes
exactly the conditions on the initial situation under which the
original, non-static formula holds:

Theorem 10. Let X be a BAT and o a bounded sentence.
Then R[], the regression of «, is a fluent sentence and

Y Ea if So ERal

3 Verification in £S§

We encode the space of reachable program configurations by
a characteristic graph Gs = (vg, V, E) for a given program
. The nodes V' in such a graph are of the form (¢, ¢), de-
noting the remaining program of a current run and the con-
dition under which execution may terminate there. v is the
initial node. Edges in E are labeled with tuples 7 : ¢/,
where 7 is a list of variables (if it is empty, we omit the lead-
ing), t is an action term and ¢ is a formula (which we
omit when it is T). Intuitively, this means when one wants
to take action ¢, one has to choose instantiations for the &
and 1 must hold. Due to lack of space, we omit the for-
mal definition of characteristic graphs and refer the interested
reader to [ClaBen and Lakemeyer, 2008]. Figure 1 shows the
graph corresponding to d,opot | deros Where d,op0t denotes the
control program presented in the introduction and J.,, is the
encoding of exogenous actions. Here it consists simply of
the requestDDR(x,y), which should be read as “requesting
the removal of dirty dish z from room y.” The nodes are
Vo = <5robot Héexoa J—> and v; = <(517 6T0b0t)”66107 J_>, where
07 is the program

(rx.DirtyDish(x,y)?; load(z,y))";
—3z. DirtyDish(x,y)?; goToKitchen.

The verification algorithms work on labels of the charac-
teristic graph, where a label is given by (v,) withv € V
and 1) being a fluent formula. Intuitively, it represents all pro-
gram configurations corresponding to v as well as all worlds
w and action name sequences z satisfying ¢. A labelling is
then given by a set of labels, one for each node of the graph.
We need the following operations on labellings, as formal-
ized below: Initial labelling with a formula, conjunction and
disjunction of labellings, extraction of the label formula from

[z, y : requestDDR(x, y)] [z, y : requestDDR(x, y)]

7y : goToRoom(y)/
(—3x.0OnRobot(x))

goToKitchen/
(—3z.DirtyDish(z, y))
7z : unload(x)

7z : load(x,
(3$4OnRoth(z§) (z,)/

(3z. DirtyDish(z, y))
Figure 1: Characteristic graph for the robot example

the initial node, and the pre-image of a labelling:

o] € {(v,0) [veV}

Ly AND Lo “ {0,901 A o) | (0,401) € Ly, (v,4bs) € Lo}
L1 OR Lo “ {0,901 V o) | (0,401) € Ly, (v,4bs) € Lo}
INITLABEL[(V, E, vo), L] 2 4 such that (vo, ¥)) € L

LABELKK Ea v0>7

PRE[(V, E,vo), L] & {(v, PRE[v, L]) | v € V}
where
PRE[v, L] </
\/ {REZG A (0] |v 222 o € B, (o), 0) € L}

Roughly, the pre-image of a label gives us a description of
the predecessor configuration of that label. (Note the use of
regression to eliminate the action term ¢.)

The verification algorithm works on a CTL-like fragment

of £5G:

(ti=t2) | F(E) | o N |~ | Tz
(NG | (N U ¢

where we assume that J is a non-terminating program of the
form §,%| - - - |x“. The algorithm then applies the following
transformation.

L 5)

Definition 11. Let 3 be a BAT and ¢ a formula according to
(5). Then C[y], the verification transformation of ¢ wrt ¥, is
inductively defined by

1. C[(ty = t2)] = (t1 = ta);

2. CIF(F)] = F(f);

3. Clpr A 2] = Clpr] AClepa);

4. Cl~yp] = =Clel;

5. C[Fx.] = Fx.Clyp];

6. C[(0)G o] = CHECKEG[5, C[¢]];

7. Cl{(8)e U] = CHECKEUS,Cle], C[u].

The procedure for the case of the “always” operator G is as
follows:

17

Procedure 1 CHECKEGIJ, ¢]
1: L' := LABEL[Gs, L];
2: L := LABEL[Gy, ¢];
while L # L' do
4 L' =1L;
5: L := L' AND PRE[Gs, L'];
6: end while
7: return INITLABEL[Gs, L]

(O8]

The while loop is exited once L = L’ holds, defined as fol-

lows:

L1 = Ly iff forallv w1th (v,91) € Ly and (v,1s) € Lo,
Fi=

A similar procedure is used for the “until” operator U :

Procedure 2 CHECKEU(J, 1, 2]

1: L' :== LABEL[Gs, 1];
2: L := LABEL[Gs, T];
3: while L # L' do
L' =1L;
L := L' AND PRE[Gs,
end while
L’ := LABEL[Gs, T];
L := LABEL[Gs, 2] AND L;
9: while L # L' do
10 L':=1L;
11: L := L' OR (LABEL[Gs, ¢1] AND PRE[Gs, L’
12: end while
13: return INITLABEL[G, L]

L';

B A

1

The algorithm is sound in the following sense:

Theorem 12 ([ClaBen and Lakemeyer, 2008]). Let X be a
BAT, 6 a program and @ a fluent sentence. Then if the com-
putation of C|p)] terminates, it is a fluent sentence and

X E e iff Yo FClp]
4 Decidability

The algorithms presented in the previous section cannot be
guaranteed to terminate for two reasons. On the one hand,
equivalence checks over first-order formulas as applied in the
conditions of the while loops are in general undecidable. On
the other hand, even if all equivalence checks terminate, the
fixpoint approximation loops may never converge.

As for the first source of non-termination, we can exploit
results by Gu and Soutchanski [2010] who present a two-
variable fragment of the Situation Calculus for which the pro-
jection problem (solved by means of regression) is decidable.
Here we capture this fragment as a subset of the situation for-
mulas of £SG. We refer to this sublanguage as £S2.

Definition 13. £S5 is the subset of situation formulas accord-
ing to Definition 1 that do not contain any [-] operators and
where [t] operators are restricted to action terms ¢. In addition
the following constraints are satisfied:

e there are no object terms other than the variables x and
y or rigid constant symbols;

e all action function symbols have at most two arguments;

e fluents have at most two arguments.

In £S? a regressable formula has to be bounded and its action
terms have to be ground. Furthermore, the regression opera-
tor R is modified such that by means of appropriate substitu-
tions, no new variable is introduced in the process of regres-
sion. For details, the interested reader is referred to Gu and
Soutchanski’s article [2010]. We then have that projection is
decidable in £S:

Theorem 14. Let o be a regressable sentence of ES* with-
out standard names and %> a BAT in ES*. Then ¥ |= « is
decidable.

Proof. (Sketch) The proof idea for this theorem is to map
£S? to the decidable fragment £2F introduced by Gu and
Soutchanski. We use a similar reduction as Lakemeyer and
Levesque [2010] who embed &S in the original Situation Cal-
culus. Thus, because EECL is decidable, £S? is decidable
too. O

Resorting to a decidable base logic is unfortunately not suffi-
cient to also eliminate the second source of non-termination
of the verification algorithms. To see why, consider a simple
BAT with the single fluent /' whose successor state axiom is
Ofa]F(z) = 3y.F(y) A S(x,y) (where S is rigid). Let ¢ be
the program loop : ¢ for some ground action ¢ and ((§)) GF'(c)
the sentence to verify, for some constant c. The characteristic
graph of ¢ has only one node vy and one edge from vg to vy
with the label t. Applying Procedure 1, we get the following
label sets L in subsequent iterations:

Lo = {{vo, F(c))},
= {{vo, F'(c) A 3y.F(y) A S(c,)},
{{vo, F'(e) A By-F(y) A S(e,y)] A
Jy.Jx. F(x) A S(y,z) ANS(c,y))},
Lz = {{vo, F(c) A [Fy-F(y) A S(c,y)] A
Jy.Jz.F(x) AN S(y,x) AS(c,y)
Fy.3z.[Fy.F(y) A S(z,y)] A S(y,z) A S(e,y))},

Ly
L,

Obviously, none of the formulas in this sequence is equivalent
to its predecessor, and hence the algorithm never converges.
Note also that we remain within £S? due to re-using the two
variable symbols z and y.

S Decidability with context-free BATs

The first possibility is to restrict oneself to BATs with context-
free SSAs:

Definition 15 (Context-free Successor State Axioms [Lin and
Reiter, 19971). A successor state axiom is context-free if its
effect conditions, v} (7, @) and v (%, a), contain no fluents
(but maybe rigids). A BAT is context-free if each successor
state axiom is context-free.

18

In order to ensure our prerequisite that formulas to be re-
gressed only contain ground terms, we prohibit the usage of
the non-deterministic pick operator m. Note that this is not
such a harsh restriction as this still allows to use a “pseudo-
pick” that quantifies over a finite domain of constants:

def

.7Ck}.5

We then have the following theorem:

mx: {eq, .. og |-+ 10z, -

Theorem 16. If X is a context-free BAT and § a program
without pick operators, Procedures I and 2 will terminate.

Proof. (Sketch) The central property for the proof of this the-
orem is the following:

R[[EIR[[tn] - [ti] - .- [tr)e]] = R[[ta] .- [t] - - - [t1)e]].

That is, regressing ¢ through the same ground action multiple
times produces an equivalent result as only regressing once
through that action. Because the program (and thus the char-
acteristic graph) has only finitely many actions all of which
are ground, there are ony finitely many such sequences of ac-
tions to consider. We then exploit the fact that the bodies of
all loops in the procedures are monotone, i.e. they either al-
ways produce a subsumer of the previous label formula, or a
subsumed one. Hence, eventually the label set converges. [

6 Decidability with local-effect BATs

The other option to ensure termination is to restrict ourselves
to BATs whose SSAs are local-effect:

Definition 17 (Local-effect Successor State Axioms [Liu and
Levesque, 2005]). A successor state axiom is local-effect if
both 7} (7, a) and v (¥, a) are disjunctions of formulas of
the form 3Z[a = A(¥) A ¢(¥)], where A is an action function,
4/ contains Z, 7 is the remaining variables of i. ¢ is called a
context formula and contains no quantifiers. A BAT is local-
effect if each successor state axiom is local-effect.

Then we have:

Theorem 18. If Y is a local-effect BAT and § a program with-
out pick operators, Procedures 1 and 2 will terminate.

Proof. (Sketch) The proof of this theorem relies on the fact
that we have only finitely many action terms in the graph (all
of which are ground) and only finitely many fluents in the
action theory. Furthermore, instantiating a successor state ax-
iom by a ground action during regression yields a quantifier-
free formula. Since there are only finitely many such instanti-
ations and only finitely many edge condition formulas in the
graph, we get finitely many equivalence classes of possible
label formulas. Using the monotonicity argument again, ter-
mination is guaranteed. U

Example 19. Recapitulating the example from the begin-
ning, we show here a verification run for a local-effect BAT.
Fortunately, the example is already in the two-variable frag-
ment. We only need to change the program slightly by replac-
ing the pick operators by the pseudo-picks. Then we have the

following successor state axioms:

Ola] DirtyDish(x,y) = a = requestDDR(x,y) V
DirtyDish(x,y) A —[a = load(x, y)]
Ola] OnRobot(z) = Jy. a = load(z,y) V
OnRobot(x) A —[a = unload(x)].
We omit other fluents like the location of the robot for sim-
plicity. Additionally, we have the following precondition ax-
iom:
OPoss(a) =
[Fz,y. a = load(x,y)]

[Fz,y. a = requestDDR(x,y)] V
V [3z. a = unload(x)].

The only exogenous actions axiom is
OFzo(a) = 3z, y. a = requestDDR(x, y).

Finally, the following is the GOLOG program ¢/ , . with
pseudo-picks, where d; is a constant for a dish and r; for a
room:

loop : while (3x.OnRobot(x)) do
7wz : {dy,ds,ds}. unload(x)
endWhile;
wy : {r1,r2}.goToRoom(y);
while (3z. DirtyDish(z,y)) d
T {d17d2,d3}.load(T,y
endWhile;
goToKitchen

v)

We now want to verify the following formula ¢ for &7 , .:
=3z, y.(0! por) GDirtyDish(z, y). This means there cannot
be any infinite run of ¢/ , , where some dish in some room
remains dirty forever. The algorithm starts with C[] resulting
in =3z, y.CHECKEG?! ., DirtyDish(zx,y)]. Then Proce-
dure 1 starts with the following label set:

Lo = {{(vo, DirtyDish(x,y)), (v1, DirtyDish(z,

vo, Lo
R[(=3z.OnRobot(z)) A

[goToRoom(ry1)] DirtyDish(x,y)] V
R[(=3z.OnRobot(x))A

[goToRoom(rz)|DirtyDish(x,y

R[[requestDDR(dy, r1)] DirtyDz'sh(

R[[requestDDR(ds, rq (

requestDDR(d3, rq DzrtyDzsh(

(

(

(

YN}
RE[v

requestDDR(dy, ra

Jx.OnRobot(x)) Aunload(dy)] DirtyDish(x,

(z) YV
. OnRobot(x)) A[unload(ds)] DirtyDish(zx,
(z)
)

yIv
y)]

[)
[)
[)
[requestDDR(ds,r2)
[)
[[
[[

[
[
[
[
[requestDDR(ds, r2)| DirtyDish(x, y)] V
(
(

AANAIIAIA

[(3z.OnRobot(x)) Alunload(ds)| DirtyDish(x, y
(=3z.0OnRobot(x)) A DirtyDish(z,y) V

x =dy Ny =ryV DirtyDish(z,y) V

x=do Ny =1V DirtyDish(z,y) V

19

x =d3 ANy =r1V DirtyDish(z,
x=dy Ny =rg V DirtyDish(z,
x=dy ANy =1y V DirtyDish(x
x =ds ANy =rqV DirtyDish(z,y) V
(3x.0OnRobot(x)) A DirtyDish(z,y)
=r=diANy=rmVer=doANy=nr1V
r=dsANy=rmVe=dANy=ryV
r=do ANy=roVr=dsANy=rgV
DirtyDish(x,y)
PRE[v1, L)
= R[(—3x.DirtyDish(xz,r1)) A
[go ToKitchen] DirtyDish(x,y)] V
R[(—3z.DirtyDish(x,r2)) A
[go ToKitchen] DirtyDish(x,y)] V

y) Vv
y) Vv
y) Vv

)

R|[requestDDR(dy, r1)|DirtyDish(x, y)] V
R|[requestDDR(dz, r1)|DirtyDish(x, y)] V
R|[requestDDR(ds, r1)|DirtyDish(x,y)] V
R|[requestDDR(dy, ro)|DirtyDish(x, y)] V
R|[requestDDR(ds, ro)| DirtyDish(x, y)] V
R|[requestDDR(d3, r2)| DirtyDish(z, y)] V
R[(3zx.DirtyDish(z, 1)) A[load(d1, r1)]|DirtyDish(x, y)|V
R[(3zx.DirtyDish(z, 1)) A[load(ds, r1)]DirtyDish(x, y)|V
R[(3zx.DirtyDish(x, 1)) N[load(ds, r1)]DirtyDish(z, y)|V
R[(3zx.DirtyDish(x,r2))A[load(dy, ro)]DirtyDish(z, y)|V
R[(Fzx.DirtyDish(x, 1)) AN[load(ds, ro)]DirtyDish(x, y)|V
R[(Fx.DirtyDish(x, 1)) A[load(ds, ro)|DirtyDish(x, y)]

=x=diNy=riVe=doNy=riVr=dsAy=r1V
r=diANy=roVr=doAy=roVa=dsA\y=ryV
DirtyDish(x,y)

L, = Lo AND PRE|[Gs, Lo]
{{vo, DirtyDish(z,y)), (v1, DirtyDish(z,y))}

Now, Lg L, i.e. the algorithm terminates and returns
—3z,y.DirtyDish(x,y). Thus, there is no run with some
dish forever remaining dirty in some room iff there is no dirty
dish initially. Intuitively, this is correct because G¢ means
that ¢ persists to hold during the entire run, including the
initial situation. Therefore, only if a dish is dirty initially it
may happen that it never gets cleaned, namely when the robot
never visits the corresponding room. Note that excluding this
from happening would still allow the case where a dirty dish
occurs at a later time of the run (due to some requestDDR
action) and never gets cleaned from that moment on.

7 Related Work

The verification of non-terminating GOLOG programs was
first discussed by De Giacomo, Ternovska and Reiter [1997],
but only in the form of manual, meta-theoretic proofs, where
properties were expressed using p-calculus fixpoint formulas
instead of temporal modalities. The £SG language and the

automated verification methods used in this paper were intro-
duced by ClaBen and Lakemeyer [2008] and later extended
to a larger subset [2010]. However, they proved their algo-
rithms only to be sound, but could not give a general termina-
tion guarantee. De Giacomo, Lespérance and Pearce [2010]
applied the idea of verifying GOLOG programs through itera-
tive fixpoint approximations using characteristic graphs in the
context of games and multi-agent systems, where properties
are expressed in Alternating-Time Temporal Logic. De Gi-
acomo, Lespérance and Patrizi [2012] define the class of
bounded action theories, for which they show that the veri-
fication of a certain class of first-order pu-calculus temporal
properties is decidable.

8 Conclusion

In this paper, we showed that the problem of verifying non-
terminating GOLOG programs is indeed decidable for a rele-
vant subset of the formalism, which was achieved by means
of three restrictions. First, we used the &S variant of a decid-
able two-variable fragment of the Situation Calculus as intro-
duced by Gu and Soutchanski. Second, we have to restrict the
GOLOG program to contain ground action only. Finally, we
considered special classes of successor state axioms, namely
the context-free ones and those that only admit local effects.
Interesting lines of future work would be to come up with a
solution for re-introducing the original pick operator and to
obtain complexity results for our approach.

References

[Baader er al., 2003] Franz Baader, Diego Calvanese, Deb-
orah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge
University Press, 2003.

[Baader er al., 2005] Franz Baader, Carsten Lutz, Maja
Milicié, Ulrike Sattler, and Frank Wolter. Integrating de-
scription logics and action formalisms: First results. In
Proc. AAAI 2005, pages 572-577. AAAI Press, 2005.

[Baader et al., 2008] Franz Baader, Silvio Ghilardi,
Carsten Lutz. LTL over description logic axioms.
Proc. KR 2008, pages 684-694. AAAI Press, 2008.

[Baader er al., 2010] Franz Baader, Hongkai Liu, and Anees
ul Mehdi. Verifying properties of infinite sequences of de-
scription logic actions. In Proc. ECAI 2010, pages 53-58.
10S Press, 2010.

[Burgard et al., 1999] Wolfram Burgard, Armin B. Cremers,
Dieter Fox, Dirk Héhnel, Gerhard Lakemeyer, Dirk
Schulz, Walter Steiner, and Sebastian Thrun. Experiences
with an interactive museum tour-guide robot. Artificial In-
telligence, 114(1-2):3-55, 1999.

[ClaBen and Lakemeyer, 2008] Jens ClaBen and Gerhard
Lakemeyer. A logic for non-terminating Golog programs.
In Proc. KR 2008, pages 589-599. AAAI Press, 2008.

[ClaBen and Lakemeyer, 2010] Jens ClaBen and Gerhard
Lakemeyer. On the verification of very expressive tem-

poral properties of non-terminating Golog programs. In
Proc. ECAI 2010, pages 887-892. 10S Press, 2010.

and
In

20

[De Giacomo et al., 1997] Giuseppe De Giacomo, Evgenia
Ternovska, and Raymond Reiter. Non-terminating pro-
cesses in the situation calculus. In Working Notes of
“Robots, Softbots, Immobots: Theories of Action, Plan-
ning and Control”, AAAI’97 Workshop, 1997.

[De Giacomo et al., 2000] Giuseppe De Giacomo, Yves
Lespérance, and Hector J. Levesque. ConGolog, a con-
current programming language based on the situation cal-
culus. Artificial Intelligence, 121(1-2):109-169, 2000.

[De Giacomo et al., 2010] Giuseppe De Giacomo, Yves
Lespérance, and Adrian R. Pearce. Situation calculus
based programs for representing and reasoning about game
structures. In Proc. KR 2010, pages 445-455. AAAI Press,
2010.

[De Giacomo et al., 2012] Giuseppe De Giacomo, Yves
Lespérance, and Fabio Patrizi. Bounded situation calcu-
lus action theories and decidable verification. In Proc. KR
2012. AAAI Press, 2012.

[Gu and Soutchanski, 2010] Yilan Gu and Mikhail
Soutchanski. A description logic based situation calcu-
lus. Annals of Mathematics and Artificial Intelligence,
58(1-2):3-83, 2010.

[Lakemeyer and Levesque, 2010] Gerhard Lakemeyer and
Hector J. Levesque. A semantic characterization of a use-
ful fragment of the situation calculus with knowledge. Ar-
tificial Intelligence, 175(1):142-164, 2010.

[Levesque et al., 19971 Hector J. Levesque, Raymond Re-
iter, Yves Lespérance, Fangzhen Lin, and Richard B.
Scherl. GOLOG: A logic programming language for dy-
namic domains. Journal of Logic Programming, 31(1—
3):59-83, 1997.

[Lin and Reiter, 1997] Fangzhen Lin and Raymond Reiter.
How to progress a database. Artificial Intelligence, 92(1—
2):131-167, 1997.

[Liu and Levesque, 2005] Yongmei Liu and Hector J.
Levesque. Tractable reasoning with incomplete first-order
knowledge in dynamic systems with context-dependent
actions. In Proc. IJCAI 2005, pages 522-527. Professional
Book Center, 2005.

[McCarthy and Hayes, 1969] John McCarthy and Patrick
Hayes. Some philosophical problems from the standpoint
of artificial intelligence. In B. Meltzer and D. Michie, ed-
itors, Machine Intelligence 4, pages 463-502. American
Elsevier, New York, 1969.

[Reiter, 2001] Raymond Reiter. Knowledge in Action: Logi-
cal Foundations for Specifying and Implementing Dynam-
ical Systems. MIT Press, 2001.

Experiments in Infinite States Verification in Game-Theoretic Logics

Slawomir Kmiec and Yves Lespérance
Dept. of Computer Science and Engineering,
York University, Toronto, Canada
skmiec@cse.yorku.ca and lesperan@cse.yorku.ca

Abstract

Many practical problems where the environment is
not in the system’s control such as service orches-
tration and contingent and multi-agent planning can
be modelled in game-theoretic logics (e.g. ATL).
But most work on verification methods for such
logics is restricted to finite state cases. [De Gia-
como et al., 2010] develops a situation calculus-
based logical framework for representing such infi-
nite state game-type problems together with a veri-
fication method based on fixpoint approximates and
regression. In this paper, we describe some case
studies we have done to evaluate this method. We
specify some example domains and show that the
verification method does allow us to verify vari-
ous properties. We also find some examples where
the method must be extended to exploit informa-
tion about the initial state and state constraints in
order to work. Our example domains can be used
to evaluate other infinite state verification methods.

1 Introduction

Many practical problems where the environment is not com-
pletely under the system’s control, such as service orchestra-
tion and contingent and multi-agent planning, can be mod-
eled as games and specified in game-theoretic logics. There
has been much work to define such logics (e.g. ATL) and de-
velop verification methods for them, mainly model checking
techniques [Alur er al., 2002]. However, most such work is
restricted to finite state settings. [De Giacomo et al., 2010]
develops an expressive logical framework for specifying such
problems within the situation calculus [McCarthy and Hayes,
1969]. In their approach, a game-like problem/setting is rep-
resented as a situation calculus game structure, a special kind
of action theory that specifies who are the players, what the
legal moves are, etc. They also define a logic that combines
the p-calculus, game-theoretic path quantifiers as in ATL, and
first-order quantification, for specifying properties about such
game settings. As well, they propose a procedural language
for defining game settings, GameGolog, which is based on
ConGolog [De Giacomo et al., 2000]. Finally, they propose
a method for verifying temporal properties over infinite state

21

game structures that is based on fixpoint approximates and re-
gression. The method is also adapted for GameGolog-defined
settings to exploit a compact “characteristic graph” [ClaBen
and Lakemeyer, 2008] representation of the program’s con-
figuration space.

While [De Giacomo et al., 2010] give examples to illustrate
the expressiveness and convenience of their formalism, they
recognize that their work is essentially theoretical and call for
experimental studies to understand whether these techniques
actually work in practice. This is what we begin to address in
this paper. We develop several example problems involving
infinite state domains and represent them as situation calculus
game structures. We then examine whether the [De Giacomo
et al., 2010] fixpoint approximates verification method works
to verify common temporal properties. In many cases, it does
indeed work. So to some extent, our work validates the [De
Giacomo et al., 2010] proposal.

We do however find other examples where the [De Gia-
como ef al., 2010] method does not converge in a finite num-
ber of steps. We note that the method uses only the simplest
part of the action theory, the unique name and domain clo-
sure axioms, to try to show that successive approximates are
equivalent (after performing regression). Clearly, using the
whole action theory is problematic as it includes a second or-
der axiom to specify the domain of situations. We show that
in some cases, adding a few key facts that are entailed by
the entire theory (from simple axioms about the initial state
to state constraints proven by induction) is sufficient to get
convergence in a finite number of steps. This means that the
method can be used successfully in a wider range of problems
if we can rely on the modeler to identify such facts. Thus, our
case studies show that the methods introduced in [De Gia-
como et al., 2010] often do work for infinite domains, where
very few verification methods are available, and allow rea-
soning about a range of game problems. Note that in our case
studies, the fixpoint approximation method was performed
manually. We discuss implementation in the conclusion.

2 Situation Calculus Game Structures

2.1 Situation Calculus and Basic Action Theories

The Situation Calculus (SitCalc) is a many sorted predicate
logic language for representing dynamically changing worlds
in which all changes are the result of named actions [Mc-

Carthy and Hayes, 1969; Reiter, 2001]. Actions are terms
in the language, e.g. pickup(R, X) could represent an action
where a robot R picks up an object X. Action terms are de-
noted by « possibly with subscripts to differentiate different
action terms. Action variables are denoted by lower case let-
ters a possibly with subscripts. Action types, i.e. actions func-
tions, which may require parameters, are denoted by upper
case letters A possibly with subscripts. Situations represent
possible world histories and are terms in the language. The
distinguished constant Sy denotes the initial situation where
no action has yet been performed. The distinguished func-
tion symbol do is used to build sequences of actions such that
do(a, s) denotes the successor situation that results from per-
forming action a in situation s. Fluents are predicates or func-
tions whose values may vary from situation to situation. They
are denoted by symbols that take a situation term as their last
argument. A distinguished predicate symbol Poss(a,s) is used
to state that an action a is executable in a situation s.

Given this language, one can specify action theories that
describe how the world changes as the result of the available
actions. We focus on basic action theories as proposed in
[Reiter, 2001]. We assume that there is a finite number of ac-
tion types in the domains we consider. Thus a basic action
theory D is the union of the following disjoint sets: the foun-
dational, domain independent axioms of the situation calculus
(2); precondition axioms stating when actions can be legally
performed (D,,s5); successor state axioms describing how
fluents change between situations (Dss,); unique name ax-
ioms for actions and domain closure on action types (D.,);
and axioms describing the initial configuration of the world
(Ds,). Successor state axioms specify the value of fluents in
situation do(a, s) in terms of the action a and the value of flu-
ents in situation s; they encode the causal laws of the world
and provide a solution to the frame problem.

2.2 Situation Calculus Game Structure Definitions

Situation calculus game structures, proposed by [De Gia-
como et al., 2010], are a specialization of basic action theories
that allow multi-agent game-like settings to be modeled. In
SitCalc game structures, every action a has an agent parame-
ter and the distinguished function agent(a) returns the agent
of the action. Axioms for the agent function are specified for
every action type and by convention the agent parameter is
the first argument of any action type. It is assumed that there
is a finite set Agents of agents who are denoted by unique
names. Actions are divided into two groups: choice actions
and standard actions. Choice actions model the decisions of
agents and they are assumed to have no effect on any fluent
other than Poss, Legal, and Control. Poss(a,s) specifies
that an action a is physically possible (i.e. executable) in situ-
ation s. Choice actions are always physically possible. Stan-
dard actions are the other non-choice actions. There is also
a distinguished predicate Legal(s) that is a stronger version
of possibility/legality and models the game structure of inter-
est. It specifies what actions an agent may execute and what
choices can be made according to the rules of the game. The
axioms provided for Legal specify the game of interest. It is
required that the axioms for Legal entail 3 properties:

1. Legal implies physically possible

22

Legal(s) D s = SpV3a,s'.s =do(a,s") N Poss(a,s)
legal situations are result of an action performed in legal
situations

Legal(s) D s = So V 3Ja,s’.s = do(a, s") A\ Legal(s")
only one agent can act in a legal situation
Legal(do(a, s)) A Legal(do(a’,s)) D agent(a)
agent(a’)

Control(agt, s) holds if agent agt is the one that is in control
and can act in a legal situation s; it is defined as follows:

Control(agt, s) = Ja.Legal(do(a, s)) A agent(a) = agt

As a result of the above constraints on Legal, it follows
that the predicate C'ontrol holds for only one agent in a
any given legal situation. As explained in [De Giacomo et
al., 2010], games where several agents act simultaneously
can be modeled using a round-robin of choice actions; if the
result of such simultaneous choices is non-deterministic, a
“game master” agent that makes the decision can be intro-
duced. It is worth noting that the state of the game in situa-
tion s is captured by the fluents. Finally, [De Giacomo er al.,
2010] define a SitCalc game structure to be an action theory
DGS =X UDposs U Dssa U Dca UDSO U,Z)legal where Dlegal
contains the axioms for Legal and C'ontrol and for the func-
tion agent(), and the other components are as for standard
basic action theories. Note that here, a game structure is a
type of situation calculus theory and not a single game model
as is often the case.

2.3 Property Language

[De Giacomo et al., 2010] introduces a logical language £
for expressing temporal properties of game structures. It is
inspired by ATL [Alur et al., 2002] and based on the u-
calculus [Park, 1976], as used over game structures as in
[Bradfield and Stirling, 2007]. The key element of the L£-
logic is the ((G)) O ¢ operator defined as follows:

(G) Op =
(Jagt € G. Control(agt, now) A
Ja. agent(a) = agt A
Legal(do(a, now)) A ¢[do(a, now)]) V
(Jagt ¢ G. Control(agt, now) A
Va. agent(a) = agt A
Legal(do(a, now)) D ¢[do(a, now)])

This operator, in essence, specifies that a coalition G of agents
can ensure that ¢ holds next, i.e. after one more action, as
follows. If an agent from the coalition G is in control in the
current situation, then all we need is that there be some legal
action that this agent can perform to make the formula ¢ hold.
If the agent in control is not in coalition G, then what we need
is that regardless of the action taken by the in-control agent
(for all) the formula ¢ holds after the action. The whole logic
L is defined as follows:

(GHOVYIGCIOY | nz(2).¥(2(F)) | vZ(T).W(Z(T)).
In the above ¢ is an arbitrary, possibly open, situation-

suppressed situation calculus uniform formula, Z is a pred-
icate variable of a given arity, ((G)) O ¥ is as defined above,

[G]] O ¥ is the dual of ((G)) O ¥ Ge., [[G] O¥ =
=((G)) O W), and p (resp. v) is the least (resp. greatest)
fixpoint operator from the p-calculus, where the argument is
written as WU (Z(Z)) to emphasize that Z (&) may occur free,
i.e., not quantified by p or v in W.

The language £ allows one to express arbitrary tempo-
ral/dynamic properties. For example, the property that group
G can ensure that eventually ¢(Z) (or has a strategy to achieve

©(Z)), where (Z) is a situation suppressed formula with free
variables &, may be expressed by the following least fixpoint
construction:

(@) 0p(T) = pZ (D). () v {(G)) O Z(7)
Similarly, group G’s ability to maintain a property ¢(Z) can
be expressed by the following greatest fixpoint construction:

(GNBp(T) = vZ(2).0(T) A ((G)) O Z(7)
We say that there is a path where ¢(Z) holds next if the set
of all agents can ensure that ¢(Z) holds next: 3 O p(Z) =
({Agents)) O ¢(Z). Similarly there is a path where (&)
eventually holds if the set of all agents has a strategy to

achieve p(Z): I0p(Z) = ((Agents))Op(Z).

2.4 Fixpoint Iteration Verification Method

[De Giacomo et al., 2010] propose a procedure based on
regression and fixpoint approximation to verify formulas of
logic £ given a SitCalc game structure theory. This recur-
sive procedure 7(¥) tries to compute a first-order formula
uniform in current situation now that is equivalent to W:

TE@)): ®
T(‘I’l/\\I/Q)ZT(\I/l) 7'(2)
T(\I’l\/\I’Q)ZT(\Ifl) ()
7(Jz. V) = Jz.7(P)
T(Va.U) = V.7 ()
T(((G)) O V) = R({(G)) O 7(¥))
T([[G]l O ¥) = =R({(G)) O 7(NNF(=V)))
T(uZ.9) = lfpZ.7(P)
T(vZ.V) = gfpZ.7(V)

In the above, R represents the regression operator and
({G)) O is regressable if U is regressable, NNF(—0) de-
notes the negation normal form of =¥, and

o [fpZ. W is the formula R resulting from the least fixpoint
procedure

R := False;

Rrew := ¥ (False);

while (Do £ R = Rpew){
R = Rpew;
Ryew :=¥(R) }

o gfpZ.V is the formula R resulting from the greatest fix-
point procedure
R :=True;
Ruew := ¥ (True));
while (D.o £ R = Ryew){
R := Rpew;
Rpew :=U(R) }

! Although —((G)) O =V is not in £ according to the syntax, the
equivalent formula in negation normal form is.

23

The fixpoint procedures test if R = R, 1S entailed given
only the unique name and domain closure for actions ax-
ioms D.,. In general, there is no guarantee that such pro-
cedures will ever terminate i.e. that for some i D, | R; =
R;y1. Butif the [fp procedure does terminate, then Dgs
R;[S] = pZ.Y(Z)[S] and R; is first-order and uniform in
S (and similarly gfp). In such cases, the task of verifying a
fixpoint formula in the situation calculus is reduced to that of
verifying a first-order formula. We have the following result:

Theorem 1. [De Giacomo et al., 2010] Let Dgg be a sit-
uation calculus game structure and let ¥ be an L-formula.
If the algorithm above terminates, then Dgs = V[So| iff
Ds, UDeq l— ([SO]

3 Case Studies

3.1 Light World (LW)

Our first example domain is the Light World (LW), a simple
game we designed that involves an infinite row of lights, one
for each integer. A light can be on or off. Each light has a
switch that can be flipped, which will turn the light on (off
resp.) if it was off (on resp.). There are 2 players, X and
O. Players take turns and initially it is X’s turn. The goal of
player X is to have lights 1 and 2 on in which case player X
wins the game. Initially, only light 5 is on. Note that this is
clearly an infinite state domain as the set of lights that can be
turned on or off is infinite. Note also that the game may go
on forever without the goal being reached (e.g., if player O
keeps turning light 1 or 2 off whenever X turns them on).
We will show that the fixpoint approximation method of
[De Giacomo er al., 2010] can be used to verify some inter-
esting properties in this domain. We apply the method with
one small modification: when checking whether the two suc-
cessive approximates are equivalent, we use a suitable axiom-
atization of the integers Dy in addition to the unique names
and domain closure axioms for actions DCLW, as our game
domain involves one light for every integer. 3
The game structure axiomatization for this domain is:

DY =X uDL uDEY uDLY UDEY UDLY, UDs.

poss ssa
We have only one action flip(p, t), meamng that player p
flips light ¢, with the precondition axiom (in DPOSS)

Poss(flip(p,t),s) = Agent(p)

We have the fluents On(t, s), meaning that light ¢ is on in
situation s, and turn(s), a function that denotes the agent
whose turn it is in 5. The successor state axioms (in DL

are as follows:
On(t,do(a, s)) = Ipa = flip(p,t) A =On(t,s) V
flip(p,t)

On(t,s) ANVp.a
= p =

turn(do(a, s))
p=0Aturn(s) = X Vp=X Aturn(s) = O

2Qur axioms and the properties we attempt to verify only use a
very simple part of integer arithmetic. It should be possible to gen-
erate the proofs using the decidable theory of Presburger arithmetic
[Enderton, 1972] after encoding integers as pairs of natural num-
bers in the standard way [Hamilton, 1982]. Most theorem proving
systems include sophisticated solvers for dealing with formulas in-
volving integer constraints and it should be possible to use these to

perform the reasoning about integers that we require.

The rules of the game are spemﬁed using the Legal predicate.
We have the following axioms in Dle?;l

Legal(do(a, s)) = Legal(s) N
dp, t. Agent(p) A turn(s) =p Aa = flip(p,t)

agent(flip(p,t)) =p
Control(p, s) = Ja.Legal(do(a, s)) A agent(a)

Vp.{Agent(p) = (p = X Vp=0)},

Thus legal moves involve the player whose turn it is flipping
any switch. We have the following unique name and domain
closure axioms for actions in DLW

Va.{ 3Ip,t.a = flip(p,t)}
Vp,p',t,t' { flip(p,t) = flip(',t') Dp=p' ANt=1"}

Finally, the initial state axioms in Déﬂw are: turn(Sp) = X,
-0n(1,Sy), ~On(2,Sy), On(5,Sp), and Legal(Sy).

For our first verification example, we consider the property
that it is possible for X to eventually win (assuming O coop-
erates), which can be represented by the following formula:

AOWins(X) = pZWins(X) v 30 Z,

where Wins(X,s) = Legal(s) A On(1,s) A On(2,s). We
apply the [De Giacomo er al., 2010] fixpoint iteration ver-
ification method to this example. We can show that the
regressed approximations simplify as follows (see [Kmiec,
2013] for a more detailed version of all proofs in this paper):

DLW & Ry(s) = Wins(X,s) V R(3 (O False) =
Legal(s) A On(1,s) A On(2,s)

This approximation evaluates to true if s is such that X is

winning in s already (in no steps), i.e., if light 1 and light 2

are on in s.

DLW UDgz = Ri(s) = Wins(X,s) VR(IORo) =
Legal(s) A On(1,s) AOn(2,s) vV
Legal(s) A (turn(s) = X Vturn(s) = O)AOn(1,s)V
Legal(s) A (turn(s) = X V turn(s) = O) AOn(2,s)

This approximation evaluates to true if s is such that X can

win in at most 1 step; these are legal situations where player

X is already winning or where one of lights 1 or 2 is on, as

X or O can turn the other light on at the next step.

DLW UDgz = Ra(s) = Wins(X,s) VR(IORy) =
Legal(s) A On(1,s) AOn(2,s) vV
Legal(s) A (turn(s) = X V turn(s) = O)
This approximation evaluates to true if s is such that X can
win in at most 2 steps; this is the case if X is winning already
or if s is any legal situation where it is one of the players’ turn,
as the controlling player can turn light 1 on at the next step
and the other player can and light 2 on at the second step).

DLW UDgz = Ra(s) = Wins(X,s) VR(IORz) =
Legal(s) AOn(1,s) AOn(2,s) V
Legal(s) A (turn(s) = X V turn(s) = O)
The fixpoint iteration procedure converges at the 4*" step as
we have: DLW U Dy = Ry(s) R3(s). By the way,
note that it can be shown using the entire theory (by induction
on situations) that DEY = Ra(s) Legal(s), as it is
always either X’s or O’s turn. In essence, it is possible for
X to eventually win in any legal situation. It then follows

=D
X £0

24

by Theorem 1 of [De Giacomo et al., 2010] that: DEY =
FOWins(X)[So] iff DEY = Legal(So) A {On(1,Sp) A
On(2,50) Vturn(Sy) = X Vturn(Sp) = O}. By the initial
state axioms, the latter holds so DEY | JOWins(X)[So],
i.e., player X can eventually win in the initial situation.

For our second verification example, we look at the prop-
erty that X can ensure that he/she eventually wins no mat-
ter what O does, i.e., the existence of a strategy that ensures
Wins(X). This can be represented by the following formula:

({X3NOWins(X) = pz. Wins(X) v ({X})) O 2

We apply the [De Giacomo et al., 2010] method to try verify
this property. We can show that the regressed approximations
simplify as follows:

DIW U Dz E Ro(s) = Wins(X,s) VR({{({X})) O False)
= Legal(s) A On(1,s) AOn(2,s)

This approximation evaluates to true if s is such that X is

already winning in s (in no steps); these are situations where

lights 1 and 2 are already on.

DelY UDz = Ra(s) = Wins(X,s) VR((({X})) O Ro)
= Legal(s) AOn(1,s) AOn(2,s) vV

Legal(s) A turn(s) = X AOn(1,s) V

Legal(s) A turn(s) = X A On(2,)

This approximation evaluates to true 1f s is such that X can
ensure it wins in at most 1 step. This holds if lights 1 and 2
are already on or if either light 1 or 2 is on and it is player X’s
turn, as X can then turn the other light on at the next step.

DEW UDy |- Ra(s) = Wins(X, s) v R(({X})) O Ra)
Legal(s) A On(1,s) AOn(2,s) V
Legal(s) A turn(s) = X A On(1, s)V
Legal(s) A turn(s) = X A On(2,s)
Thus the fixpoint iteration procedure converges in the 3%
step as we have: DEW U D, = Ry(s) = Ra(s). There-
fore by Theorem 1 of [De Giacomo et al., 2010]: DY =
(({X}))OWins(X)[So] R;1(Sp) Since both lights 1
and 2 are off initially, it follows by the initial state ax-
ioms that DEY =({({X}))OWins(X)[So], i.e., there
is no winning strategy for X in S;. However, we also
have that DY (({X}))YOWins(X)[S1], where S =
do(flip(0O,3),do(flip(X,1),5p)), i.e., X has a winning
strategy in the situation S7 where X first turned light 1 on
and then O flipped light 3, as X can turn on light 2 next.
Note that when the fixpoint approximation method is able
to show that a coalition can ensure that a property holds even-
tually, and the theory is complete and we have domain clo-
sure, we can always extract a strategy that the coalition can
follow to achieve the property: a strategy works if it always
selects actions for the coalition that get it from one approxi-
mate to a lower approximate (R; to R;_1).

3.2 Oil Lamp World (OLW)

The [De Giacomo er al., 2010] fixpoint approximation
method tries to detect convergence by checking if the i-th ap-
proximate is equivalent to the (i + 1)-th approximate using
only the unique name and domain closure axioms for actions
D, (to which we have added the axiomatization of the inte-
gers). We now give an example where this method does not
converge in a finite number of steps. However, we also show

that if we use some additional facts that are entailed by the
entire theory DLW, including the initial state axioms, when
checking if successive approximates are equivalent, then we
do get convergence in a finite number of steps.

Consider the Oil Lamp World (OLW), a variant of the Light
World (LW) domain discussed earlier. It also involves an in-
finite row of lamps one for each integer, which can be on or
off. A lamp has an igniter that can be flipped. When this hap-
pens, the lamp will go on provided that the lamp immediately
to the right is already on, i.e., flipping the igniter for lamp ¢
will turn it on if lamp ¢ + 1 is already on. There is only one
agent, X. The goal of X is to have lamp 1 on, in which case
X wins. Observe that the game may go on indefinitely with-
out the goal being reached, e.g., if X keeps flipping a lamp
other than lamp 1 repeatedly.

The game structure axiomatization for this domain is:
DLV = SUDRLV UDSEW UDSFV UDGEV UDEY U
Dy. As in the previous example, we have only one action,
flip(p, t), meaning that p flips the igniter on light ¢, with the

following precondition axiom (in Dﬁo‘g/s):

Poss(flip(p,t),s) = Agent(p)

But there is no turn taking in this game as there is only one
agent X. We have the successor state axiom (in DLWY.

On(t,do(a,s)) =
Ipa = flip(p,t) ANOn(t+1,s) V On(t,s)

Note that once a lamp is turned on it remains on. The rules of

the game are specified by the axioms in Dj;}; as follows:

Legal(do(a, s)) =
Legal(s) A 3p,t. Agent(p) A a = flip(p,t)

agent(flip(p,t)) = p
Control(p, s) = Ja.Legal(do(a, s)) A agent(a) = p

Vp.{Agent(p) =p = X}

Thus legal moves involve X flipping any igniter. The unique
name and domain closure axioms for actions and the initial
state axioms are exactly as in the Light World example.

We are interested in verifying the property that it is possible
for X to eventually win 30Wins(X), where Wins(X,s) =
Legal(s) AOn(1, s). We begin by applying the [De Giacomo
et al., 2010] method and try to show that successive approxi-
mates are equivalent using only the unique name and domain
closure axioms for actions DSFW and the axiomatization of
the integers Dz. We can show that the regressed approxima-
tions simplify as follows:

DOIW U Dz = Ro(s) = Wins(X,s) V R(3 (O False) =
Legal(s) A On(1, s)

This approximation evaluates to true if s is such that X is

already winning (in no steps); these are situations where lamp

1is on.

DOIW Dz = Ry(s) = Wins(X,s) VR(IQO Ro) =
Legal(s) A (On(1,s) vV On(2,s))

This approximation evaluates to true if s is such that X can

win in at most 1 step; these are legal situations where either

lamp 1 is on or where lamp 2 is on, and then X can turn lamp

1 on at the next step.

25

DOIW U Dz | Ra(s) = Wins(X,s) VR(IORy) =
Legal(s) A (On(1,s) vV On(2,s) VOn(3,s))
This approximation evaluates to true if s is such that X can
win in at most 2 steps; these are legal situations where either
lamp 1 is on, or where lamp 2 is on (and then X can turn lamp
1 on at the next step), or where lamp 3 is on (and then X can
turn on lamps 2 and 1 at the next steps).
We can generalize and show that for all natural numbers @

\/ On(y, s)

1<5<i+1

DOEW U Dy = R; = Legal(s) A

That is, X can win in at most ¢ steps if some lamp between 1
and i + 1 is on. It follows that for all i, DOW U Dy = R; =
R; 1, since one can always construct a model of DcOaL WUD,
where every light except 7 + 2 is off . Thus, the plain [De
Giacomo et al., 2010] method fails to converge in a finite
number of steps.

Nonetheless, there is a way to beef up the [De Giacomo
et al., 2010] method to get convergence in a finite number of
steps. The idea is to use some facts that are entailed by the en-
tire theory in addition to the the unique name and domain clo-
sure axioms for actions D" and the integer axioms D.
First, we can show by induction on situations that any lamp
that is on in the initial situation will remain on forever:

Dgs" | dop
where ¢,, = Vk{On(k, So) D Vs On(k,s)}

Then, it follows that for any natural numbers ¢, j, 7 < 7,
DIV UDZ U{0n(i +1,5), ¢op} = R; = Legal(s)

In essence, X can eventually win in any legal situation where
some lamp n is known to be on. It follows that:

DIV UDZ U{On(i+1,5),¢op} | Ri = Rita

Thus the fixpoint approximation method converges in a finite
number of steps if we use the facts that some lamp n is known
to be on initially and that a lamp that is on initially remains on
forever. Moreover, our initial state axioms include On(5, Sp).
Thus, DLW = 30Wins(X)[So], ie., X can eventually
win in the initial situation, as it is legal and lamp 5 is on.

We can also show by induction on situations that if all
lamps are off initially, they will remain so forever:

DLW — DgOLW (VE—=On(k,Sp)) D (VsVk =On(k,s))

Then, we can show by a similar argument as above that the
fixpoint approximation method converges in a finite number
of steps if we use the facts that all lamp are off initially and
that if all lamps are off initially, they remain off forever.

3.3 In-Line Tic-Tac-Toe (TTT1D)

Our final example domain is more like a traditional game.
It involves a one-dimensional version of the well known tic-
tac-toe game that is played on an infinite vector of cells,
one for each integer. We show that the [De Giacomo ef al.,
2010] fixpoint approximation method does work to verify
both winnability and the existence of a winning strategy in
this game, although in the former case the proof is long and
tedious. There are two players, X and O, that take turns,

with X playing first. All cells are initially blank, i.e. marked
B. Players can only put their mark at the left or right edge
of the already marked area. The functional fluent curn de-
notes the marking position on the left (negative) side of the
marked area and similarly curp denotes the marking position
on the right (positive) side of the marked area. Initially, curn
refers to cell 0 and curp to cell 1. Player p can put its mark
in the cell on the left (negative) side of the marked area, i.e.
the cell referred to by curn, by doing the action markn(p).
This also decreases the value curn by 1 so that afterwards, it
points to the next cell on the left. There is an analogous action
markp(p) for marking the the cell on the right (positive) side
of the marked area denoted by curp. A player wins if it suc-
ceeds in putting its mark in 3 consecutive cells. For example,
if initially we have the following sequence of moves:

[markp(X), markn(O), markp(X), markn(O), markp(

then in the resulting situation the board is as follows:
-wB_3,B_3,0-1,00, X1, X2, X3, By, B, . ..

(with the subscript indicating the cell number) and X wins.
Note that the game may go on indefinitely without either
player winning, for instance if player O always mimics the
last move of player X.

The game structure axiomatization for this domain is:

T31D T31D T31D T31D T31D 731D
Dgs ™ = XUD,,e5" UD; UD; UDg, " UDr gV
Dy. The precondition axioms (in DgoslsD) state that the ac-

tions markn(p) and markp() are always possible if p is an
agent. The successor state axioms (in DLW are as follows:

curn(do(a, s)) =k =
Ip.{a =markn(p)} Acurn(s) =k +1
Veurn(s) = k AVp.{a # markn(p)}
curp(do(a, s)) =k =
Ip.{a = markp(p)} A curp(s) =k —1

ssa

V curp(s) =k AVp.{a # markn(p)}
cell(k,do(a,s)) =p =

a = markp(p) A curp(s) =k V

a= markn() A curn(s) =k V

cell(k,s) =

A —Elp’.{a = markp(p’) A curp(s) = k}

A =3p' {a = markn(p') A curn(s) = k}
turn(do(a, s))
agent(a)

V agent(a)

:pE
=X Ap =0 Aturn(s)
=0 Ap=X ANturn(s)

=X
=0

DT 1D

The rules of the game are specified (in Dy,

) as follows:

Legal(do(a, s)) = Legal(s) A
Ip.{ turn(s) = p A agent(a) = p
A (a = markn(p) V a = markp(p)) }

agent(markn(p)) = p, agent(markp(p)) =p
Control(p, s) = Ja.Legal(do(a, s)) A agent(a) = p
Vp. { Agent(p) = (p=XVp=0)}, X#O

The unique name and domain closure axioms for actions are
specified in the usual way. Finally, we have the following

X)}?

26

DT 1D. 1’

initial state axioms in :curn(Sp) = 0, curp(Sp) =
turn(Sp) = X, and Legal(So)
We first consider the property that it is possible for X to

eventually win 30Wins(X), where
Wins(p, s) = 3k(Legal(s) A

((curn(s) =k —2Acell(k—1,8) =pA
cell(k,s) =pAcelllk+1,s) =p) vV

(curp(s) =k+2Acell(k+1,8) =pA
cell(k,s) =p Acell(k — 1,s) =p)))

(Note that this simple definition allows both players to win.)
If we apply the original [De Giacomo et al., 2010] method
to this property (using only the unique name and domain

closure axioms for actions DZ;ID and the axiomatization
of the integers Dy to show that successive approximates
are equivalent), the fixpoint approximation procedure does
eventually converge, but only after 11 steps. The proof is
very long and tedious and there are numerous cases to deal
with. The reason for this is that we cannot use the fact that
curn is always less than curp and that the cells that are
between them are non-blank and that the other cells are
blank, which are consequences of the initial state axioms.
So our proof has to deal with numerous cases where there
are non-blank cells to the left of curn or to the right of curp
(if we can rule these out, the proof becomes much simpler).
Let us sketch the proof. We can show that the regressed
approximations simplify as follows:

DI’ID Dy = Ro(s) = Wins(X,s) vV R(3 () False) =
Wins(X, s)

This approximation evaluates to true if s is such that X is

winning in s already (in no steps); these are legal situations

where there are 3 X marks in a row on either side.

DI’ID D, = Ry (s) = Wins(X,s) VR(IO Re) =
Ro(s) V XCanPlayToWinNext(s)

where X CanPlayToWinNext(s) =
Legal(s) A turn(s) = X A 3k{
(curn(s) =k —1Acell(k,s) = X Neell(k+1,s) = X))V
(cell(k —1,s) = X Acell(k,s) = X Acurp(s) =k+1)V
(cell(k —1,8) = X Ncurn(s) = kA

cell(k+1,8) = X Acurp(s) =k +2) vV
(celll(k —1,5) = X Ncell(k,s) = X A

curn(s) = k+ 1 Acurp(s) =k+2)V
(curn(s) =k —2Acurp(s) =k —1A

cell(k,s) =X ANcelllk+1,5) = X) Vv
(curn(s) =k —2Acell(k—1,5) = X A

curp(s) =k Acelllk+1,s) = X)}
This approximation evaluates to true if s is such that it is pos-
sible for X to win in at most 1 step. These are legal situa-
tions where there are 3 X marks in a row on either side, i.e.
Th XXX or XXX 1, (T, representing the position of curn
and similarly for 1, and curp), or where it is X’s turn and
there are 2 X marks already and X can fill in the missing
cell to get 3 in a row, i.e. T, XX or XX 1, or 1,7, XX or
XX Tptpor Ty, X1, Xor X 1, X 1.

DI’ID D, = Ry(s) = Wins(X,s) VR(IORy) =
Rl(S) V

Legal(s) A turn(s) = O A Jk{

(curp(s) <k —1Acurn(s) =k —1A

cell(k,s) = X Nceell(k+1,8) = X) Vv
(cell(k —1,8) = X Ncell(k,s) = X A

curp(s) =k+1ANk+1<curn(s))V
(curn(s) <k —1Acell(k—1,5) =X A

cell(k,s) = X Necurp(s) =k+1)V
(curn(s) =k —1Acell(k,s) = X A

celllk+1,s) =X ANk +1 < curp(s)) vV
cell(k —1,8) = X Acell(k,s) = X A

E+1=curn(s) Acurp(s) =k+1) Vv
(cell(k —1,5) = X Ncell(k,s) = X A

curn(s) = k+ 2 Acurp(s) =k+2)V
(curn(s) =k —1Acurp(s) =k —1A

cell(k,s) =X ANcell(k+1,5) = X) Vv
(curn(s) =k —2ANcurp(s) =k —2A

cell(k,s) = X Ncell(k +1,s) = X)}
This approximation evaluates to true if s is such that it is pos-
sible for X to win in at most 2 steps. These are legal situations
where X can win in at most 1 step as above, or where itis O’s
turn, and O can do a move that doesn’t interfere and the result
is a situation where X can win in at most 1 step; for this we
have 8 cases: 1,, XX with 1,<t,, or XX 1, with 1,,>7, or
XX 1p with 1, < k or T, X X}, with 1,> k or XX 1, ,, or
XX _ ftpportp, XXort,, XX.

We can keep going in this way. As we allow more steps,
we have more and more classes of configurations where X
can win. We can show that:

DI’ID Dy = Ryg(s) = Wins(X,s) VR(IO Re) =
Legal(s)

Thus, it is possible for X to win in at most 10 steps in all legal

situations. And we also have that:

DI’ID D, = Ryq(s) = Wins(X,s) VR(I O Ryo) =
Legal(s)

i.e., it is possible for X to win in at most 11 steps in all legal
situations. Thus, the fixpoint approximation procedure con-
verges in the 11%" step as we have: DL 'PUD, |= Ryo(s) =
Ry1(s). There are situations where it does take at least 10
steps/moves for X to win, for instance if we have 1,<?T,
with two blank cells in between, i.e., T, BB T,, and itis O’s
turn. The fact that 1,,<1,, means that the initial marks that are
made will later be overwritten. It is straightforward to check
that it takes at least 10 moves for X to have 3 X’s in a row and
win (O wins as well), for instance if O keeps playing markn
and X keeps playing markp. It follows from our conver-
gence result by Theorem 1 of [De Giacomo et al., 2010] that:
DLIP = 30Wins(X)[So] Ri0(So) = Legal(Sp).
Since we have Legal(Sy) in the initial state axioms, it fol-
lows that DL = 3OWins(X)[So), i.e., it is possible for
X to win in the initial situation.

Finally, we consider the property that X can ensure that
it eventually wins (({X}))OWins(X). We can apply the
original [De Giacomo et al., 2010] method to this property
(using only the unique name and domain closure axioms for
actions DZ"1P and the axiomatization of the integers D to
show that successive approximates are equivalent), and the
fixpoint iteration converges after only 3 steps. We can show
that the regressed approximations simplify as follows:

27

D;I:ID U Dz = Ro(s) =Wins(X,s)VR(({{X})) OFalse)
= Wins(X, s)

This approximation evaluates to true if s is such that X is

winning in s already (in no steps); these are situations where

there are 3 X marks in a row on either side.

DENP U Dy |- Ry(s) = Wins(X. s) V R((({X})) O Ro)
= Ro(s) V XCanPlayToWinNext(s)

This approximation evaluates to true if s is such that X can
ensure to win in at most 1 step. These are legal situations
where there are 3 X marks in a row on either side, or where
itis X’s turn and there are 2 X marks already and X can fill
in the missing cell to get 3 in a row next as discussed in the
possibility of winning case.

DD U Dy = Ra(s) = Wins(X, s) V R(({X})) O Ra)
= R1<S> V
Legal(s) A turn(s) = O A
Im.(curn(s) <m—2Acell(m —2,s) = X A
celllm—1,8) = X A curp(s) =m) A
In.(curn(s) =n —1Acell(n,s) = X A
cellln+1,s) = X An+1 < curp(s))
This approximation evaluates to true if s is such that X can
ensure to win in at most 2 steps. These are legal situations
where X can ensure to win in at most 1 step as above, or
where it is O’s turn and we have both X} X 1, with T, < k
and 1, XX, with 7,> k; then if O plays markn then X
can play markp to win afterwards, and if O plays markp
then X can play markn to win afterwards.

DIID Dy = Ra(s) = Wins(X,s) V R(({({X})) O Rz)
Rl(s) V
Legal(s) A turn(s) = O A
Im.(curn(s) <m —2Acell(m —2,5) = X A
celllm —1,s) = X A curp(s) =m) A
In.(curn(s) =n —1Acell(n,s) = X A
cellln+1,8) = X An+1 < curp(s))
This approximation evaluates to true if s is such that X
can ensure to win in at most 3 steps. It simplifies to ex-
actly the same formula as Ry(s). Thus the fixpoint it-
eration procedure converges in the 37 step as we have:
DLID U Dy = Ra(s) Rs(s). Therefore by
Theorem 1 of [De Giacomo er al, 2010]: DLJP =
(({X}))OWins(X)[So] R3(Sp). It follows by the ini-
tial state axioms that DLJL = —~(({X}))OWins(X)[So]
i.e., there is no winning strategy for X in Syp. But
DLID = (({XI))OWins(X)[S1] where S; = do(
[markp(X), markn(O), markp(X), markn(O)], So) ie.
there is a winning strategy for X in a situation where X has
marked twice on the right and O has marked twice on the left.

4 Discussion

In this paper, we described the results of some case studies to
evaluate whether the [De Giacomo et al., 2010] verification
method actually works. We developed various infinite state
game-type domains and applied the method to them. Our ex-
ample domains are rather simple, but have features present in
practical examples (e.g., the TTT1D domain is 1D version of
tic-tac-toe on an infinite board). Our experiments do confirm

that the method does work on several non-trivial verification
problems with infinite state space. We also identify some ex-
amples where the method, which only uses the simplest part
of the domain theory, the unique names and domain closure
for action axioms, fails to converge in a finite number of steps.
We show that in some of these cases, extending the method
to use some selected facts about the initial situation and some
state constraints does allow us to get convergence in a finite
number of steps. Finally, our example domains and proper-
ties should be useful for evaluating other approaches to infi-
nite state verification and synthesis. See [Kmiec, 2013] for
more details about our verification experiments and proofs. It
also develops an evaluation-based Prolog implementation of
a version of the method for complete initial state theories with
the closed world assumption. It generates successive approx-
imates and checks if they hold in the situation of interest, but
does not check if the sequence of approximates converges.

Among related work that deals with verification in infinite-
states domains, let us mention [ClaBen and Lakemeyer, 2008;
2010], which also uses methods based on fixpoint approxi-
mation. There, characteristic graphs are introduced to finitely
represent the possible configurations that a Golog program
representing a multi-agent interaction may visit. However
their specification language is not a game structure logic.
Also closely related is [Sardina and De Giacomo, 2009],
which uses a fixpoint approximation method to compose a
target process expressed as a ConGolog program out of a li-
brary of available ConGolog programs. Earlier, [Kelly and
Pearce, 2007] proposed a fixpoint approximation method to
verify a class of temporal properties in the situation calculus
called property persistence formulas. [Shapiro ef al., 2002]
show how a theorem proving tool can be used to verify prop-
erties of multi-agent systems specified in ConGolog and an
extended situation calculus with mental states. A leading ex-
ample of a symbolic model checker for multi-agent systems is
MCMAS [Lomuscio et al., 2009]. [Belardinelli et al., 2012]
show that model checking of an expressive temporal language
on infinite state systems is decidable if the active domain in all
states remains bounded. As well, [De Giacomo et al., 2012]
show that verification of temporal properties in bounded situ-
ation calculus theories where there is a bound on the number
of fluent atoms that are true in any situation is decidable.

In future work, we would like to automate the symbolic
fixpoint approximation method that we performed manually,
perhaps by writing proof tactics in a theorem proving envi-
ronment. This would require some symbolic manipulation
procedures for regression, FOL simplification of the resulting
formulas, and checking if two successive approximations are
equivalent. It would also be desirable to develop techniques
for identifying initial state properties and state constraints that
can be used to show finite convergence in cases where these
are needed. More generally, we need a better characteriza-
tion of when this kind of method can be used successfully.
Note that the [De Giacomo et al., 2010] framework assumes
that every agent has access to all the information specified
in the theory. The framework should be generalized to deal
with private knowledge and partial observability. Finally, the
approach should be evaluated on real practical problems.

28

References

[Alur er al., 2002] Rajeev Alur, Thomas A. Henzinger, and Orna
Kupferman. Alternating-time temporal logic. J. ACM,
49(5):672-713, 2002.

[Belardinelli et al., 2012] Francesco Belardinelli, Alessio Lomus-
cio, and Fabio Patrizi. An abstraction technique for the verifi-
cation of artifact-centric systems. In KR, 2012.

[Bradfield and Stirling, 2007] Julien Bradfield and Colin Stirling.
Modal mu-calculi. In Handbook of Modal Logic, volume 3, pages
721-756. Elsevier, 2007.

[ClaBen and Lakemeyer, 2008] Jens ClaRen and Gerhard Lake-
meyer. A logic for non-terminating Golog programs. In Proc.
of KR’08, pages 589-599, 2008.

[ClaBen and Lakemeyer, 2010] Jens ClaBen and Gerhard Lake-
meyer. On the verification of very expressive temporal properties
of non-terminating Golog programs. In Proc. of ECAI’10, pages
887-892, 2010.

[De Giacomo et al., 2000] Giuseppe De Giacomo, Yves
Lespérance, and Hector J. Levesque. ConGolog, a concur-
rent programming language based on the situation calculus. AlJ,
121(1-2):109-169, 2000.

[De Giacomo et al., 2010] G. De Giacomo, Y. Lesperance, and
A. R. Pearce. Situation calculus-based programs for representing
and reasoning about game structures. In Proc. KR 2010, pages
445-455, 2010.

[De Giacomo er al., 2012] Giuseppe De Giacomo, Yves
Lespérance, and Fabio Patrizi. Bounded Situation Calculus
Action Theories and Decidable Verification. In KR, 2012.

[Enderton, 1972] Herbert B. Enderton. A mathematical introduc-
tion to logic. Academic Press, 1972.

[Hamilton, 1982] A.G. Hamilton. Numbers, Sets and Axioms: The
Apparatus of Mathematics. Cambridge University Press, 1982.

[Kelly and Pearce, 2007] Ryan F. Kelly and Adrian R. Pearce.
Property persistence in the situation calculus. In Proc. IJCAI’07,
pages 1948-1953, 2007.

[Kmiec, 2013] Slawomir Kmiec. Infinite states verification in
game-theoretic logics. Master’s thesis, Dept. of Computer Sci-
ence and Engineering, York University, 2013. To appear.

[Lomuscio et al., 2009] Alessio Lomuscio, Hongyang Qu, and
Franco Raimondi. MCMAS: A model checker for the verifica-
tion of multi-agent systems. In Proc. CAV’09, pages 682—688,
2009.

[McCarthy and Hayes, 1969] John McCarthy and Patrick Hayes.
Some philosophical problems from the standpoint of artificial in-
telligence. In Machine Intelligence, volume 4, pages 463-502.
1969.

[Park, 1976] David Park. Finiteness is mu-ineffable. Theor. Com-
put. Sci., 3(2):173-181, 1976.

[Reiter, 2001] Ray Reiter. Knowledge in Action. Logical Founda-
tions for Specifying and Implementing Dynamical Systems. MIT
Press, 2001.

[Sardina and De Giacomo, 2009] Sebastian Sardina and Giuseppe
De Giacomo. Composition of ConGolog programs. In Proc.
1JCAI’09, pages 904-910, 2009.

[Shapiro er al., 2002] Steven Shapiro, Yves Lespérance, and Hec-
tor J. Levesque. The cognitive agents specification language and
verification environment for multiagent systems. In Proc. AA-
MAS, pages 19-26. Bologna, Italy, 2002.

Towards Action Languages with Norms and Deadlines

Matthias Knorr Alfredo Gabaldon

Ricardo Gongalves

Joao Leite Martin Slota

CENTRIA & Departamento de Informatica
Universidade Nova de Lisboa
2829-516 Caparica, Portugal

Abstract

Action Languages are simple logical formalisms to
describe the properties of a domain and the behav-
ior of an agent and to reason about it. They offer
an elegant solution to the frame problem, but are
inapt to reason with norms in which an obligation
deadline may require the agent to adapt its behav-
ior even though no action occurred. In this paper
we extend the Action Language A with features
that allow reasoning about norms and time in dy-
namic domains. Unlike previous extensions of Ac-
tion Languages with norms, our resulting language
is expressive enough to handle different kinds of
obligations with deadlines that explicitly refer to
time, as well as norm violations and contrary-to-
duty obligations.

1 Introduction

Open dynamic systems, e.g., systems interacting on the Web,
social systems and open agent communities, have attracted
increased attention in recent years. In these systems, con-
straints on the behavior of the participants cannot be hard-
wired in their specification. Instead, desirable properties
are promoted by normative systems [Esteva et al., 2001;
Boella and van der Torre, 2004; Boella et al., 2008; Alechina
et al., 2012; Bulling and Dastani, 2011; Sadiq er al., 2007].
Norms, when used to govern autonomous agents, do not sim-
ply act as hard constraints that prevent the agent from adopt-
ing some behavior, but rather provide an indication as to how
the agent should behave which, if not adhered to, can result
in the application of sanctions or other normative effects.

In general, norms can be seen as a specification of what is
expected to follow from a specific state of affairs, e.g., in the
form of obligations. There are obligations to-do, i.e., obli-
gations to execute an action before a deadline—e.g., to reply
within one day after receiving a request, or to register before
logging in; obligations to-achieve, i.e., obligations to bring
about, before the deadline, a state of the world in which some
proposition holds—e.g., to achieve a certain amount of cred-
its within the academic year; and obligations to-maintain, i.e.,
obligations to maintain a state of the world in which some
proposition holds until the deadline—e.g., to keep the con-
tract with your mobile phone company for one year.

29

One important characteristic of realistic systems of norms
is the prominent role of fime and deadlines. Another feature
of complex systems of norms are reparative obligations, or
contrary-to-duty obligations [Carmo and Jones, 2002], i.e.,
obligations imposed as a consequence of the violation of
some other obligation—e.g., to pay a fine within 10 days if
the obligation to return an item by a deadline is violated.

Action Languages [Gelfond and Lifschitz, 1998] are sim-
ple logical formalisms for modeling dynamic systems, with
application in Artificial Intelligence, Robotics and Multi-
Agent Systems. A theory of an Action Language describes
the properties of a domain and the abilities of an agent, com-
pactly specifying a transition diagram containing all possible
trajectories of the system. Action Languages provide a sim-
ple and elegant solution to the frame problem and enable an
agent to encode the applicability of actions, their effects, de-
scribe complex interrelations between fluents and use auto-
mated planning to achieve some goal.

The combination of Action Languages and norms has re-
ceived some attention in the literature. The line of work
in [Craven and Sergot, 2008; Artikis et al., 2009] extends
action language C+ [Giunchiglia ef al., 2004] for represent-
ing norms and institutional aspects of normative societies,
focusing on aspects such as power and count-as rules. In
[Gelfond and Lobo, 2008], an action language is extended
with propositions for specifying defeasible authorization and
obligation policies, but only obligations to-do are considered.
However, none of the previous approaches deals with explicit
time, deadlines or contrary-to-duty obligations. As it turns
out, existing Action Languages, and these extensions, cannot
capture the dynamics of deadlines because of the fundamen-
tal role they assign to physical actions, whose execution is
the only way to cause a state change. With the introduction of
norms with deadlines, and contrary-to-duty obligations, state
change needs to also be triggered by the violation of other
obligations, resulting from the expiration of the deadlines,
which cannot be encoded in existing Action Languages.

To address this limitation, in this paper, we extend the Ac-
tion Language A' [Gelfond and Lifschitz, 1998] with features
that allow reasoning about norms and time in dynamic do-

'"We restrict ourselves to A and focus on explaining the technical
details related to norms with explicit time deadlines, leaving more
expressive Action Languages for future work.

mains, resulting in the Normative Action Language A5 and
a query language that can deal with

e obligations to-do, to-achieve and to-maintain;

deadlines that explicitly refer to time;
e norm violations and satisfactions;
e contrary-to-duty obligations.

At the same time, our approach solves the frame problem
also for obligations and it is more amenable to implemen-
tation than other related work based on more complex for-
malisms (see related work in Sect. 4).

After introducing, in Sect. 2, the syntax and semantics of
our normative Action Language A s, illustrating its use, and
presenting some basic properties, in Sect. 3 we present a
query language for Ays, discuss its complexity and equiva-
lence between theories in As, before we conclude in Sect.
4.

2 Normative Action Language A,

We introduce the syntax and semantics of 4,7, a simple lan-
guage for specifying norms, yet expressive enough to handle
different kinds of obligations with deadlines, their satisfaction
and violation, and contrary-to-duty obligations. We start from
the deterministic Action Language A [Gelfond and Lifschitz,
1998] whose semantics builds on transition systems in which
nodes correspond to states of the environment and edges cor-
respond to transitions between states and are labeled by the
action that causes the transition. To capture the meaning of a
set of norms, we extend this transition system by expanding
the states with a deontic component, and by adding a tempo-
ral dimension to transitions.

2.1 Syntax

Action Languages provide two disjoint, non-empty sets of
function-free first-order atoms” defined over a given signa-
ture = (P, C, V) of pairwise disjoint sets of predicates (P),
constants (C) and variables (V): a set A of elementary actions
and a set F of physical fluents. An action is a finite, possibly
empty subset of A and can be understood as a set of elemen-
tary actions that are executed simultaneously. If convenient,
we denote a singleton action { « } with the elementary action
«. Physical fluents f € F and their negations — f form the set
of physical literals, used to represent states of the “world.”
To allow for deontic expressions, we extend the signature
3} with sets of time points T and time variables Vy, resulting
in the deontic signature ¥4 = (P,CU T,V UV;). From now
on, we assume an arbitrary but fixed deontic signature .
Both additions to the signature are related to time, and we
explain them in the following. The set of time points 7 rep-
resents the time domain, and we assume that 7 is a countable
subset of non-negative real numbers, including 0, such as nat-
ural numbers N. The set of time variables V; relates specifi-
cally to 7 in the same standard way as V relates to C, and we

% In [Gelfond and Lifschitz, 19981, only the propositional case is
considered. We use function-free first-order atoms here to ease the
presentation of our formalization of time.

30

reserve a special time variable now € V; which we always
associate with the time point representing the current time.

Both 7 and V; are used to define time expressions, which
allow us to shift time points into the future by a specific
time interval. The set of time expressions T* is defined as
T*=TU{V+c|VeV,AceT}.> Where convenient,
we simply abbreviate V' 4 0 by V.

We now introduce deontic literals to represent three types
of obligations: 1. obligations to-do, requiring that an action
be executed; 2. obligations to-achieve, requiring that a phys-
ical literal become true; 3. obligations to-maintain, requiring
that a physical literal remain true; all three strictly before a
specified deadline.*

Definition 1 (Deontic literal). Let A C A be a non-empty
action, [a physical literal, and t € T, called the deadline.
An obligation is of the following three forms:

e obligation to-do O‘t:i A;
e obligation to-achieve O3 [,
e obligation to-maintain O} .

Obligations and their negations form the set of deontic liter-
als. The expression O, [represents both O3 [and O} [.

Note that obligations to-achieve and to-maintain can be un-
derstood as dual: the intention for the former is to require that
literal [holds for (at least) one time point strictly in between
the introduction of the obligation and its deadline, and for
the latter that [holds for all time points from the time point of
the introduction until (immediately before) the deadline. This
will be accordingly reflected in the semantics later.

A literal is either a physical literal or a deontic literal. A
literal is ground if it contains no variables. Literals f and —f
are called complementary. The literal complementary to [is
denoted by 1.

In Action Languages, only actions can cause state changes,
but the introduction of obligations with deadlines should al-
low a state change to be triggered also by the violation (V)
or the satisfaction (S) of obligations, resulting from the ex-
piration of their deadlines. Deontic events accommodate for
that.

Definition 2 (Event). Let d be an obligation. Deontic events
are expressions of the form Vd and Sd. An event is an action
or a deontic event.

We recall propositions in A and at the same time extend
them to include norms.

Definition 3 (Norm and normative specification). Let e be an
event, [a deontic or physical literal and, for all s with 1 < ¢ <
n, l; literals. A proposition n takes the following form:

ecauses [ifly,...,[, . (1)
3 Here we abuse the set of time points and time variables to also

represent time intervals. The expression V + c always represents the

addition of a time interval to a time point, or of two time intervals.

4 The restriction to non-inclusive deadlines is an arbitrary de-
cision and it would be reasonable to consider inclusive deadlines
instead, or even to introduce both types of deadlines. For simplicity,
we consider only non-inclusive deadlines.

We say that e is the event of n, [the effect of nand l4,...,1,
its condition. If the condition is empty, we write (e causes [).
If [is a deontic literal, then n is a norm. If [is a physical lit-
eral, then e is an action, and all /; in the condition are physical
literals.

A proposition is safe if every variable (different from now)
appearing in its effect also appears in its event or in an obli-
gation within its condition. A normative specification N is a
finite set of safe propositions of the form (1).

Intuitively, a norm of the form (1) adds or removes the obli-
gation specified by [if the event occurs and the condition is
satisfied. Also note that a proposition with physical literal [
matches a proposition in A [Gelfond and Lifschitz, 1998] and
the rationale for the applied restrictions is that normative in-
formation should not affect the physical world. This is indeed
the case and in line with the idea that obligations are meant
to represent only guidelines of desired behavior for an agent
(including penalties for non-compliance), unlike the line of
work in which obligations can be used to prohibit the execu-
tion of an action (see, e.g., [Cholvy, 1999]). Finally, safeness
of variables occurring in [prevents from the specification of
propositions with non-ground effects.’

Example 4. Consider a set of norms in a university library
scenario:

borrow(X) causes O%, 4 ret(X) if ugrad (2)
borrow(X) causes O, 15 ret(X) if grad 3)
renew(X) causes OF. 4 ret(X) if 0F ret(X) (4)
renew(X) causes ~0%. ret(X) if 0% ret(X) (5)
T ret(X) causes O% 1 Pay (6)
T ret(X) causes O% 1 ret(X) if ugrad @)
0% ret(X) causes 0%, 5 ret(X) if grad (8)

Norms (2) and (3) specify that borrowing a book creates the
obligation to return that book within the period specified de-
pending on the student’s status (4 and 12 weeks for under-
graduate and graduate students respectively). A book may be
renewed for 4 more weeks, which means updating the obliga-
tion with the new deadline (4-5). Finally, a contrary-to-duty
norm specifies that, if a user fails to return the book on time,
a fine has to be paid within one week (6) and the book has to
be returned (7-8).

On different domains, an example of a norm with an
achievement obligation is that one has the obligation to
achieve 30 credits within the academic year, and an exam-
ple of a norm with a maintenance obligation is that one has
the obligation to maintain a contract with a mobile carrier for
(at least) 24 months.

enterAcademic Year causes O3, , 15 sumCredits(30)

startMobileContract causes O, | o4 mobileContract

5 A less restrictive condition could be applied to propositions
whose effect is a physical literal, but this would only affect the action
language which is not our major concern.

31

2.2 Semantics

The semantics of Action Language A is defined as a transi-
tion system 7' modeling the physical environment. A node
o of T represents a possible physical state and a transition
(0, A, 0’) represents that state o’ can be reached from o by
executing action A. We extend such 7" with deontic features
and time to define the semantics of normative specifications
as follows. We augment states o with deontic states § and
we define when literals are satisfied in such a combined state
o /6. Next, we present a relation that captures how a deontic
event is caused by either reaching a deadline or due to an ex-
ecuted action. We proceed by specifying which positive and
negative normative effects are triggered in a state o/d when
executing an action A at time ¢ w.r.t. N, using a Boolean
function p4 () in the former case to avoid introducing mean-
ingless obligations. This enables us to define a resulting new
deontic state and, subsequently, transitions and paths in the
resulting transition system 7.

Let NV be a normative specification. The states of the tran-
sition system Tz consist of two parts: a set of physical liter-
als representing the physical “world,” and a set of obligations
representing the deontic state of the agent. Additionally, we
require that obligations be part of the state only if they are not
immediately satisfied or violated.

Definition 5 (State of 7). Let o be a complete and con-
sistent set of ground physical literals, i.e., for each ground
physical fluent f, exactly one of f and —f belongs to o, and
0 a finite set of ground obligations. Then, o/¢ is a state of the
transition system 7)s if the following conditions are satisfied
for every physical literal [and deadline t: (031 ¢ dorl & o)
and (O"l ¢ d orl € o). We call o the physical state and ¢
the deontic state.

Note that, unlike o, J is not complete, since it would be im-
practical to require that d or —d occur in J for each d due to
the usually infinite set of time points 7. This is also why we
consider a separate set § and do not merge the two parts into
one.

To deal with the satisfaction of non-ground literals in a
state o /4, we introduce a variable assignment z as a function
mapping variables to constants () — C) and time variables to
time points (V; — T). For every time point ¢, we denote the
set of variable assignments z such that z(now) = ¢ by Z;.
Hence, the index ¢ in Z; is not merely notation, but defines
the value that is assigned to now.

For any literal or event A, we denote by \|, the lit-
eral or event obtained from A by substituting every vari-
able according to z, and, subsequently, replacing ev-
ery time expression t + ¢ with the time point ¢’ such
that ¢ t + ¢ E.g., OFret(book) is the result of

(Oi0w+4 ret(X)) ‘ { X—book,now—5} "

Satisfaction for ground literals in a state o /0 is defined as
follows for a physical literal [and a ground obligation d:

c/d Eliffleo
o/ Ediffded ,
c/d = —diffd € d .

Furthermore, given a variable assignment z, and a set of liter-
als L = {ly,...,l,}, we define o /6 |= L|, iff for all i with
ie{l,...,n},a/0 E .

Each transition of T is a tuple (0/d, (A, t),0’/d"), where
A is a ground action and ¢ € 7 a time point, meaning that
A occurred at time ¢, causing the transition from state o/
to ¢’/d’. Since the physical effects are independent of the
deontic ones, we first define a relation R s that, for a given
N, associates each physical state o and ground action A with
a new physical state o'

(0,A,0") € Ry iff o’

(0 UEA(0) \{l]1€Ea(0)} ,

where E4 (o) stands for the set of all physical literals [|,
such that (e causes [if C) € N and there is z € Z; with
c/6 = C|,and e|, C A. If A = (), then ¢/ = o, which
allows us to handle deontic updates resulting from deadline
expirations at time points in which no action occurs. Note
that the requirement that o’ be a physical state ensures that
(0, A, 0’y & Ry if A has contradictory effects in state o.

We proceed by specifying how to obtain a new deontic
state. First, we define the conditions for the occurrence of
deontic events, which are satisfactions/violations of obliga-
tions occurring in the current deontic state 4 w.r.t. the new
physical state ¢”.

Definition 6 (Occurrence of deontic event). Let o/J be a
state of T)s, A, B ground actions, (0, A,¢’) € Ry and t,
t' time points. The occurrence relation for ground deontic
events under action A at time ¢, -4 4, is defined for tuples
(6, 0") as follows:

(6,0 F4, VOS B iff OY Bedsnt>t

(6,0"YFas VO L iff O} lednt>t

(6,0"y Far SOPL iff OPfledAnt>1t
(6,0"YF4,S0% B iff OY BcdAt<t/' ABCA
(6,0"YFa: SO} L iff O} lednt<t Aled
(6,0"YFas VORI iff Oflednt<t' Aled

Additionally, €4 ¢(0,0") = {e | (§,0') Fa e}

The above conditions encode the dynamics of violations and
satisfactions, and depend on the type of obligation involved.
The first three represent events generated by a deadline ex-
piration. The last three represent events that occur before the
expiration of the respective deadline. Namely, either action B
is executed (as part of A) at time ¢, or a state change affects
the literal [to be achieved (or cease to be maintained). We ex-
plain the latter case in more detail for an obligation to-achieve
1. Such an obligation can only be part of a state o /0 if | € 0.
If executing action A at time ¢ introduces /, i.e., adds it to the
new state o’ (and removes [), then an event occurs, which (as
we will see below) is used to trigger the removal of the cor-
responding obligation, but also possibly the introduction of
new obligations.

Before defining the normative effects of executing action
A at time ¢ in state /9, we need to introduce an auxiliary
function pa,(d,c’) that determines whether, given ¢’ with
(0,A,0’) € Ry, an obligation d, which would be intro-
duced to the new deontic state, is relevant: pa(d,o’) = L

32

if either (1) d is an obligation with deadline ¢’ < ¢, (2)
d=04BAB C A 3 d= 041Nl € o, or 4
d = O0pIAILl € o' otherwise pa+(d,o’) = T. Condition
(1) matches the first part of Def. 6, while (2-4) matches the
second. We thus avoid the introduction of obligations that
would be satisfied/violated immediately, following the ratio-
nale to only consider obligations whose satisfaction can be
influenced by the agent’s behavior.

We now define the normative effects of executing an ac-
tion A at time ¢ in a given state o/. We say that an effect
of a norm is positive (negative) if it is an obligation (its nega-
tion). For each instance of a norm in AV we need to evaluate
its condition in o /0, check whether the respective event is a
subset of action A or a deontic event, and, in case of the pos-
itive effects, check if the effect of the norm is an obligation
that is relevant (or can be safely ignored). The latter and the
check for deontic events occur w.r.t. the new physical state o’
(obtained by executing A on o) as already indicated.

Definition 7 (Normative effect). Let o/d be a state of Ty,
(0,A,0’) € Ry, t a time point and d an obligation. The set
of positive normative effects EXt (c/6,0") and the set of neg-

ative normative effects E, ,(0/8,0") are defined as follows:

E}(0/6,0") = {(dl) | (e causes dif C) e N N3z € Z; :
/6 =Cl A (e, CAV(5,0") Fayel)
Apai(dlz o)}
Ex.(0/d,0") ={(d],)]| (e causes ~dif C) € N N3z € Z; :
o/ E=Cl,A(el, CAV(4,0")Fayel)}
The new deontic state ¢’ can now be computed from o /§ by
first detecting which deontic events occur (and removing the

corresponding obligations), then adding the positive effects
of these events and finally removing their negative effects.

Definition 8 (New deontic state). Let o/ be a state of Ty,
(0,A,0') € Ry, t a time point and d an obligation. We
define G(Vd) = G(Sd) = d, for any set of deontic events F,
G(E) = {G(e) | e € E'} and the new deontic state

0" = |(0\ Glea(0,0")) UES ,(0/0,0")| \ E} 1(0/0,0").

Three consequences follow immediately: first, if an obliga-
tion is introduced and removed simultaneously by different
norms, then the removal prevails, following a generalization
of the in dubio pro reo principle; second, it may happen that
the occurrence of a deontic event removes some obligation,
which is immediately re-introduced in EL () if a correspond-
ing norm exists, such as for example if you pay a fine and,
at the same time, commit an offense that incurs in the same
penalty; and third, the frame problem for obligations is triv-
ially solved in this equation—whatever appears in § and is
not removed on purpose, persists in ¢’.
We show that ¢’ and ¢’ indeed form a state of T)x.

Proposition 9. Let o /0 be a state of Ty, (0, A,0’) € Ry,
and 0’ as defined in Def. 8. Then o'/ is a state of Ths.

Furthermore, considering the definition of deontic events,
whenever a deadline of an existing obligation is reached, a

deontic event always takes place. A consequence of this ob-
servation is that a transition from ¢ /¢ must not occur at a
time point that exceeds the deadline of some obligation in 6.
We define this time point as the earliest deadline among the
current obligations, or infinity if there are no obligations in d.
Formally, let d(§) = {t € T | 0,1 € 6 or O¢ B € 6 }. Then,
ltp(d) = min(d()) if d(0) # 0 and Itp(d) = oo if d(d) = 0.
Note that, since § is assumed finite, this notion of least time
point is well-defined, i.e., if d(§) # 0, then Itp(6) € d(4),
which, along with Proposition 9, allows us to define transi-
tions of Txs:

Definition 10 (Transition). A transition of T)s is a tuple
(c/6,(A,t),0' /') where o, §, o', §' and A are as in Def. 8,
t is a time point s.t. ¢ < Itp(d) and if A = (), then ¢t = Itp(J).

Example 11. The following are transitions of 7T, for Exam-
ple 4 in Sect. 2.1.

({ugrad}/0, (borrow(b),1), {ugrad}/{O§ ret(b)})
({ugrad} /{05 ret(b)}, (ret(b), 4), {ugrad} /0)

({ugrad}/{OS ret(b)}, (0,5), {ugrad} /{0 pay, OF ret(b)}).

The tuple ({ugrad}/{O¢ ret(b)} (ret(b),8), {ugrad}/[l)>
not a transition because Itp({Og ret(b)}) = 5

We can show that the transition system T/ is determlmstlc.
Proposition 12. T\ is deterministic, ie., if
(c/6,(A,t),0' /8" and {(c/6,(A,t),c”/§") are transi-
tions of Ty, then o' /6" = 0" /5"

Now, a path is an alternating sequence of states in 7y and
pairs (A, t) corresponding to the transitions of T .

Definition 13 (Path). A path is a sequence of the form

00/60, (A1, t1),01/01, ..., (A, tn),00/6n . (9)

where o; / 0; is a state of Ty for every 0 < j < n,
(0j/0;,(Aj41,t41),0541/0541) is a transition of T for
every 0 < j <m,andt; <t;q forevery 1 < j <mn.

The last condition states the assumption that the time points
in a path are ordered.

The satisfaction of an obligation to-do or to-achieve and the
violation of an obligation to-maintain always indicate some
relevant change w.r.t. the previous state.

Proposition 14. Let P be a path of the form (9).
If (6;-1,05) FAj,thOf B, then BZ A;_1 and B C A;;
if(0j-1,04) Fa,;,S071, thenl ¢ 0 1 andl € oj;
if(0j-1,0) Fa;t,VOF'L, thenl € 0j_y andl ¢ 0.
A symmetric result for the other three deontic events does

not hold, simply because these occur due to a deadline that is
reached with the progress of time.

3 Query Language and Equivalence

We now define a query language for A s that can be used to
check whether a certain literal/event occurs in a specific time
interval given a normative specification and a description of
the initial state. We consider decidability and complexity of
answering queries. Then, we also discuss equivalence be-
tween different normative specifications.

33

3.1 Syntax of the Query Language

A query language in the case of action languages usually
consists of statements describing initial conditions and state-
ments to query the domain description w.r.t. these initial con-
ditions. We adapt the notion of axioms for our purpose.

Definition 15 (Axiom). Let A/ be a normative specification
and [a ground physical literal or a ground obligation. An
axiom is of the form initially /. Given a set of axioms I', a
physical state o in Ty satisfies I if, for every physical literal
I, (initially /) € T implies [€ o.

Let 0 be the set of obligations d such that (initially d) € T".
A set of axioms I is an initial specification for N if, for every
physical state o that satisfies ', o /¢ forms a state of T)s. Such
states o /¢ are called initial w.r.t. T.

We thus specify that an initial specification for A/ aligns with
Def. 5, 1i.e., if " contains an axiom for an obligation to achieve
(maintain) [, then it must also contain an axiom for —[().
Note that a set of axioms may not fully specify the physical
state o, i.e., there may be several states o that satisfy I, hence
several initial states.

An action
((Alvtl)a AR
A; is a non-empty action, and tq,...,
0<ty < - < tg.
defined as follows:

sequence is a finite sequence
(Ag, tx)) such that, for all ¢+ with 1 < i < k,
tr € T with
Given an action sequence, queries are

Definition 16 (Query). Let [be a deontic literal, a deontic
event—both without any occurrence of now—or a physical
literal, to,ts € 7 with 0 < t, < tg, and S an action se-
quence. A query is of the form [: [to,tg] : S.

Note that even though our query language is quite simple, it
is rather versatile and allows for expressive queries due to the
usage of variables in queries. Not only may we query for
non-ground fluents occurring in a certain time interval, such
as whether a user had some book in her possession, but also
whether there occurred any obligation or violation in a given
time interval without having to specify the deadline.

3.2 Semantics of the Query Language

The semantics of the query language is defined w.r.t. paths of
the transition system Tas. First, we establish that a path P of
the form (9) satisfies an initial specification T" for N if o /dg
is an initial state relative to I". The idea is to restrict the paths
considered to answer a query to those which match the initial
specification.

Next, we link the action sequence in a query to a path by
matching each pair (A;, ¢;) in the sequence to exactly one in
the path. All other actions in the path have to be empty, i.e.,
they occur due to deontic events.

Definition 17 (Satisfiability of an Action Sequence). Let S
be an action sequence (A’,t}),..., (A}, t}) and P a path of
the form (9). P satisﬁes S if there is an injective mapping
e A{l,...,k} —{1,...,n} (from S to P) such that

1. foreachiwith1 <i <k, A, = A (i) and t} = tu()

2. for each j with 1 < j < n, if u(i) # j for all ¢ with
1<i<kthenA; =0

Given the definition of action sequences and paths, if such
an injective mapping p exists, then it is clearly unique, and
so is the path corresponding to an action sequence for a fixed
initial state.

To evaluate whether a certain literal or event holds while
executing a sequence of actions, we need to collect all states
that fall into the time interval [t tg] given in the query. That
is, we collect the state at ¢, and all the states inside the in-
terval, or alternatively the final state in the path if the last
transition occurs before ¢,. In the former case, if there is
no action occurring precisely at ¢,,, then we have to consider
the state prior to ¢, because that is then the current state at
to. Formally, given a path P of the form (9) and time points
to < tg, wedefine the set s(P, [to,tg]) = {0:/d; | ti < ta <
ti+1} @] {O’Z/(S% | to <t; < tﬁ} @] {Un/én | ty, < ta}. Addi-
tionally, we want to ensure that only those paths are consid-
ered that cover the entire interval so that we do not miss any
states. Therefore, we define that path P reaches time point ¢
if either ¢, > t or Itp(J,,) = 0.

Finally, we can define how queries are evaluated.

Definition 18 (Query satisfaction). Let @) be a query of the
form [: [tq,ts] : S, N a normative specification and I" an
initial specification for . Q is a consequence of T w.r.t. N,
denoted by I" = Q, if, for every path P that satisfies I" and
S and that reaches tg, there exists a variable assignment z
such that one of these conditions holds:

(a) forsome o /6 € s(P,[ta,ts]), 0/6 =1, if L is a literal;
(b) for some j with ¢, < t; <tg, (6;_1,05) Fa, ., elzif

is a deontic event.

Note that our definition of query satisfaction implies that if
the action sequence is not executable, then the query holds
automatically for all paths in the transition system satisfying
the conditions, simply because there are none. That is related
to the question of consistent action descriptions [Zhang et al.,
2002] and also implicit domain constraints [Herzig and Varz-
inczak, 2007; Thielscher, 20111, and we refer to the literature
for ways to avoid such problems.

Example 19. Recall Example 4 and I' = {initially ugrad }:
Q1 = VO ret(b) : [1,8] : ((borrow(b) : 1), (ret(b) : 4));
Q2 = 0% ret(Y) : [0,4] : ((borrow(d) : 1));
Qs = ugrad : [0,9] : ((borrow(b) : 1), (ret(b) : 4)).

We obtain that I" [Q1, butT =p Q2 and T = Q.

We analyze decidability and computational complexity of
answering queries where we measure the input in the size of
the set of axioms I'.

Theorem 20. Let Q) be a query, N a normative specification
and T an initial specification for N. If the physical states in
T are finite, then answering T |=pr Q is decidable in coNP.
IfT additionally fully specifies o, then answering I' |=pr Q is
inP.

3.3 Equivalence

Equivalence is an important problem in the area of normative
systems. It can be used, for example, for simplifying norma-
tive systems, which usually tend to have redundant norms. In

34

our approach, we define equivalence of normative specifica-
tions w.r.t. the answers they provide to queries.

Definition 21 (Equivalence). We say that normative specifi-
cations N1, N3 are equivalent if for every set of axioms I" and

every query @, I' E=n, Q ifand only if T' =y, Q.

We can show that two normative specifications being
equivalent is the same as them having the same transition sys-
tem.

Theorem 22. The following conditions are equivalent for any
normative specifications N1, Na:

1) N1, N3 are equivalent.
2) T, =T,
3) The sets of paths of T);, and of Ty, coincide.

A stronger notion of equivalence requires equivalence in
the presence of additional norms, important when modularly
analyzing subsets of norms of a larger system. Two strongly
equivalent subsets of a normative specification can be safely
replaced by one another.

Definition 23 (Strong equivalence). We say that normative
specifications N7, N are strongly equivalent if for every nor-
mative specification A/, N7 U N is equivalent to N5 UN.

Strong equivalence implies equivalence but not vice-versa.

Theorem 24. Let N1, N3 be normative specifications. If N
is strongly equivalent to Ny, then N7 is also equivalent to N3,
but the converse implication does not hold.

4 Conclusions

We have extended Action Language A with features that al-
low reasoning about norms, time and deadlines in dynamic
domains. We have shown how our language can be used to
express norms involving obligations with deadlines that ex-
plicitly refer to time and actions, including obligations to-do,
to-achieve and to-maintain but also contrary-to-duty situa-
tions, which previous action languages and their extensions to
norms did not cover. We have defined a semantics for this lan-
guage and a query language along with its semantics. More-
over, we studied the complexity and equivalence of normative
specifications.

Notably, our framework may serve as a basis for intro-
ducing norms to other Al action formalisms where norms
with explicit time deadlines and contrary-to-duty obliga-
tions have received little consideration so far. Interesting
examples include the Event Calculus [Kowalski and Ser-
got, 1986], the Situation Calculus [Reiter, 19911, the Flu-
ent Calculus [Thielscher, 1999] and extensions of Dynamic
Logic [Harel, 1979] that have a solution to the frame prob-
lem [Zhang and Foo, 2001; Zhang and Foo, 2002; Castilho et
al., 2002; Demolombe et al., 2003].

Our query language can be used to define interesting plan-
ning problems, such as finding plans which prevent viola-
tions, or whose violations are within certain limits. Addi-
tionally, our language has important applicability in the de-
velopment of electronic institutions. Electronic institutions
are virtual entities that maintain, promote and enforce a set of

norms. They observe agent’s actions to determine norm vi-
olations (resp. satisfactions), e.g., to enforce sanctions (resp.
give rewards). Given its formal semantics, and its strong links
to dynamic systems, .4 can be used as the language to spec-
ify and disseminate the norms and the query language used to
determine violations and satisfactions.

Related work on normative systems resulted in frame-
works that combine obligations and time. The proposals
in [Dignum and Kuiper, 1997; Dignum and Kuiper, 1998;
Broersen and Brunel, 2007; Balbiani et al., 2009], which
combine dynamic, deontic and temporal logic, have a rich
language, but they have difficulties in dealing with the frame
problem, relevant in the propagation of obligations that have
not been fulfilled yet [Broersen and Brunel, 2007], and with
dealing with contrary-to-duty obligations. Also, no axiomati-
zation exists for the proposals in [Dignum and Kuiper, 1997;
Dignum and Kuiper, 1998], and hence automatic reason-
ing is not possible, while the approaches in [Broersen and
Brunel, 2007; Balbiani et al., 2009] do not deal with actions.
In [Agotnes et al., 2010], robustness of normative systems
is studied building on temporal logic, but neither deadlines
nor contrary-to-duty obligations are considered. The work
in [Governatori and Rotolo, 2011] aims at studying the dy-
namics of normative violations. However, without an explicit
representation of actions, they cannot properly deal with obli-
gations to-do, nor integrate the normative part of the system
with the dynamics resulting from the execution of actions
provided by Action Languages. Finally, in [Dastani er al.,
2012] the focus is set on an operational semantics to be able to
modify a normative system during runtime. Yet, there are no
time deadlines. Instead, deadlines are state conditions, which
may be an interesting extension of our work, but does not
cover the expressiveness provided by our formalism.

Our work opens several interesting paths for future re-
search. First of all, we would like to design an implemen-
tation. Of course, an encoding in ASP is always possible, but
perhaps more efficient solutions exist. We would also like
to extend the language with other deontic constructs such as
prohibition and permission. We already have some notion of
prohibition, since an obligation to-maintain —! can be seen
as a prohibition to bring about [, and some notion of permis-
sion, since the removal of an obligation to-maintain —/ can
be seen as a weak permission to bring about [. On the other
hand, the counterpart of obligations to-do, forbidden actions,
has not been considered here. Accommodating forbidden
actions would require a new normative fluent F; ¢ meaning
that action a is forbidden until time ¢. Moreover, we may
consider extending our framework to more expressive Action
Languages, more complex deadlines, and actions with differ-
ent durations.

Acknowledgments We would like to thank the anonymous
reviewers whose comments helped to improve the paper.
Matthias Knorr, Jodo Leite and Martin Slota were par-
tially supported by Fundagdo para a Ciéncia e a Tec-
nologia under project “ERRO — Efficient Reasoning with
Rules and Ontologies” (PTDC/EIA-CCO/121823/2010).
Matthias Knorr was also partially supported by FCT Grant

35

SFRH/BPD/86970/2012 and Ricardo Gongalves by FCT
Grant SFRH/BPD/47245/2008.

References

[Agotnes et al., 2010] Thomas Agotnes, Wiebe van der
Hoek, and Michael Wooldridge. Robust normative sys-
tems and a logic of norm compliance. Logic Journal of the
IGPL, 18(1):4-30, 2010.

[Alechina et al., 2012] Natasha Alechina, Mehdi Dastani,
and Brian Logan. Programming norm-aware agents. In
Proceedings of the 11th International Conference on Au-

tonomous Agents and Multiagent Systems, volume 2 of
AAMAS 12, pages 1057-1064. IFAAMAS, 2012.

[Artikis et al., 2009] Alexander Artikis, Marek Sergot, and
Jeremy Pitt. Specifying norm-governed computational so-
cieties. ACM Trans. Comput. Log., 10(1):1-42, 2009.

[Balbiani et al., 2009] Philippe Balbiani, Jan Broersen, and
Julien Brunel. Decision procedures for a deontic logic
modeling temporal inheritance of obligations. Electr.
Notes Theor. Comput. Sci., 231:69-89, 2009.

[Boella and van der Torre, 2004] Guido Boella and Leendert
W. N. van der Torre. Regulative and constitutive norms in
normative multiagent systems. In Didier Dubois, Christo-
pher A. Welty, and Mary-Anne Williams, editors, Princi-
ples of Knowledge Representation and Reasoning: Pro-
ceedings of the Ninth International Conference (KR2004),
Whistler, Canada, June 2-5, 2004, pages 255-266. AAAI
Press, 2004.

[Boella et al., 2008] Guido Boella, Leendert van der Torre,
and Harko Verhagen. Introduction to the special issue on
normative multiagent systems. Autonomous Agents and
Multi-Agent Systems, 17(1):1-10, 2008.

[Broersen and Brunel, 2007] Jan Broersen and Julien
Brunel. Preservation of obligations in a temporal and
deontic framework. In Edmund Durfee, Makoto Yokoo,
Michael Huhns, and Onn Shehory, editors, Autonomous
Agents and Multi-Agent Systems, page 177, 2007.

[Bulling and Dastani, 2011] Nils Bulling and Mehdi Das-
tani. Verifying normative behaviour via normative mecha-
nism design. In Proceedings of the Twenty-Second interna-

tional joint conference on Artificial Intelligence, volume 1
of IJCAI'11, pages 103—108. AAAI Press, 2011.

[Carmo and Jones, 2002] José Carmo and Andrew Jones.
Deontic logic and contrary-to-duties. In Dov Gabbay
and Franz Guenthner, editors, Handbook of Philosophical
Logic, volume 8, pages 265-343. Kluwer Academic Pub-
lishers, Dordrecht, Holland, 2002.

[Castilho et al., 2002] Marcos A. Castilho, Andreas Herzig,
and Ivan José Varzinczak. It depends on the context! a
decidable logic of actions and plans based on a ternary
dependence relation. In Salem Benferhat and Enrico
Giunchiglia, editors, NMR, pages 343-348, 2002.

[Cholvy, 1999] Laurence Cholvy. Checking regulation con-
sistency by using SOL-resolution. In ICAIL, pages 73-79,
1999.

[Craven and Sergot, 2008] Robert Craven and Marek Sergot.
Agent strands in the action language nC+. J. Applied
Logic, 6(2):172-191, 2008.

[Dastani et al., 2012] Mehdi Dastani, John-Jules Ch. Meyer,
and Nick A. M. Tinnemeier. Programming norm change.
Journal of Applied Non-Classical Logics, 22(1-2):151—
180, 2012.

[Demolombe et al., 2003] Robert Demolombe, Andreas
Herzig, and Ivan José Varzinczak. Regression in
modal logic. Journal of Applied Non-Classical Logics,
13(2):165-185, 2003.

[Dignum and Kuiper, 1997] Frank Dignum and Ruurd
Kuiper. Combining dynamic deontic logic and temporal
logic for the specification of deadlines. In HICSS (5),
pages 336-346, 1997.

[Dignum and Kuiper, 1998] Frank Dignum and Ruurd
Kuiper. Obligations and dense time for specifying
deadlines. In HICSS (5), pages 186-195, 1998.

[Esteva et al., 2001] Marc Esteva, Juan A. Rodriguez-
Aguilar, Carles Sierra, Pere Garcia, and Josep Lluis Arcos.
On the formal specifications of electronic institutions. In
Frank Dignum and Carles Sierra, editors, Agent Mediated
Electronic Commerce, The European AgentLink Perspec-
tive, volume 1991 of Lecture Notes in Computer Science,
pages 126-147. Springer, 2001.

[Gelfond and Lifschitz, 1998] Michael Gelfond
Vladimir Lifschitz. Action languages.
Trans. Artif. Intell., 2:193-210, 1998.

[Gelfond and Lobo, 2008] Michael Gelfond and Jorge Lobo.
Authorization and obligation policies in dynamic systems.
In Maria de la Banda and Enrico Pontelli, editors, /CLP,
volume 5366 of Lecture Notes in Computer Science, pages
22-36. Springer, 2008.

[Giunchiglia ef al., 2004] Enrico Giunchiglia, Joohyung
Lee, Vladimir Lifschitz, Norman McCain, and Hud-
son Turner. Nonmonotonic causal theories. Artificial
Intelligence, 153(1):49-104, 2004.

[Governatori and Rotolo, 2011] Guido Governatori and An-
tonino Rotolo. Justice delayed is justice denied: Logics for
a temporal account of reparations and legal compliance. In
Jodo Leite, Paolo Torroni, Thomas Agotnes, Guido Boella,
and Leon van der Torre, editors, CLIMA, volume 6814
of Lecture Notes in Computer Science, pages 364-382.
Springer, 2011.

[Harel, 1979] David Harel. First-Order Dynamic Logic.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1979.

[Herzig and Varzinczak, 2007] Andreas Herzig and
Ivan José Varzinczak. Metatheory of actions: Be-
yond consistency. Artif. Intell., 171(16-17):951-984,
2007.

[Kowalski and Sergot, 1986] Robert Kowalski and Marek
Sergot. A logic-based calculus of events. New generation
computing, 4(1):67-95, 1986.

and
Electron.

36

[Reiter, 1991] Raymond Reiter. The frame problem in the
situation calculus: A simple solution (sometimes) and
a completeness result for goal regression. In Vladimir
Lifschitz, editor, Artificial Intelligence and Mathematical
Theory of Computation, pages 359-380. Academic Press,
1991.

[Sadiq ef al., 2007] Shazia Wasim Sadiq, Guido Governa-
tori, and Kioumars Namiri. Modeling control objectives
for business process compliance. In Gustavo Alonso, Peter
Dadam, and Michael Rosemann, editors, Business Process
Management, 5th International Conference, BPM 2007,
Brisbane, Australia, September 24-28, 2007, Proceedings,
volume 4714 of Lecture Notes in Computer Science, pages
149-164. Springer, 2007.

[Thielscher, 1999] Michael Thielscher. From situation cal-
culus to fluent calculus: State update axioms as a solution

to the inferential frame problem. Artificial intelligence,
111(1):277-299, 1999.

[Thielscher, 2011] Michael Thielscher. A unifying action
calculus. Artif. Intell., 175(1):120-141, 2011.

[Zhang and Foo, 2001] Dongmo Zhang and Norman Y. Foo.
EPDL: A logic for causal reasoning. In Bernhard Nebel,
editor, IJCAI, pages 131-138. Morgan Kaufmann, 2001.

[Zhang and Foo, 2002] Dongmo Zhang and Norman Y.
Foo. Interpolation properties of action logic: Lazy-
formalization to the frame problem. In Sergio Flesca, Ser-
gio Greco, Nicola Leone, and Giovambattista Ianni, edi-
tors, JELIA, volume 2424 of Lecture Notes in Computer
Science, pages 357-368. Springer, 2002.

[Zhang et al., 2002] Dongmo Zhang, Samir Chopra, and
Norman Y. Foo. Consistency of action descriptions. In
Mitsuru Ishizuka and Abdul Sattar, editors, PRICAI, vol-
ume 2417 of Lecture Notes in Computer Science, pages
70-79. Springer, 2002.

Reasoning about Robot Epistemic Ability to Use the Cloud

David Rajaratnam', Hector J. Levesque?, Maurice Pagnucco', Michael Thielscher!

"University of New South Wales
Sydney, Australia

{daver, morri,mit}@cse.unsw.edu.au

Abstract

Robots are often computationally constrained due
to size and power limitations. To counter these lim-
itations recent research has considered the use of
off-board resources such as cloud computing facil-
ities. These efforts typically focus on the cloud as a
computational resource and data repository. How-
ever, to date, decisions about how and when cloud
resources should be used must be scripted in ad-
vance. We argue that a robot should be able to make
these decisions for itself in a dynamic way by rea-
soning introspectively about gaps in its own knowl-
edge and ability. This paper develops formal tech-
niques for this reasoning, providing a more princi-
pled approach to the utilisation of cloud computing
resources.

1

Mobile robot platforms often lack extensive computational
resources in order to minimise their size and power usage.
Consequently, access to off-board resources like those pro-
vided by cloud platforms can be a distinct advantage and has
been the focus of recent research [Arumugam er al., 2010;
Kuffner, 2010; Guizzo, 2011; Waibel et al., 2011]. These ap-
proaches typically focus on the cloud as a computational re-
source or as a repository for data that can be used by robots.

However, existing proposals provide for only a very limited
use of cloud resources and services. In particular, they lack
the ability to reason introspectively about the robot’s abilities
and knowledge. Such introspection is critical if the robot is
to reason about gaps in its knowledge and abilities and there-
fore determine what external resources are required in order
to achieve its objectives. The aim of this paper is to advance
this research by developing formal techniques for represent-
ing and reasoning about robot abilities and knowledge that
can more fully utilise cloud computing resources.

In the following section (Section 2) we briefly outline cur-
rent developments in cloud robotics. In particular we high-
light the RoboEarth project [Tenorth ef al., 2012] and some
of the reasoning capabilities that it offers. We then highlight
limitations with this model and argue that a more formal ac-
count of reasoning for cloud robotics is required (Section 3).

Introduction

37

2University of Toronto
Toronto, Canada

hector@cs.toronto.edu

In Section 4 we present background to the Situation Calcu-
lus [McCarthy, 1963; Reiter, 2001], a known formal model
for reasoning about dynamic systems, and highlight an ex-
tension that can deal with epistemic reasoning and reasoning
about agent abilities [Lesperance et al., 1995].
Unfortunately, the current Situation Calculus model for
epistemic reasoning does not allow for agents with limited
resources and is consequently unrealistic for cloud robotic ap-
plications. Therefore we propose an extension to this theory
that allows a robot to forget information acquired from the
cloud (Section 5). We then apply this extension to formalise a
hypothetical problem of a robot that needs to use information
in the cloud in order to carry out its objectives (Section 6). Fi-
nally we prove and discuss properties that highlight the ben-
efits of this formal account of reasoning for cloud robotics.

2 Related Work

Early discussions on cloud robotics have examined its trans-
formative potential to endow robots with a degree of intelli-
gence not possible in conventional robotic systems [Kuffner,
2010; Guizzo, 2011]. With this goal in sight, the research
has followed two distinct paths. Firstly, much of the ex-
isting research has focused on architectural considerations
for enabling cloud robotics. For example, recent work has
examined robot communication protocols [Hu et al., 2012;
Hunziker et al., 2013] as well as robot architectures for cloud-
based distributed computation [Arumugam e al., 2010].

In parallel with the architectural considerations, other re-
search has considered specific problems for which cloud-
based robotics can provide a benefit. For example, combin-
ing Google’s object recognition services and a large online
hand grasp database [Goldfeder er al., 2009] to allow a robot
to learn to recognise and grasp unfamiliar objects in its en-
vironment [Kehoe et al., 2013]. Such applications provide
important functionality and highlight the potential for cloud
robotics. However, they lack the generality to show how
cloud robotics can be applied in a broader context to enable a
robot to know sow and when to use these vast new resources
available at its wireless fingertips.

Of the current research efforts only the RoboEarth project
[Tenorth et al., 2012] comes close to considering the prob-
lem of a robot reasoning about its knowledge and abilities.
Here a knowledge exchange language is developed, and ac-
tions models are defined using OWL-based ontologies allow-

ing for the specification of taxonomies and relationships be-
tween different entities [Kunze et al., 2011].

Action recipes define the steps that a robot needs to take in-
order to fulfill a task. Furthermore a step within a recipe can
itself be a sub-action, thus allowing for the arbitrary composi-
tion of actions. Importantly, actions can contain requirements
that must be satisfied before the recipe can be undertaken.
Satisfying these requirements may involve the robot simply
possessing a particular sensor or actuator but may also in-
volve the robot undertaking further actions to gain informa-
tion; such as build a map of an environment. Reasoning is
performed to ensure that all requirements can be satisfied by
the capabilities of the robot and ultimately an action recipe is
decomposed into the primitive actions to be executed.

While the RoboEarth framework does not have a strict for-
malisation of epistemic reasoning, nevertheless the authors
argue that it does enable some reasoning tasks related to its
knowledge and abilities. For example the robot can be asked
questions such as: “Can you set the table with cups and
plates?” or “Can you set the table with silverware?” [Kunze
et al., 2011]. The robot may answer in the affirmative to the
first question, providing it satisfies all the necessary require-
ments such as an appropriate robotic hand and the algorithms
and models to recognise cups, plates and tables, but may have
to answer in the negative for the second question if it doesn’t
have the correct model to recognise silverware.

3 Motivation

Unfortunately, the previous RoboEarth example masks some
important ambiguities about the types of questions that the
robot is able to answer regarding its knowledge and abilities.
In particular, it is not clear whether the human in the example
is asking the robot whether it can in principle set a table or
whether it can do so in some concrete instance. The robot’s
affirmative answer is clearly for the “in-principle” question,
since by matching its capabilities to the task requirements it is
indeed able to state that in a suitable room, where a table and
various cups and plates are located, it would be able to set the
table. However the recipe requirements in the example only
ensures that the robot is able to recognise cups and plates, it
doesn’t require the robot to know that such cups and plates
are in fact readily available for its use.

In order for the robot to answer questions about a concrete
instance it would not only need all the capabilities mentioned
earlier but it would require knowledge that there are in fact
the necessary objects nearby for it to use. This highlights
that simply having the necessary abilities to perform an action
are not enough to determine if that action can be performed
in a concrete situation. Instead, to genuinely answer such
questions requires reasoning about the robot’s knowledge of
its environment.

While it is conceivable that these epistemic requirements
could be explicitly added to the RoboEarth action recipes, it
is not clear that this could be done without a dramatic increase
in complexity of the system. Rather we argue that epistemic
reasoning must be embedded implicitly within the system to
avoid a blow-out in the specification and modelling of the
robot. Consequently it is necessary to provide a clear and

38

unambiguous account of reasoning for cloud robotics.

In order to highlight the requirement for epistemic reason-
ing and to show how such reasoning can be performed we
adopt the following scenario throughout the rest of the pa-
per. We consider a robot that needs to enter a room. There
is a door that is initially closed and unlocked, and two but-
tons that the robot can push. One of these buttons will open
the door while the other button will lock the door; and once
locked the door cannot be unlocked. Initially, the robot does
not know which button will have which result. Fortunately,
it is able to access information in the cloud to determine the
identity of the button that will open the door.

While simple, this example scenario has the essential fea-
tures of realistic situations where more detailed information
from the cloud (like a map) is needed by a robot to achieve a
demanding goal (like getting to a location).

4 Situation Calculus

The Situation Calculus provides a formal language based on
classical first-order logic to describe dynamic domains [Mc-
Carthy, 1963; Reiter, 2001]. It distinguishes three types of
terms: situations representing histories as the world evolves;
fluents denoting domain properties that may change as a result
of actions; and actions that can be performed by the reasoner.

The function do(a, s) represents the situation that results
from performing action « at situation s, while Sy denotes the
initial situation where no actions have taken place. For each
action a precondition axiom Poss(a,s) specifies the condi-
tions under which action a is possible in situation s and suc-
cessor state axioms specify how the value of fluents change
as the result of actions. For a more comprehensive technical
formulation of what is required of a Situation Calculus basic
action theory, we refer to [Reiter, 2001].

4.1 Knowledge

The Situation Calculus has been extended with a possible
world semantics to capture a notion of knowledge in the face
of sensing actions [Scherl and Levesque, 1993]. An agent
can be said to know that some fact ¢ is true if and only if ¢ is
true in all possible states of the world that the agent can be in.
This notion can be formalised using a special epistemic pred-
icate K(s', s) to represent the fact that in situation s the agent
thinks the world could equally be in situation s’. Situation s’
is said to be accessible from s. An agent in situation s that
knows that fluent ¢ holds can be defined by':

def

Know(¢,s) = Vs'.K(s',s) D ¢[]

Note that the predicate K is required to be both transitive
and Euclidean, ensuring that the agent has introspection about
its knowledge; that is, it knows whether it knows something.

Of course reasoning about knowledge is not very interest-
ing unless that knowledge can change over time. The intro-
duction of sensing actions provides a mechanism by which
knowledge can be acquired by an agent. The process of
knowledge acquisition is encoded through the successor state

"We adopt the commonly used notation that ¢[s] represents the
formula ¢ as holding in the situation s.

axiom of the K relation. An example of such a successor state
axiom, containing a single hypothetical sensing action sense
that senses the value of a fluent Sensed, would be:

K(s*,do(a,s))=3s".s* = do(a, s") A Poss(a,s’) NK(s',s)
A |a = sense D Sensed(s') = Sensed(s)]

After a non-sensing action, the accessible situations are the
successors of all the situations that were previously accessi-
ble. However, for sensing actions only those situations that
agree with the actual world on the sensed fluent remain ac-
cessible. Effectively, after performing the sense action, the
agent will know the value of the Sensed fluent.

4.2 Ability

The formalisation of agent ability builds on the notion of
knowledge to allow an agent to reason about when it is, or
is not, able to achieve a goal. In this paper we only provide a
summary of the relevant formalisms and the interested reader
is referred to [Lesperance et al., 1995] for more details.

The ability to achieve a goal involves an agent knowing
what to do and when to do it. Central to this ability is the
notion of an action selection function which prescribes the
action that an agent should take in a given situation. For con-
venience the following definitions are introduced:?

OnPath (o,s,s) def
YaVs*.(s <

CanGet (¢,0,s) def
3s’.(OnPath(o, s, s’) A Know(¢, s")A
Vs*.[s <s* < s’ DFaKnow(o(now)=a, s*)])

Can(g, s) def Jo. Know(CanGet(¢, o, now), s)
KnowlIf(¢, s) o Know(¢, s) V Know(—¢, s)

s < s'A
do(a,s*) <s' D o(s*) =a)

The first defines that situation s’ is on the path from s as spec-
ified by the action selection function o when all the interme-
diate actions on that path are those prescribed by o. The sec-
ond shows the conditions under which an agent, following
an action selection function o, can get to a situation where ¢
holds. The third states that an agent can achieve a goal ¢ if
there is an action selection function such that the agent knows
that following the prescribed actions will lead to ¢ holding.
Finally, the last states that to know if something holds means
to either know that it holds or to know that it doesn’t hold.

5 Forgetting in the Cloud

The formalism developed in [Lesperance et al., 1995] pro-
vides a model for an agent to acquire knowledge about the
world. However, it assumes that the acquired knowledge is
remembered indefinitely. This is a reasonable assumption in
cases where the acquired knowledge is fairly limited and/or

%5 < s’ is shorthand for s < s’V s = s’; the pseudo-variable “now”
is used to represent the situation bound by the enclosing Know
(e.g., Know (o (now) = a,s*) stands for Vs".K(s', s*) D o(s') = a);
we use the name KnowIf rather than KnowWhether intro-
duced in the original.

39

the agent has no limits on its computational resources. Un-
fortunately, cloud information is vast and robots have practi-
cal restrictions on their computational capabilities, so such a
model is no longer applicable. Instead we need to consider
the possibility that the robot will need to forget some of its
acquired knowledge.

The notion of knowledge forgetting that we introduce al-
lows knowledge that has been acquired from the cloud to be
forgotten after a certain number of subsequent actions. To do
this we provide an alternative account of the epistemic rela-
tion for the Situation Calculus extended with knowledge.

Axiom 1 Consider the set of all initial situations Sy,
S1y--.,Sm, and an upper bound n on the longevity of ac-
quired knowledge. Let Z be a ternary relation that is transi-
tive and Euclidean with respect to the second and third pa-
rameters. The longevity successor state axioms for Z are:

Z(k, s*,do(a,s)) = 3s'.(s* = do(a,s’) A
Z(k —1,5',s) A\ Poss(a, s")),
wherek € 1...n.

These successor state axioms work in a similar manner to
the axioms for the previous K relations; as they track the rela-
tion between possible worlds as a result of actions. However,
unlike the previous K relation, the new successor state axioms
do not get changed as a result of sensing actions. Instead they
effectively attach an action counter to each knowledge state.
This counter can then be used as a means of controlling how
the Z relation defines the epistemic commitments of an agent;
acquiring knowledge through sensing but also forgetting that
knowledge after some number of subsequent actions.

To do this we first introduce a sensing equivalence relation
SEQ as a means of separating the generic aspects of the for-
malism from those that are specific to a particular scenario.

Definition 1 Consider a Situation Calculus basic action the-
ory Y, a set of semsing actions ai,...,a, and fluents
&1y On. Then SEQ(a, §', s) is a sensing equivalence rela-
tion if there exists an axiom in Y of the form:

SEQ(a,s’,s) = ‘/Z\l a=a; D [Vi.(¢i[s'] = b4ls])],

where each V; is a composition of first order quantifiers
over the non-situation free variables in ¢;.

The equivalence specified by an SEQ relation is problem
specific and captures the knowledge that is acquired by the
sensing actions. For example, the following represents a sens-
ing equivalence relation for the running example.

Example 1 The scan action queries the cloud for available
information, while reading the Keymap allows the robot to
discover which button is the key to opening the door:

SEQ(a,s’,s) =
(a=read(Keymap) O [Vb.(Key(b, s")=Key(b, s))]) A
(a=scan D [Vm.(InCloud(m, s") = InCloud(m, s))])

A new relation K can now be defined in terms of the Z
successor state axioms and a sensing equivalence relation.

Definition 2 Consider a Situation Calculus basic action the-
ory, extended with the Z successor state axioms and a sens-
ing equivalence relation SEQ. Let latency(a) represent the
longevity value for a sensing action (note: by definition non-
sensing actions are assigned a longevity value higher than
the highest value of the parameterised Z relation). Then K is
a knowledge acquisition relation:

The knowledge acquisition definition works by placing re-
strictions over the Z relation so that the latency of a sens-
ing action determines the expiry for knowledge acquired from
that action. A Z instance will also be a K instance provided
that it is not being blocked by some previous, still active, sens-
ing action. This blocking reduces the K accessibility between
situations resulting in the agent gaining knowledge. How-
ever, when the sensing action expires, then the block will be
removed and so the once inaccessible situations will become
accessible again and the agent will effectively have forgotten
what it had previously learned by sensing.

The new version of the K relation is applied directly to the
previous definition of knowing (Know) by [Lesperance et
al., 1995] discussed earlier. Furthermore it is fairly trivial to
observe that this new formulation of knowledge is a direct
generalisation of the old (although we do not prove this here
for space reasons). Namely we can attain the original no-
tion of knowledge without forgetting by simply requiring the
latency of all actions to be some value higher than the total
number of actions in the action sequence. We shall refer to
this special case as ideal knowledge (Knowrp) and use it to
define a notion of the epistemic independence of actions.

Definition 3 For Situation Calculus basic action theory ¥,
a set of actions aq,...,a,, a fluent ¢. A sequence of
actions ay, . ..,a, is said to be be epistemically indepen-
dent of ¢ if for any situation s: ¥ E Knowy(o,s) if
by ': KIIOWI((Z5, do([ah ceey an]v 8))

Validating this new formulation of knowledge requires the
establishment of a number of properties. Firstly, the intro-
spective nature of knowledge is preserved. This is an intu-
itively important property of what it means to know some-
thing; namely, that if you know something then you know
that you know it.

Theorem 1 Consider a Situation Calculus basic action the-
ory, extended with the longevity successor state axioms for Z.
Then the defined relation K is transitive and Euclidean.

Proof Sketch: Consider transitive case only as Euclidean case
is identical. The n = 0 case follows by the definition. For
n > 0 consider if K(s, s’) and K(s',s") but =K(s, s"”). Zis
transitive so as Z(s, s’) and Z(s’, s”) therefore Z(s, s”). So
K(s, ") is being blocked from holding by some a, §, §”, 7
such that SEQ(a, §, §') holds and n — 7 < latency(a). How-
ever, if this were true then there must also be an identical
block on either K(s, s) or K(s', s”). O

40

Next, it is important to show that knowledge can be both
acquired through sensing and forgotten after some number of
subsequent actions. Naturally, the subsequent actions must
be independent of the knowledge in question. For example, if
the agent simply repeats a sensing action, then unsurprisingly
the knowledge gained by the first action will be re-affirmed
by the second action and no forgetting takes place.

Theorem 2 Let X be a Situation Calculus basic action the-
ory extended with the Z successor state axioms, and SEQ be a
sensing equivalence relation such that sensing action as de-
tects the value of ground fluent ¢ (i.e., ¥ = SEQ(as, s, 8) =
[p(s") = ¢(s)]), where latency(as) = n (n > 1). Let
¢ hold but be unknown in situation s (i.e., ¥ |= ¢[s] and
Y = Know(¢, s)). For the set of actions ay, . .
that are epistemically independent of ¢ then:

-+ 0n, Gpp1

1. Forany s* = do([as,aq, ..
Y = Know (o, s*).

2. Forany s* = do(las,ay, ..
¥ = Know (¢, s*).

Proof Sketch: (1) As ¥ = ¢[s] and & = Know(¢, s),
so ¢[s] holds but there exists some s’ such that K(s', s)
and —¢[s’]. As as detects the value of ¢ therefore
—SEQ(as, s, s) and combined with latency(as) > 1 will
block any K(do(as, s'),do(as, s)) from holding. Hence ¥ =
Know(¢,do(as, s)). Since ai,...,a,41 is epistemically
independent of ¢ it cannot change the value of ¢ and so
the block will continue to hold for any £ < n. (2) Let
a = ai,...,ay,a,1+1. Since @ is epistemically independent
of ¢ it cannot change the value of Knowry(¢). So, there ex-
ists s’ where —¢[s'] and Z(i, s', s) (for some 4), and where
(Z,i+ 14 n+ 1,do([as,al,s"),do([as,al,s)) also holds.
Since n + 1 — i < n so the block caused by ~SEQ(as, §', s)
will have expired. Hence Know (¢) will no longer hold. O

.y ag],s) where k < n:

<y Qny a7z+1]7 3)

The importance of the notion of epistemic independence
(Definition 3) in allowing acquired knowledge to be forgotten
should not be understated. If a piece of acquired knowledge
is a precondition for some action, then performing that action
will prevent the acquired knowledge from being forgotten.
For example, if a robot first senses that a door is open, and if
that door being open is a precondition for the robot switching
rooms, then the action of switching rooms is not epistemically
independent of the acquired knowledge that the door is in fact
open. Hence if the robot were to subsequently switch rooms
then it would not forget that the door must have been open in
order for it to do so.

In such cases it is useful to draw a distinction between se-
mantic and episodic memory (see, for example, [Schacter et
al., 2011]). The knowledge acquired through sensing that
the door is open becomes part of the robot’s semantic mem-
ory. The knowledge acquired as a consequence of the robot
switching rooms is part of its episodic memory. In this paper
we are concerned with forgetting semantic memory. Forget-
ting of episodic memory corresponds to the robot forgetting
some of its past actions. In a Situation Calculus context this
is commonly achieved through the use of progression.

The new formalisation of the Situation Calculus epistemic
relation developed here satisfies both the introspective nature

of knowledge (Theorem 1) as well as the ability to acquire
and forget knowledge (Theorem 2). It therefore provides a
strong basis on which to model the reasoning needs of a robot
with access to the cloud.

6 Scenario Formalisation

To show how reasoning about knowledge and ability for a
cloud enable robot works, we return to the scenario described
earlier of a robot that needs to enter a room but doesn’t know
which button to press to open the door. Firstly, the precondi-
tion and successor state axioms need to be defined:

Open(s)
True

Poss(enter, s)

Poss(push(b), s)
Poss(read(m), s)
Poss(getmap(m), s)

HaveMap(m, s)

InCloud(m, s) A

VYm.—HaveMap(m, s)
Poss(dropmap(m), s) HaveMap(m, s)

True

Poss(scan, s)
InRoom(do(a, s))
Locked(do(a, s))

a = enter \ InRoom(s)
Locked(s) V

3b.a = push(b) A ~Key(b, s)
—Locked(s) N

Jb.a = push(b) N Key(b, s)
Key(b, s)

InCloud(m, s)

a = getmap(m) V
(HaveMap(m, s) A
a7 dropmap(im))

There are a number of salient aspects to this encoding.
Firstly, pushing the wrong button will lock the door and a
locked door cannot subsequently be unlocked. Given this
constraint it becomes important that the robot should check
the cloud to see if there is information about which button is
the Key to opening the door. This is performed through the
scan sensing action. Once the robot knows which maps are
available it is able to retrieve a map with getmap. The map
that contains the button key information is the Keymap, al-
though there is a second map, Othermap, that contains other
information not relevant to identifying the key button. Only
if the robot has gotten the Keymap can it read the information
necessary to determine the correct button to press.

The sensing equivalence relation models the information
that is gain by sensing actions. We adopt the equivalence
relation SEQ defined in Example 1. Furthermore, sensing ac-
tions require latency to model the length of time that a robot
can retain knowledge. To model a robot with very limited
memory we choose low latency values:

Open(do(a, s))

Key(b,do(a, s))
InCloud(m, do(a, s))
HaveMap(m, do(a, s))

latency(scan) = 2
Vm.latency(read(m)) = 2

Having defined some basic axioms we can specify the facts
that are true about the initial state. Essentially this describes
the world as it is, which is a separate question to what the

41

robot knows about the world:
—Open(Sy), ~Locked(Sy), Vm.—~HaveMap(m, Sp),
—InRoom(Sy), ~Key(B1, Sy), Key(Ba, Sp),
InCloud(Keymap, Sy), InCloud(Othermap, Sp)

The knowledge that the robot has of the real world can be
specified in terms of a set of possible initial situations S; =
{80, S1a; S1b, S1cy S2a, S2p, S2c } accessible from Sp:

V 5=+

52 E€ST

OS SO

We want the robot to initially know that it is not in the room,
the door is not open or locked, and the robot has no maps:

U1 |

s €8T
Properties of the initial situations in S} are defined in such
a way as to indicate that the robot does not know which of the
two buttons is the key to opening the door and does not know
which maps are currently stored in the cloud:

—InRoom(s,), ~Open(s,), "Locked(s,),
Vm.—~HaveMap(m, ;)

Sia: —Key(Bi, S1a), Key(Ba, S1a),

InCloud(Keymap, S1,), InCloud(Othermap, S1,)
Sy —Key(B1, S1), Key(Ba, S1),

—InCloud(Keymap, S1p), InCloud(Othermap, S1p)
Sic: —Key(By,S1.),Key(Bz, Sic),

InCloud(Keymap, S1.), ~InCloud(Othermap, S..)
Saq i Key(By), Saq), ~Key(Bs, Saq),

InCloud(Keymap, Sa,), InCloud(Othermap, Sa,)
Sgb : Key(Bl, Sgb), ﬁKey(BQ, Sgb)7

—InCloud(Keymap, Sap,), InCloud(Othermap, Sayp)
SZC : Key(BlaSQC)»_'Key(B%SQc)a

InCloud(Keymap, Ss..), ~InCloud(Othermap, Sa..)

With the above formalisation Figure 1 shows the progres-
sion of the robot’s actions and knowledge based on a se-
quence that will lead to it entering the room:

[scan, getmap(Keymap), read(Keymap), push(Bz), enter]

The strength of this model is that it goes beyond simply
computing a plan for the robot to achieve its goal. Rather it
allows the robot to reason introspectively about what it knows
and what it can do with this knowledge. In particular there
are a number of interesting properties that can be established.
Firstly, it becomes provable that initially the robot does not
know what information is in the cloud and is therefore not
able to say whether it can in fact find a plan to enter the room.

Theorem 3 X = ~Can(InRoom(now), Sy)

Proof Sketch: We expand and prove by contradiction. So as-
sume there exists an action selection function ¢ such that:

3s’.(OnPath(o, s;, s’) A Know (InRoom, s") A\
Vs*.[s, < s* <8’ D

52 €S Ja.Know(o(now) = a, s*)])

Initial situations Sy, and So, (K accessible from each
other) have no Keymap in the cloud and are identical except

read(Keymap)

)
Know (HaveMap(Keymap))

getmap(Keymap)

Know (InCloud(Keymap)), Know (InCloud(Othermap))

scan I

e

y

Know (Key(Bs)), “Know (InCloud(Keymap)), “Know (InCloud(Othermap))

T T
‘ |
¢ ’)

‘ |

‘ |
R I ‘
] N . |

N

—Key(B1) —Key(B1) —Key(B1) —Key(B1) Key(B1) Key(B1) Key(B1)
Key(B2) Key(B2) Key(B2) Key(B2) —Key(Bz) —Key(Bz) —Key(Bz)
InCloud(Keymap) InCloud(Keymap) —InCloud(Keymap) InCloud(Keymap) InCloud(Keymap) —InCloud(Keymap) InCloud(Keymap)
InCloud(Othermap) InCloud(Othermap) InCloud(Othermap) ~ —InCloud(Othermap) InCloud(Othermap) InCloud(Othermap) — —InCloud(Othermap)
So Sia S1b Sic S2a Sab Sac

Figure 1: The progression of actions leading to the robot being in the room. Dotted lines represent the epistemic accessibility
from the actual situation .Sy to the alternative possible situations. Solid vertical lines indicate actions that are performed from
epistemically accessible situations. Actions performed from situations currently inaccessible from the real situation are repre-
sented with broken vertical lines. These remain relevant because forgetting can result in some subsequent situation regaining
its epistemic accessibility (e.g., the sequence from S leads to the robot forgetting which maps are in the cloud).

for the identity of the key button. So, any action sequence
not containing enter that is legal from the one situation will
also be legal from the other. Hence the situations in every
step of such a sequence will also be K accessible from each
other. Therefore o must prescribe identical actions from both
these situations leading up to the enter action. But the key in
both these situations is different so pushing the correct button
for one will be the wrong button for the other and vice-versa.
Hence no such action selection function exists. a

A second interesting property is that while the robot
doesn’t initially know if it can enter the room, after scanning
the cloud it will know the Keymap is in the cloud and so will
be able to know that it can devise a plan to enter the room.

Theorem 4 ¥ = Can(InRoom(now),do(scan, Sy))

Proof Sketch: Prove by constructing an appropriate action se-
lection function o. Consider two action sequences:

a1 = [scan,getmap(Keymap),read(Keymap) ,push(Bs) enter)
o = [scan,getmap(Keymap),read(Keymap) ,push(By) enter)

From do(scan, Sy), only do(scan, S1,) and do(scan, Sa,) are
K accessible so only consider these three paths. Let o produce
do(dy, Sp) and do(dy, S1,). Both paths lead to the robot be-
ing in the room and the action sequence in both is identical.
Let o produce do(dz, Sa,). This follows an identical action
sequence up to the read(Keymap). At this point the resulting
situation is no longer K accessible from the Sy and S, paths
so is free to follow a different action sequence; in which case
pushing push(B;) will allow it to enter the room. a

42

After querying the cloud the robot knows that it can enter
the room. However, it still doesn’t know which button is the
key and hence the robot doesn’t actually know that pressing
button Bs will open the door.

Theorem 5
¥ E —“KnowlIf (Open(do(push(Bs),now)), do(scan, Sp))

Proof Sketch: From do(scan, Sp) situation do(scan, Sa,) is
K accessible, hence it doesn’t know that Bs is the key. If it
pushed Bs then the door would be open in the actual situation
but closed in the K accessible path leading from S3,. Hence
the robot would not know if the door was open or not. O

Finally, the robot is able to perform more complicated feats
of introspective reasoning such as reasoning about what it
would know if it were to undertake some action. For exam-
ple, it can know that after it scans the cloud it will know if the
door would be open after retrieving and reading the Keymap
and pushing Bs.

Theorem 6

Y EKnow(KnowIf(Open(do([getmap(Keymap), read,
push(Bs)], now)), do(scan, Sp))

Proof Sketch: Reduces to needing to show that for situations
sz € {do(scan,Sy),do(scan, S1,),do(scan, Sa,)} then
KnowlIf (Open(do([getmap(Keymap), read, push(B2)], ;)

holds. Arguments are similar to the previous theorems. O

The scenario and results presented here highlight the subtle
introspective reasoning that is enabled by this formalism. The

robot is able to reason about what it can or can’t do based
not only on the information it currently has but also on the
information that it knows that it can get. This represents a
powerful mechanism for the robot to use information in the
cloud to make decisions dynamically to achieve its objectives.

7 Conclusion and Future Work

In this paper we have motivated the need for robots to be able
to use cloud based resources. We then examined some ex-
isting approaches to cloud robotics and highlighted a gap in
current technologies concerned with a robot’s ability to rea-
son introspectively about its knowledge and ability. To ad-
dress this gap we provided a formalism for reasoning about
knowledge and ability using the Situation Calculus, and ex-
tended it with a notion of forgetting to cope with the high data
demands of the cloud and limited capabilities of robots. Fi-
nally we formalised an example scenario with many of the es-
sential features of a realistic situation in which a robot might
find itself. We then used this scenario to prove properties of
introspective reasoning that allow a robot to use the cloud in
a flexible manner in order to achieve its goals.

This work opens up a four specific avenues for future re-
search. Firstly, the scope of the framework can be extended to
move beyond reasoning only about information stored in the
cloud. As highlighted by the RoboEarth project [Kunze et al.,
20111, arobot that uses the cloud should also be able to down-
load instructions from the cloud, for example instructions on
how to perform some task. It is therefore necessary to ex-
tend the formal account of introspective reasoning to model a
robot that reasons about and retrieves both data and instruc-
tions from the cloud.

The second area for future research concerns the link be-
tween different notions of forgetting. While we have devel-
oped a notion of knowledge forgetting, the more commonly
studied form is that of logical forgetting [Lin and Reiter,
1994]. This latter notion of forgetting involves the replace-
ment of a formula with one that is logically weaker and is
a mechanism to reduce the underlying expressivity of a lan-
guage. While superficially unrelated to knowledge forgetting,
more recent work has established a connection between logi-
cal forgetting and belief erasure [Nayak er al., 2007]. Conse-
quently, it would be interesting to explore any potential rela-
tionships that may exist between the Situation Calculus based
knowledge forgetting developed here and these other forms of
forgetting.

The third area for future research involves the operational
behaviour of determining when forgetting should occur. In
this paper we explored an implicit notion of forgetting, where
the robot forgets after a certain number of subsequent actions.
However a model where the agent forgets as a result of an ex-
plicit forgetting action is also possible. The choice of forget-
ting formalism would be dictated by the requirements of the
agent being modelled.

The final avenue for future research concerns the need to
consider the practical aspects of imbuing real robots with in-
trospective reasoning abilities. This can either take the form
of a direct implementation of the Situation Calculus based
formalism within a robot, or alternatively to treat the formal-

43

ism as normative principles and to see the extent to which
other approaches can be made to satisfy these principles.

Acknowledgements

This research was supported under Australian Research
Council’s (ARC) Discovery Projects funding scheme (project
number DP 120102144). The fourth author is the recipient of
an ARC Future Fellowship (project number FT 0991348) and
is also affiliated with the University of Western Sydney.

References

[Arumugam et al., 2010] R. Arumugam, V. R. Enti, L. Bing-
bing, W. Xiaojun, K. Baskaran, F. F. Kong, A. S. Kumar,
K. D. Meng, and G. W. Kit. DAvinCi: A cloud comput-
ing framework for service robots. In Proceedings of the
IEEE International Conference on Robotics and Automa-

tion (ICRA), pages 3084-3089, 2010.

[Goldfeder et al., 2009] Corey Goldfeder, Matei T. Ciocar-
lie, Hao Dang, and Peter K. Allen. The columbia grasp
database. In ICRA, pages 1710-1716. IEEE, 2009.

[Guizzo, 2011] E. Guizzo. Robots with their heads in the
clouds. Spectrum, IEEE, 48(3):16 —18, march 2011.

[Hu er al., 2012] Guogiang Hu, Wee Peng Tay, and Yong-
gang Wen. Cloud robotics: architecture, challenges and
applications. IEEE Network, 26(3):21-28, 2012.

[Hunziker ef al., 2013] D. Hunziker, M. Gajamohan,
M. Waibel, and R. D’Andrea. Rapyuta: The RoboEarth
cloud engine. In IEEE International Conference on
Robotics and Automation (ICRA), 2013.

[Kehoe et al., 2013] B. Kehoe, A. Matsukawa, S. Candido,
J. Kuffner, and K. Goldberg. Cloud-based robot grasping
with the google object recognition engine. In IEEE Inter-
national Conference on Robotics and Automation (ICRA),
2013.

[Kuffner, 2010] J. Kuffner. Cloud-enabled robots,
2010. In conjunction with the 10th IEEE-RAS
International Conference on Humanoid Robots.

http://i61www.ira.uka.de/users/asfour/Workshop-
Humanoids2010/talks/James-Kuffner-
Humanoids2010.pdf.

[Kunze et al., 2011] Lars Kunze, Tobias Roehm, and
Michael Beetz. Towards semantic robot description
languages. In ICRA, pages 5589-5595. IEEE, 2011.

[Lesperance et al., 1995] Y. Lesperance, H. J. Levesque,
F. Lin, and R. B. Scherl. Ability and knowing how in the
situation calculus. Studia Logica, 66:2000, 1995.

[Lin and Reiter, 1994] Fangzhen Lin and Ray Reiter. Forget
it! In In Proceedings of the AAAI Fall Symposium on
Relevance, pages 154—159, 1994.

[McCarthy, 1963] J. McCarthy. Situations, actions and
causal laws. Stanford University Artificial Intelligence
Project Memo 2, 1963.

[Nayak et al., 2007] Abhaya C. Nayak, Yin Chen, and
Fangzhen Lin. Forgetting and update — an explo-
ration. In Giacomo Bonanno, James P. Delgrande,
Jérome Lang, and Hans Rott, editors, Formal Mod-
els of Belief Change in Rational Agents, volume
07351 of Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany, 2007.

[Reiter, 2001] R. Reiter. Knowledge in Action: Logical
Foundations for Specifying and Implementing Dynamical
Systems. The MIT Press, 2001.

[Schacter et al., 2011] Daniel L. Schacter, Daniel T. Gilbert,
and Daniel M. Wegner. Psychology, chapter 6, pages 240—
241. Worth Publishers, 2011.

[Scherl and Levesque, 1993] Richard B. Scherl and Hector J.
Levesque. The frame problem and knowledge-producing
actions. In Richard Fikes and Wendy G. Lehnert, editors,
AAAI, pages 689-695. AAAI Press / The MIT Press, 1993.

[Tenorth et al., 2012] Moritz Tenorth, Alexander Clifford
Perzylo, Reinhard Lafrenz, and Michael Beetz. The
RoboEarth language: Representing and Exchanging
Knowledge about Actions, Objects, and Environments. In
IEEE International Conference on Robotics and Automa-
tion (ICRA), St. Paul, MN, USA, May 14-18 2012. Best
Cognitive Robotics Paper Award.

[Waibel et al., 2011] M. Waibel, M. Beetz, J. Civera,
R. D’Andrea, J. Elfring, D. Galvez-Lopez, K. Hausser-
mann, R. Janssen, JM.M. Montiel, A. Perzylo,
B. Schiessle, M. Tenorth, O. Zweigle, and R. van de
Molengraft. Roboearth. Robotics Automation Magazine,
IEEE, 18(2):69 —82, june 2011.

44

Point-Sensitive Circumscription Computation via
Answer Set Programming and Applications
(Preliminary Report)

Hai Wan'! and Zhanhao Xiao? and Rui Yang? and Pu Wang?
1Software School, Sun Yat-Sen University, PR. China 510275
2School of Information Science and Technology, Sun Yat-Sen University, P.R. China 510275
wanhai @mail.sysu.edu.cn, zhanhaoxiao @ gmail.com, yangrui_yr90@ 163.com, wangpu96 @ gmail.com

Abstract

As a generalization of both McCarthy’s circum-
scription and Lifschitz’s pointwise circumscription,
Amir’s point-sensitive circumscription is a useful
tool for formalizing solutions for Theories of Ac-
tion. Point-sensitive circumscription can maintain
the control of the minimization process over selec-
tive fine-grained variance of predicates and func-
tions, whereas the computation and applications
still remain unsatisfactory. Thus, the practical value
of point-sensitive circumscription has been severe-
ly restricted. In this paper, we propose translation
T'rP® from point-sensitive circumscription to first-
order stable model semantics over arbitrary struc-
tures. Based on the reduction from stable model
semantics to answer set programming over finite
structures, a point-sensitive circumscription solver,
named psc2Ip, is developed. We also provide a sit-
uation calculus style encoding method by examin-
ing a variant of the Yale Shooting Scenario, to solve
the Frame Problem and the Qualification Problem.
These problems in situation calculus represented
naturally by point-sensitive circumscription, can be
handled by our approach using existing answer set
solvers effectively.

1 Introduction

Point-sensitive circumscription, devised by Amir in [Amir,
1997, 19981, is a nonmonotonic method defined along the in-
tuitions of pointwise circumscription [Lifschitz, 1986; 1987a;
1987b] with control of the minimization process over selec-
tive fine-grained variance of predicates and functions. Amir’s
point-sensitive circumscription can be considered as a gen-
eralization of both McCarthy’s circumscription [McCarthy,
1980; 1986] and Lifschitz’s pointwise circumscription, and is
a useful tool for finding the Frame Problem and the Qualifi-
cation Problem solutions for Theories of Action.

Pointwise circumscription has been used in formalizing
some Entailment Classes in the theory of Features and Fluents
[Sandewall and Shoham, 1995; Iwanuma and Oota, 1996;
Iwanuma et al., 2009], and in [Amir, 1997]. It was argued

45

in [Lifschitz, 1987a] and [Doherty and f.ukaszewicz, 1994]
that pointwise circumscription has the power to be a tool for
formalizing solutions for the Frame Problem.

The unintended minimal model which pointwise circum-
scription can capture is the insistence on minimizing one flu-
ent at a time, while not allowing other changes for other flu-
ents for the same time point in situation calculus. Compared
with pointwise circumscription, point-sensitive circumscrip-
tion might be to minimize changes for all the fluents once for
a given time point. However, despite the progresses on the-
oretical aspects, the computation of point-sensitive circum-
scription still remains unsatisfactory, which encounters dif-
ficulties from a practical viewpoint. On the other hand, the
basic case (circumscribing predicates with no other constants
varied) for pointwise circumscription can be rewrite as a first-
order sentence, whereas this property of generalized point-
wise circumscription and point-sensitive circumscription dis-
appears, which makes the computation of point-sensitive cir-
cumscription difficult.

This paper intends to address this issue by translating
point-sensitive circumscription into Answer Set Program-
ming (ASP) [Gelfond and Lifschitz, 1988], a promising ap-
proach that has been successfully implemented by a number
of sophisticated solvers [Drescher et al., 2008; Leone et al.,
2006]. To the authors’ knowledge, we have found no solvers
for computing point-sensitive circumscription.

In this paper, we propose a computation approach and im-
plement such a solver. First, we present a translation from
point-sensitive circumscription to first-order stable model se-
mantics over arbitrary structures: 7'rP®. The translation has
been proved faithful. Over finite structures, point-sensitive
circumscription under stable model semantics can be trans-
lated into answer set programming. Based on this translation,
we can compute point-sensitive circumscription by using ex-
isting ASP solvers, over finite structures. Secondly, based on
the first-order stable model solver - T2LP [Zhang et al., 2011,
Zhang, 2011], we implement a solver, named psc2lp, for
computing arbitrary point-sensitive circumscription. Thirdly,
we also provide a situation calculus style encoding method
for Reiter’s basic action theories by examining a variant of
the Yale Shooting Scenario, which demonstrates the Frame
Problem and the Qualification Problem in situation calculus
represented naturally by point-sensitive circumscription can
be handled by our approach effectively.

2 Preliminaries
2.1

McCarthy’s circumscription [1980] is one of the first and ma-
jor nonmonotonic reasoning tools. We follow the notions of
parallel circumscription in [Lifschitz, 1994]. Logic symbols
used in this paper are defined as usual. Let ¢ be a first-order
sentence, o; be a tuple of minimized predicate constants
and o, be a tuple of individual, function, or predicate
constants totally differing from o;. The rest of the vocabu-
lary of ¢ are called fized constants. Let o} be a tuple of
predicate variables with the same arity as predicate constants
in o; respectively; similarly, let ¢} be a tuple of correspond-
ing variables of same arity as constants in o,, respectively.

Before defining circumscription, we introduce a com-
parison relation < between two predicate tuples. More-
over, we abbreviate the conjunction of VZ(P*(Z) <
P(z)) (resp. YZ(P*(Z) — P(z))) for all P* € of and
P € o, too} o; (resp. of < 0;). Therefore, we
let the comparison ¢ < o; stand for the formula (¢} <
0;) A (o} = o;). Then parallel circumscription of ¢; for ¢
with o, varied is defined by a second-order formula:

McCarthy’s Circumscription

Circlp; 04500 = @ AVolo)(of <oy = —p(af,0r)) (1)
where (o), o)) is obtained by substituting variables in

o¥

* (resp. o) for corresponding constants in o; (resp. oy,).

Intuitively, circumscription makes the extension of some
predicates minimal under the precondition guaranteing the
validity of ¢, where the extension of predicate P is a set of
elements in the domain letting P be true. A structure p is
a o;-minimal model of ¢ with ¢, varied if it is a model of
CIRC[p; 0;; 0y)-

2.2 Lifschitz’s Pointwise Circumscription

Pointwise circumscription (basic case) was first proposed in
[Lifschitz, 1986] and then expanded in [Lifschitz, 1987a;
1987b], called generalized pointwise circumscription. The
basic case for pointwise circumscription is the formula:

p(P) AVz=[P(z) A p(Ay(P(y) A x # y))]

where we minimize the predicate P with no other constants
varied. Intuitively, it shows that it is impossible to make
the extension of exactly one minimized predicate smaller by
changing it at exactly one point. One of the benefits of such
an approach involves general first-order circumscriptive the-
ories. This property disappears in generalized pointwise cir-
cumscription and point-sensitive circumscription.

Let (P, Z) be a sentence, where P represents a predicate
constant and Z denotes a list of predicate constants or func-
tion constants Z;(in particular, a 0-arity function constant is
an individual constant). We write EQy (P, Q) for

EQv(P,Q) £ va(-V(z) = (P(z) & Q) @
where P, @,V are predicates with same arity. If P,() are
function constants of the same arity as predicate constant V/,
then EQv (P, Q) stands for Vo (-V (z) — (P(z) = Q(x))).
Intuitively, the formula EQvy (P, Q) denotes that P and @) are
equal outside V.

46

The generalized pointwise circumscription of P in ¢ with
Z; varied on V; is, by definition,

Cowlp; Ps Z1/Vi, oo Zn [V] =
o(P, Z) NNz P*Z*=[P(x) A =P*(x)A
N\ EQu.a(Z].Zi) N (P, Z7)]

1<i<k

(©))

where P* is an auxiliary predicate corresponding to mini-
mized predicate P, Z* is a list Z7, ..., Z} of predicate and
function variables corresponding to the predicate and func-
tion constants Z, and AzuV;(x,u)(i = 1,...,n) is a predi-
cate without parameters which does not contain Z1,..., 2,
and whose arity is the arity of P plus the arity of Z;.

For a model M of ¢(P, Z), let | M| be the associated uni-
verse, and for every term, function or predicate a, aM is the
realization of a in M.

Definition 1. (Definition 2.1 in [Amir, 1998]) Let M1, M,
have the same universe U, and let ¢ € U*, where k is the
arity of P. We say that M, <& M iff:
1. KMy = KM2 for every function or predicate constant
K that is neither P nor in Z,

zM zM2

2. for any v = 1,... and coincide on
=V (€ m,
3. PMi(¢) — PMz2(¢).

Let [¢(P, Z)] be the set of models of ¢(P, Z). The follow-
ing proposition 1 says that every model of circumscription for
¢(P, Z) is minimal in [((P, Z)] according to the orders <¢.

Proposition 1. ([Lifschitz, 1987al) Ler M be a model of
o(P,Z). M = Cpwlp; P; Z1/Va, ..., Zn/ V)] iff for each
& € MFE, M is minimal relative to <S.

M ECowlo; P; Z1/Viy ooy 2y [V] =
YM' € [p(P, Z)] V¢ € |IM*
(M <EMAM £E M)

2.3 Amir’s Point-Sensitive Circumscription

> T,

Amir [1998] presented point-sensitive circumscription, a
modified version of pointwise circumscription in which the
minimized predicate is minimized according to a minimiza-
tion domain. This minimization domain may be a point and
may be the complete set of elements, which preserve the abil-
ity to select/vary parts of the theory/domain dynamically.

We use similar notations to those used in generalized point-
wise circumscription. We want to minimize a predicate con-
stant P in a appropriate region. In addition to the definition
of EQv in (2), let us write LSr (P, Q) for

def

LSRr(P,Q) = Va(R(x) — (P(z) = Q(z))

4)
Adz(R(z) A =P(z) A Q(z)))

where P, () predicates or functions, and R a predicate, all
with same arity. Intuitively, the formula LSk (P, Q) denotes
that PN R g @ N R or in the other word, the predicate P is
smaller than () in the region R.

The point-sensitive circumscription of P in ¢ with Z; var-
ied on V; and P minimized using R is defined below,

Coslo; P/R; Zy/Vh, ..o, Zn [Vi) =

o(P, Z) ANz P* Z*~[LSrs(P*, P)A
n Q)
N\ EQu.«(Z}, Zi) A o(P*, Z%)]

i=1

where P* is an auxiliary predicate corresponding to min-
imized predicate P, Z* is a list Z7,...,Z} of predicate
and function variables corresponding to the predicate and
function constants Z, and AzuR(z,u), AzuV;(z,u)(i
1,...,n) are predicates without parameters which do not
contain 7y, ..., Z, and whose arity both are the arity of P
plus the arity Z;.

For a model M of ¢(P, Z), let | M| be the associated uni-
verse, and for every term, function or predicate a, aM is the
realization of a in M.

Definition 2. (Definition 4.1 in [Amir, 1998]) Let M1, M,
have the same universe U, and let ¢ € UF, where k is the
arity of P. We say My <& M (a strict partial order) iff:

1. KMv = KMz for every function or predicate constant
K that is neither P norin Z,
ZiM1 ZZ-M"‘ coincide on

2. for any 1 = 1,... and

{nl=V" (&)},
3. LSpe) (PM3, PM2)(R(€) = MuR(E,u)).

The following proposition says that every model of the cir-
cumscription formula for ¢(P, Z) is minimal in [¢(P, Z)]
according to all of the orders <£, and vice versa.

Proposition 2. (Proposition 4.2 in [Amir, 1998]) Let M be
a model of p(P, 7).

M):CPS[(,O,P/R,Zl/Vh,Zn/Vn] =
VM’ € [p(P, Z)| V€ € IM|F=(M' <& M)

Example 1. Let o(P) (P(a) V P(b)) A (a # D), let
U = {1,2} be the set of elements in the universe. Let
Mg, My, Mgy, and My be the models with universe U, with
a, b interpreted to 1, 2, respectively, and the following inter-
pretations for the predicate P: PM« = {1}, PM» = {2},
PMav = 11,2}, PMo = ¢,

When it comes to pointwise circumscription of P, it be-
comes counter-intuitive since Cpw[p; P; P/Ax.True] is un-
satisfiable. According to Definition 1, we can obtain M, <2
M, and My, €2 M,. As M, € [p(P)], M, is not a model of
Cpw[e; P; P/Ax.True]. Similarly, M, and M, do not sat-
isfy Cpw[p; P; P/Axz.True]. Because My is not a model of
(P), pointwise circumscription of P in ¢(P) has no mod-
el. But when it is applied to point-sensitive circumscription,
we can get two models: M, and Mj, with same models of
McCarthy’s parallel circumscription, based on Proposition 2.

Compared to pointwise circumscription, point-sensitive
circumscription tends to minimize predicates in a minimum
view, where predicates be required to be smaller than all oth-
er predicates, by controlling the minimization domain.

) 1

47

2.4 Stable Model Semantics

Similar to Parallel circumscription’s definition in (1), stable
model semantics was recently generalized to first-order lan-
guage in [Ferraris ef al., 2007; Lin and Zhou, 2011]. Given
a first-order sentence and a tuple o; of predicate constants,
let SM[i; ;] stand for the second-order sentence:

SM[ip; 0i] = p AVa (0] < o; = =St(p;0:)) (6)

where St(ip; 0;) is defined recursively as follows:
St(P(Z);0;) = P*(z)if P € oy;

SH(F(%); 05) = F(7) it F ¢ 3

St(y o x;04) = St(¢; P) o St(x; P) if o € {A, V};
St(y = x;00) = (St(¥;06) = St(x; 09)) A (¢ = X);
St(Qavp; 07) = QuSt(¢;04) if @ € {V, 3}

A structure 1 is called a 0;-stable model of ¢ if it is a mod-
el of SM[p;0;]. A predicate constant is intensional if it oc-
curs in o;; otherwise, it is extensional. According to [Cabalar
and Ferraris, 2007], every universal formula without existen-
tial quantifiers under stable model semantics is equivalent to
a logic program, which is a foundation of computing stable
model semantics via existing ASP solvers.

Building on the result of [Cabalar et al., 2005], Lee and
Palla [2009; 2012] defined a translation that turns an “almost
universal” formula under the stable model semantics into a
logic program under the assumption that every positive (nega-
tive, respectively) occurrence of a formula Jxp(x) (Vap(x),
respectively) in the original formula 7) belongs to a subformu-
la ¢ of ¥ such that ¢ contains no strictly positive occurrence
of any intensional predicates. System F2LP! is an imple-
mentation of the translation above [Lee and Palla, 2009].

Zhang et al. showed an embedding of first-order circum-
scription in first-order stable model semantics and also intro-
duce a translation that turns arbitrary first-order formulas into
logic programs under finite structures, implemented as sys-
tem T2LP? [Zhang et al., 2011; Zhang, 2011].

3 Translating Point-Sensitive Circumscription
into Stable Model Semantics

An embedding of first-order parallel circumscription with-
out varied constants in first-order stable model semantics has
been shown in Section 4 of [Zhang et al., 2011]. In this sec-
tion, we propose translation from point-sensitive circumscrip-
tion into stable model semantics over arbitrary structures.

Note that the equivalence between formulas in classical
first-order logic is still retained in circumscription. So for ev-
ery first-order formula, there always exists a formula in nega-
tion normal form equivalent to it in circumscription. Negation
normal form guarantees that — only occurs directly ahead of
predicates. Here —P is treated as P — L, which is called
negative literal conveniently. The implication always follows
predicates, so that it is handled easily when taking into ac-
count the operator St. Thus the translations in this section
take formulas in negation normal form as inputs.

! http://reasoning.eas.asu.edu/f2lp
2 http://ss.sysu.edu.cn/~wh/T2LP.html

Our main idea is in brief to introduce auxiliary predi-
cates to simulate the varied predicate constants and their cor-
responding varying domains 71 /V4,..., Z,/V,, as well as
minimization domain R in the second-order sentence.

Definition 3. Let ¢ be any first-order sen-
tence in negation normal form. Then we define
Tr?*(p; P/R; Z1/V1, ..., Zn/Vy) be the conjunction

of below formulas with omitting universal quantifiers:

AN @)
¥ & VB(P(2) V ~P(3) ®)
(V= Pr@)A(v=T@o)A N\ v—= Qi@ O
1<i<k
R(Z,y) N P(y) = Pr(y) (10)
R(z,5) A (P(y) =) = (Pr(y) =) (11
T(z,mm) V (R(z, mm) A (P(mm) — v)
_ (12)
A——P(mm))
suce(z,z) — [T(Z,§) < (R(Z, Z) A
APE) =9 A-=PE)VT@E]
—Vi(Z,9) AN —Zi(y) = Qi(Y) (14)
1<i<n
N\ Vi@, 9) A=Zi(5) = (Qi(5) =) (15)
1<i<n
where ™ is obtained from @ by substituting ——P(Z) for

each positive literal P(Z); ¢ is obtained from ¢ by substi-
tuting Pgr(Z) for each positive literal P(Z), (Pr(Z) — 7)
for each negative literal =P(Z), Q;(Z) for each positive lit-
eral Z;(z) and (Q;(ZT) — ~y) for each negative literal ~Z,;(Z)
such that 1 < ¢ < n; succ describes the successor relation
on the domain based on a total order and min is the minimal
tuple in the order; Pg, T, QQ; and =y are auxiliary predicates
without occurrence in .

Actually, Definition 3 provides a syntactic translation from
a first-order sentence to another one, which can be achieved
in polynomial time. Next, the soundness and completeness of
the translation are illustrated by Proposition 3 and then it is
proved to be faithful.

Proposition 3. Let ¢ be any first-order sen-
tence in negation normal form. Let 1 denote
TrP*(p; P/R; Z1 Vi, .o oy ZnJ V). Then, over finite

structures, SM[y; P, Pr,T,~v,Q1,...,Qn] is equivalent
to Cpwlp; P/R; Z1/V1, ..., Zn/Vy], where Pr,T,~ and
Q1,...,Qn are auxiliary predicates introduced by the
translation.

48

Proofi{sketch). Intuitively, the translation resulting) under
stable model semantics simulates ¢ in point-sensitive circum-
scription. As it is defined above, SM[¢); 0;] is equivalent to
the formula) AVo ;= (o} < 0; A St(1; 0;)). Compared with
the definition of point-sensitive circumscription (5), that of S-
M is similar on the second-order part. Based on the similarity,
we propose a translation from point-sensitive circumscription
into SM with auxiliary predicates.

Indeed, Formula (7) is equivalent to ¢ because each sub-
stitution in ¢ must be true on account of Formulas (8) and
(9). In addition, the validation of auxiliary predicates makes
formulas (10)-(15) be always true and guarantees their corre-
sponding predicate variables within the range of them, such
as T* < T. Thus, the conjunction of these formulas, i.e., v, is
equivalent to ¢ and it describes the equivalence of translation
in the first-order part.

Next, these formulas change after applying the operator St.
Specifically, St(v;0;) = v* = L if P* < P and otherwise
v* = ~. Actually, P* < P must be true or it will make
all predicate variables equal to their corresponding predicate
constants. Then o] < o; is false and it makes the second-
order part be true which has no influence on the translation.
When P* < P, the implication with an antecedent of v* is
true and the implication in from of P*(Z) — ~* is equivalent
to = P*(Z).

Additionally, St((10) A (11);0;) describes the property
that Py is equivalent to P* in the region Rx. Because of
P* < P, it equals to Vy(Rz(y) — (P5(y) — P(7))). In
St((12) A (13); 0;), predicate variable T* actually describes
the existential quantifier over successor structure, according
to the idea of Eiter et al. and Zhang et al.. So it is equivalent
to 3F(Rxz(g) APy () AP(F)). Consequently the conjunction
of them is equivalent to LSk (P, P).

Similarly, St((14) A (15);0;) describes the property that
Q7 and Z; are equal outside V;x such that 1 < ¢ < k. Then
each its conjunctive simulates EQ;x(Q7, Z;). Since pred-
icate constants Pr and @; are always valid, corresponding
predicate variables Pj and @)} can change arbitrarily in the
domain and it actually describes the second-order universal
quantifier. Here predicate variables P and ()7 simulate p and
z; in point-sensitive circumscription respectively. According
to the substitution rule, St(@; 0;) is equivalent to ¢*. Because
of St(p™7; 0;) = ¢, the second-order part of SM([¢); 0;] is e-
qual to that of Cpw|[p; P/R; Z1/V4, ..., Zyn/Vy]. So far the
faithfulness of the translation 7'r?? is proved. O

Remark 1. For the special form of point-sensitive circum-
scription Cps|p; P; Z1/V1, ..., Zn / V], whose R actually is
treated as T'rue, Formulas (10)-(13) can be omitted, which
can make the translation T'rP® more efficient by reducing the
number of rules generated.

Remark 2. As for T'rP®, we have not mentioned function and
individual constants because predicates can simulate func-
tions easily. For each n-arity function, we can introduce a
n+1-arity predicate to represent it. Particularly, individu-
al constants varied actually can be simulated by individual
variables in scope of first-order existential quantifiers.

4 Application in Situation Calculus

So far, in this paper we have shown how we can translate
point-sensitive circumscription into first-order stable model
semantics. In this section we will use point-sensitive cir-
cumscription representation to reformulate the Frame Prob-
lem and the Qualification Problem in situation calculus.

4.1 Situation Calculus

The situation calculus [Reiter, 2001; Lin, 2008] is one of
the most well-known formalisms for reasoning about actions.
The situation calculus is a many-sorted first-order language
(with some second-order ingredients) suitable for represent-
ing changes. Prolog can be used to implement the situation
calculus, based on the fact that Clark’s completion semantics
accounts for definitional axioms.

The basic special sorts in situation calculus are situations,
actions, and fluents (relational fluents and functional
fluents), situations and actions are represented as individuals
that can be quantified over. There could be other sorts, some
of them domain dependent like block for blocks in the block-
s world and others domain independent like truth for truth
values. Assume the following special domain independent
predicates and functions: a binary predicate Holds(P(x), s)
denoting fluent P is true in situation s, usually using P(x,)
as shorthand for Holds(P(x), s); a binary function do(a,)
denoting the successor situation to s resulting from perform-
ing action a; a binary predicate Poss(a, s) meaning that ac-
tion a is possible in situation s.

We assume that a description D consists of a finite number
of the following sets of axioms. We often identify D with the
conjunction of the universal closures of all axioms in D. In
the following, F', F; are fluent names, A is an action name,
V', V; are truth values, s, s’ are situation variables, ¢(s) is a
simple state formula about s, constants a, a’ are action vari-
ables, f is a variable of sort fluent, v is a variable of sort truth
value, and z, x;, y, y; are lists of variables.

Reiter’s basic action theory (BAT) is of the form

2 UDssUDgpUDype UDg, (16)
where
e Y : the set of the foundational axioms;

e D,,: aset of successor state axioms of the form

F(Ia dO(CL, S)) e (I)F(xv a, 5)7
where ®p(z, a, s) is a formula that is uniform in s [Re-
iter, 2001] and whose free variables are among z, a, s;
Dgp: aset of action precondition axioms of the form
Poss(A(x), s) «+ a(z,s),
where II4(x,s) is a formula that is uniform in s and
whose free variables are among x, s;

Duna: the set of unique name axioms for fluents and
actions;

Ds,: aset of first-order sentences that are uniform in Sp.

49

4.2 The Frame Problem, the Ramification
Problem, and the Qualification Problem

McCarthy and Hayes identified the Frame Problem as the
problem of expressing a dynamical domain without explic-
itly specifying which conditions are not affected by an action
[McCarthy and Hayes, 1969]. McCarthy [1986] initially pro-
posed to solve the Frame Problem by the following generic
frame axiom:

Holds(p, s) A mabnormal(p, a,s) — Holds(p, do(a, s))

with the abnormality predicate abnormal circumscribed.
However, Hanks and McDermott showed that McCarthy’s ap-
proach does not work [Hanks and McDermott, 1987]. Reiter
proposed a simple syntactic manipulation that turns a set of
effect axioms into a set of successor state axioms that com-
pletely captures the true value of each fluent in any successor
situation [Reiter, 1991].

F(x,do(a,s)) =~ (a,z,s) V (F(x,8) A=y (a,,s))

The Ramification Problem, first discussed by Finger
[1986], is about how to encode constraints like this in an ac-
tion domain, and how these constraints can be used to derive
the effects of the actions in the domain. Lin [1995] repre-
sents this constraint as a causal constraint, axiomatizing this
by introduced a ternary predicate Caused(p, v, s), meaning
that fluent p is caused to have truth value v in situation s.

® D yused 18 a set of axioms of the form
Poss(A(x), s) —
(¢(s) = Caused(F(y),V,do(A(z), s))
(direct effects) and
#(s) A Caused(Fy(x1),V1,8) A ...
NCaused(Fy(xn), Vo, s) = Caused(F(x),V,s)
(indirect effects).

The Qualification Problem is concerned with the impossi-
bility of listing all the preconditions required for a real-world
action to have its intended effect [McCarthy, 1977]. One pos-
sible solution to this problem is to assume that an action is
always executable unless explicitly ruled out by the theory.
This can be achieved by maximizing the predicate Poss, or
in terms of circumscription, circumscribing Poss. The prob-
lem becomes more complex when some domain constraints-
like axioms can influence Poss. Lin and Reiter [1994] called
those constraints that yield indirect effects of actions ramifi-
cation constraints, and those that yield additional qualifica-
tions of actions qualification constraints. They are both rep-
resented as sentences of the form VsC(s), and it is up to the
user to classify which category they belong to. Under this
framework, only constraints represented as causal rules using
Caused can derive new effects of actions, and ordinary situ-
ation calculus sentences of the form VsC(s) can only derive
new qualifications on actions.

4.3 Representing the Frame and the Qualification
Problem with Point-Sensitive Circumscription

Amir [1997] adjusted the discrete situation calculus [Lin and
Reiter, 1994] to fit his set theoretic language and proposed his

solution to the Frame and the Qualification problems. Amir
gave a theoretic solution with point-sensitive circumscription
and we achieve it practically in this section.

Suppose Ab(l, a, s), which is an predicate constant on flu-
ent [, action a, and situation s, means an abnormality. Nor-
mally, fluent [remains after performing action « in situation
s. In other word, Ab(l,a,s) denotes [changes in situation
do(a, s), which is represented by the following axioms:

—Ab(l,a,8) — (Holds(l, s) +» Holds(l,do(a, s)))

To find all fluents keeping persistence in the next situation,
we minimize Ab on one situation at a time. Let V4 (z,y) be
the formula Az, y 3z, az, 55 Ay, az,5: * =< Iz, 05,5, >
ANy =<ly,ay, 8y > A sy = sy, and Va(z,y) be the formu-
la Ax,y Az, az,8; 3y, 02,8, ¢ =< lz,0z,5:, > Ny =<
ly,ay, sy > A do(as, s;) = s,. Intuitively, V; considers that
situation s, while V5 considers the next situation. According
to the meaning of V' in pointwise view, predicates can change
arbitrarily inside V' with remaining unchanged outside V. In
point-sensitive circumscription, Ab/V; means that the abnor-
mality in different situations and Ab is allowed to vary in the
same situation, while Holds/V, means that fluents can be
changed in the next situation.

EQv, 5 (Ab", Ab) = s, # 5, — (Ab™(y) <> Ab(y))

EQv,.(Holds*, Holds) =
do(ay, sz) # sy — (Holds*(y) <> Holds(y))

With this circumscription policy, for each situation, there is
only one situation, the next situation, being considered rather
than all situations. To minimize Ab in all fluents and actions,
we let R be T'rue. The point-sensitive circumscription can
solve the Frame Problem one situation at a time:

Cps[p; Ab/R; Ab/ Vi, Holds [V3] 17)

The models of this point-sensitive circumscription coincide
with minimal models of discrete situation calculus, no matter
whether nondeterministic actions are allowed to be done.

As far as the Qualification Problem is concerned, the point-
sensitive circumscription can solve it. Similarly, we let Abg
describe the abnormality of allowance to preform actions.
Action a is executable in situation s normally and Abg(a,)
denote a can not be preformed in s.

—Abg(a,s) — Poss(a, s)

In situation calculus, there is a class of formulas called con-
straints, which consist of ramification constraints RC' and
quantification constraints QC'. We use a predicate constant
AllowedS(s) to denote situation s satisfying all quantifica-
tion constraints. The following axiom can guarantee every
situation not in AllowedS, its next situation is also not in it.

—AllowedS(s) — —AllowedS(do(a, s))

Next, an action is said to be applicable if and only if its pre-
conditions are met and it does not lead to the violation of QC,
which is denoted as follows.

App(a, s) <> Poss(a, s) A AllowedS(do(a, s))

50

To consider all situations, we need consider as many as pos-
sible action. Thus, we must maximize the predicates Poss.
Furthermore, predicate Abg should be circumscribed. The
point-sensitive circumscription can solve the Quantification
Problem with the following policy.

Cps[p; Abq/R; Abq/ Vi, Ab/V4, Poss/ Vi,
Holds/Va, AllowedS/True, App/True)

As a result, action quantifications is expressed explicitly by a
conjunction of simple formulas of the following form:

Poss(a, s) <> 01(a,) A ... ANO,(a,s)

18)

5 Implementation and Example

This section shows how to implement a point-sensitive cir-
cumscription solver psc2lp. One example: a variant of the
Yale Shooting Scenario is presented how psc2lp can be used
in solving the Qualification Problem in situation calculus.

5.1 Implementation

A point-sensitive circumscription solver psc2lp is develope-
d based on our approach. psc2lp firstly accepts a point-
sensitive circumscriptive theory, then translates it into a log-
ic program, and finally invokes an ASP solver with a corre-
sponding finite extensional database®*.

Point- oy
oint-Sensitive ASP Program

Circumscription
7N

|
|
|
: ASP Solver
|
|
|
1

Extensions Answer sets

Figure 1: Outline of psc2lp

Figure 1 illustrates how psc2lp works. An input point-
sensitive circumscriptive theory is firstly translated to an an-
swer set program by the translator in psc2lp. Then, an ASP
solver is called to compute the answer sets of the program.
Finally, the answer sets will be interpreted back to all solu-
tions of the original point-sensitive circumscriptive theory by
an convertor. For the ASP solver module in psc2lp, we just
use claspD ° [Gebser et al., 2007]. The convertor in psc2lp
is trivial. Hence, the main issue in psc2lp is the translator.

Indeed, after the translation 77P°, the fixed and varied
predicates in circumscription are treated as the extensional
predicates under stable model semantics which need to be
eliminated when translating into a logic program by intro-
ducing a sentence of the form VzZ(Q(Z) V —-Q(Z)) for each
extensional predicate Q.

3 http://ss.sysu.edu.cn/~wh/psc2lp.html

* An extensional database is a structure consisting of extensional
predicate and function constants under stable model semantics.

Shttp://www.cs.uni-potsdam.de/clasp/

More precisely, we can compute point-sensitive circum-
scription by 4 steps:

1. Turn the input into the sentence in both prenex normal
form and negation normal form;

2. Apply the translation 7rP° to obtain a first-order sen-
tence under stable model semantics;

3. Use Zhang’s first order stable model semantics solver
T2LP repeatedly till a logic program can be obtained;

Add VZ(Q(z)V—Q(Z)) for each fixed and varied predi-
cate.

5.2 Example

Let us examine a variant of the Yale Shooting Scenario (YSS)
[Hanks and McDermott, 1987]. Assume that there are two
turkeys. As aresult of the gun’s being shot, exactly one turkey
dies. There is only one bullet can be loaded. For this, we
have initially, both turkeys are alive, and the gun is loaded.
The knowledge representation is provided below with some
formulas omitted:

Dyp :
Holds(loaded, s) — Poss(shoot(x), s) (19)
Holds(loaded, s) V —Holds(loaded, s) 0
— Poss(load, s) 0

Dss :

Holds(loaded, do(a, s)) <>
(Holds(loaded, s) A a # load) 2n
V(—Holds(loaded, s) A a = load)

Holds(alive(z),do(a, s)) < 22)

Holds(alive(x), s) A a # shoot(x)

Especially, in this kind of circumscription policy, R is
True and LSk, (Ab*, Ab) reduces to Ab* < Ab. So Formu-
las (10)-(13) are not necessary in the translation 7'7?°. When
the translation is applied on (18), according to (14) and (15)
in TrP® we can get:

Sz # sy N 7 Abg(y) — Abg'(y)
Sz # sy N2 Abg(y) — ~Abg (y)
where . =< a, 5, >, y =< ay, Sy > and Abg’ is an aux-
iliary predicate corresponding to Abg, introduced like the in-
troduction of). Additionally, according to (14) and (15) we
can obtain:
do(ag, s;) # sy N ——Holds(y) — Holds'(y)
do(ag, s;) # sy A ~Holds(y) — —~Holds'(y)
where Holds' is an auxiliary predicate corresponding to
Holds. Other similar formulas are omitted because of the

limited space.
Besides, (7) in T'rP* applied to (19) is denoted below:

o —Holds(loaded, s) V Poss(shoot(x), s)

P
@: (Holds'(loaded, s) — 7) V Poss'(shoot(z), s)

51

where Holds' and Poss’ are auxiliary predicates correspond-
ing to Holds and Poss respectively.

After applying the translation 7rP*, we can get a first-order
theory under stable model semantics. Next, via T2LP we can
reduce it into an universal theory, which is equivalent to an
answer set program. When we obtain a logic program, we
can invoke an existing ASP solver to find all solutions.

6 Conclusion

The relationship among McCarthy’s circumscription, Lifs-
chitz’s pointwise circumscription and Amir’s point-sensitive
circumscription was clarified in this paper. Furthermore, we
proposed and proved a translation 7'rP* from point-sensitive
circumscription to stable model semantics over finite struc-
tures. We can compute point-sensitive circumscription over
finite structures by reducing stable model semantics to AS-
P. Our approach is not only theoretically interesting but also
of practical relevance with an example in situation calculus.
With point-sensitive circumscription, the Frame problem and
the Quantification problem can be solved and we can find all
solutions via our solver.

Now we summarize the contributions of this paper. First,
we propose a translation from point-sensitive circumscrip-
tion to stable model semantics over finite structures. Second-
ly, with psc2lp, we can compute practical problems repre-
sented by point-sensitive circumscription effectively, such as
the Frame problem and the Quantification problem. Thirdly,
compared with propositional case, we can represent problems
in a flexible and natural way with allowing existential quanti-
fiers in point-sensitive circumscription.

Acknowledgments

We would like to thank Heng Zhang for his valuable sugges-
tions. Yongmei Liu and her group commented on this paper.
Our deep thanks to all of them. We also would like to thank
anonymous reviewers for their valuable comments. This re-
search has been partially supported by the Doctoral Program
Foundation of Institutions of Higher Education of China un-
der Grant 20110171120041, the Natural Science Foundation
of Guangdong Province under Grant S2012010009836, and
the Guangzhou Science and Technology Project under Grant
13200059.

References

[Amir, 1997] Eyal Amir. Formalizing action using pointwise
circumscription and set theory. In NRAC’97, pages 1-17,
1997.

[Amir, 1998] Eyal Amir. Pointwise circumscription revisit-
ed. In KR’98, pages 202-211, 1998.

[Cabalar and Ferraris, 2007] Pedro Cabalar and Paolo Fer-
raris. Propositional theories are strongly equivalent to log-
ic programs. Theory and Practice of Logic Programming,
7(6):745-759, 2007.

[Cabalar et al., 2005] Pedro Cabalar, David Pearce, and A-
gustin Valverde. Reducing propositional theories in equi-

librium logic to logic programs. In EPIA’05, pages 417,
2005.

[Doherty and Fukaszewicz, 1994] Patrick Doherty and
Witold Lukaszewicz. Circumscribing features and fluents:
A fluent logic for reasoning about action and change. In
ISMIS’94, pages 521-530, 1994.

[Drescher et al., 2008] Christian Drescher, Martin Gebser,
Torsten Grote, Benjamin Kaufmann, Arne Konig, Max
Ostrowski, and Torsten Schaub. Conflict-driven disjunc-
tive answer set solving. In KR’08, pages 422-432, 2008.

[Ferraris et al., 2007] Paolo Ferraris, Joohyung Lee, and
Vladimir Lifschitz. A new perspective on stable model-
s. In IJCAI’07, pages 372-379, 2007.

[Finger, 19861 Jeff Finger. Exploiting constraints in design
synthesis. PhD thesis, Department of Computer Science,
Stanford University Stanford, CA, 1986.

[Gebser et al., 2007] Martin Gebser, Benjamin Kaufmann,
André Neumann, and Torsten Schaub. Conflict-driven an-
swer set solving. In IJCAI’07, pages 386-392, 2007.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In ICLP’88, pages 1070-1080, 1988.

[Hanks and McDermott, 1987] Steve Hanks and Drew V. M-
cDermott. Nonmonotonic logic and temporal projection.
Artificial Intelligence, 33(3):379-412, 1987.

[Iwanuma and Oota, 1996] Koji Iwanuma and Kazuhiko Oo-
ta. An extension of pointwise circumscription. Artifical
Intelligence, 86(2):391-402, 1996.

[Iwanuma er al., 2009] Koji Iwanuma, Katsumi Inoue, and
Hidetomo Nabeshima. Reconsideration of circumscriptive
induction with pointwise circumscription. Journal of Ap-
plied Logic, 7(3):307-317, 2009.

[Lee and Palla, 2009] Joohyung Lee and Ravi Palla. System
F2LP—computing answer sets of first-order formulas. In
LPNMR’09, pages 515-521, 2009.

[Lee and Palla, 2012] Joohyung Lee and Ravi Palla. Refor-
mulating the situation calculus and the event calculus in
the general theory of stable models and in answer set pro-

gramming. Journal of Artificial Intelligence Research,
43(1):571-620, 2012.

[Leone et al., 2006] Nicola Leone, Gerald Pfeifer, Wolfgang
Faber, Thomas FEiter, Georg Gottlob, Simona Perri, and
Francesco Scarcello. The dlv system for knowledge repre-

sentation and reasoning. ACM Transactions on Computa-
tional Logic, 7(3):499-562, 2006.

[Lifschitz, 1986] Vladimir Lifschitz. Pointwise circumscrip-
tion (preliminary report). In AAAI’86, pages 406-410,
1986.

[Lifschitz, 1987a] Vladimir Lifschitz. Circumscriptive the-
ories: A logic-based framework for knowledge represen-

tation (preliminary report). In AAAI’S87, pages 364-368,
1987.

[Lifschitz, 1987b] Vladimir Lifschitz. Readings in non-
monotonic reasoning. chapter Pointwise circumscription,

52

pages 179-193. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1987.

[Lifschitz, 1994] Vladimir Lifschitz. Circumscription. In
D.M.Gabbay et al., editor, Handbook of Logic in Artificial
Intelligence and Logic Programming-Nonmonotonic Rea-

soning and Uncertain Reasoning, pages 297-352. Claren-
don Press, Oxford, 1994.

[Lin and Reiter, 1994] Fangzhen Lin and Raymond Reiter.
State constraints revisited. Journal of logic and compu-
tation, 4(5):655-678, 1994.

[Lin and Zhou, 2011] Fangzhen Lin and Yi Zhou. From an-
swer set logic programming to circumscription via logic of
GK. Artificial Intelligence, 175(1):264-277, 2011.

[Lin, 1995] Fangzhen Lin. Embracing causality in speci-
fying the indirect effects of actions. In IJCAI’95, pages
1985-1993, 1995.

[Lin, 2008] Fangzhen Lin. Situation calculus. Foundations
of Artificial Intelligence, 3:649-669, 2008.

[McCarthy and Hayes, 1969] John McCarthy and Patrick J.
Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In Bernard Meltzer, Don-
ald Michie, and Michael Swann, editors, Machine Intel-
ligence 4, pages 463-502. Edinburgh University Press,
1969.

[McCarthy, 1977] John McCarthy. Epistemological prob-
lems of artificial intelligence. In IJCAI'77, pages 1038—
1044, 1977.

[McCarthy, 1980] John McCarthy. Circumscription a for-
m of non-monotonic reasoning. Artificial Intelligence,
13(1,2):27-39,171-172, 1980.

[McCarthy, 1986] John McCarthy. Applications of circum-
scription to formalizing common-sense knowledge. Artifi-
cial Intelligence, 28(1):89-116, 1986.

[Reiter, 1991] Raymond Reiter. Artificial intelligence and
mathematical theory of computation. chapter The frame
problem in situation the calculus: a simple solution (some-
times) and a completeness result for goal regression, pages
359-380. Academic Press Professional, Inc., San Diego,
CA, USA, 1991.

[Reiter, 2001] Raymond Reiter. Knowledge in Action: Logi-
cal Foundations for Specifying and Implementing Dynam-
ical Systems. The MIT Press, Massachusetts, MA, 2001.

[Sandewall and Shoham, 1995] Erik Sandewall and Yoav
Shoham. Handbook of logic in artificial intelligence and
logic programming (vol. 4). chapter Non-monotonic Tem-
poral Reasoning, pages 439-498. Oxford University Press,
Oxford, UK, 1995.

[Zhang ef al., 2011] Heng Zhang, Yan Zhang, Mingsheng Y-
ing, and Yi Zhou. Translating first-order theories into logic
programs. In IJCAI'11, pages 1126-1131, 2011.

[Zhang, 2011] Heng Zhang. Decidability and translatability
of nonmonotonic logics. PhD thesis, The University of
TsingHua, Nov. 2011.

Translating Action Knowledge into High-Level Semantic Representations for
Cognitive Robots

Jiongkun Xie, Xiaoping Chen, and Zhiqiang Sui
Multi-Agent Systems Lab.,
University of Science and Technology of China
devilxjk @mail.ustc.edu.cn, xpchen @ustc.edu.cn, zqsui@mail.ustc.edu.cn

Abstract

This paper presents an approach to translating ac-
tion knowledge into its underlying semantics for
action reasoning. To facilitate the translation we
propose a new semantic representation which is
higher-level and can be explicitly converted into the
underlying one. Based on this representation an ex-
isting semantic parser is employed as the core of
our action knowledge translation. Finally we eval-
uate this approach and show that it can translate the
action knowledge into proposed representations.

1

Being able to non-monotonically reason about actions pro-
vides high-level cognitive capabilities for an intelligent robot
exploring a rich, dynamic and unpredictable world. The ac-
tion model, which is usually pre-programmed by human de-
signers, is the core of such robots. When an indoor robot
is acting in an open environment, it is inevitable to consider
what tasks the robot is competent for and how the robot plans
to automatically accomplish them. Nevertheless, enumerat-
ing all the possible tasks and all the ways to accomplishments
is not tractable. Therefore instead of pre-programming all ac-
tion knowledge that robots might need, dynamically acquir-
ing the corresponding action knowledge to fill the gaps in a
specific task sounds more practical.

There are more and more open-source knowledge re-
sources being available including knowledge bases, ontolo-
gies, household appliance manuals, etc. Such open knowl-
edge provides a new opportunity for intelligent robots to dy-
namically acquire the missing action knowledge as long as
the knowledge is translated and accumulated into the action
model of a robot. Nonetheless, the open knowledge is usu-
ally unformalized. For example, the knowledge in the Open
Mind Indoor Common Sense (OMICS)! database, which is
employed as the main source of action knowledge in this pa-
per, is semi-structured meaning that most parts of it are in
natural language. The challenge of translating open knowl-
edge lies in the formalization of natural language [Chen et
al., 2012].

Introduction

"http://commonsense.media.mit.edu

53

Recent research provides a number of effective approaches,
so called semantic parsing, to translating natural language
into formal expressions [Zettlemoyer and Collins, 2005;
Wong and Mooney, 2007; Kwiatkowski er al., 2011]. 1In
this paper we adopt the semantic parser proposed by [Zettle-
moyer and Collins, 2005] to formalize the action knowledge
in OMICS. Previous works had their focuses on the seman-
tic parsing for question answering (QA) domain in which the
semantics inferences were monotonic. Since in our case the
action reasoning is non-monotonic, it is necessary to propose
a new semantic representation to capture the non-monotonic
aspect of action knowledge. At the meanwhile, the proposed
representation has a good interface to the semantics of action
knowledge, which facilitates the parsing.

The rest of this paper is organized as follows: Section 2
will give an overview our action knowledge translation. Re-
lated works will be discussed in Section 3. The proposed
semantic representation and its conversion to the lower-level
semantic-equivalent representations will be presented in Sec-
tion 4. The technical approach to the action knowledge trans-
lation will be elaborated in Section 5. Finally, we will eval-
uate our action knowledge translation in Section 6 and con-
clude in Section 7.

2 Overview

In the OMICS project [Gupta and Kochenderfer, 20041, ex-
tensive collections of several kinds of commonsense knowl-
edge were collected from Internet users. Several sentence
templates were designed for capturing different categories of
knowledge and provided to users to fill in. Then the com-
plete sentences were examined by administrators and con-
verted into tables whose elements are English sentences. At
this point, there are 48 tables in OMICS capturing different
sorts of knowledge, including Help table (each tuple mapping
auser desire to a concrete task that might meet it), Zasks table
(containing possible tasks in the indoor environment), Steps
table (decomposing a task into its steps), and so on. Some
of tables are so related that they have to be merged together
as a joint table to represent the knowledge. For example, the
Tasks table includes tuples of (id task) and the Steps table
includes tuples of (id,taskid,num,step). And the taskid ele-
ments in Steps table correspond to the id elements in Task
table. Hence the knowledege about the task heat food in mi-
crowave and its steps could be represented in a Tasks/Steps as

shown in Table 1.

task
heat food in microwave

num step
put food in
microwaveable dish

put dish in microwave

heat food in microwave 1

heat food in microwave 2 select power level
and time
heat food in microwave 3 press start
heat food in microwave 4 wait for food to heat up
heat food in microwave 5 remove dish

from microwave

Table 1: A joint table Tasks/Steps.

The action knowledege is the main part of commonsense
knowledge in OMICS. There are 17,481 pairs of a task and a
set of its steps (Table 1 shows one of these pairs). Hence,
OMICS database could provide sufficient quantities of ac-
tion knowledge for indoor robots to solve unpredicted tasks
from human. In this paper, we focus on translating the action
knowledge of OMICS into its formal representation.

The underlying representation for action reasoning in our
robot is in Answer Set Programming (ASP) language. ASP is
a logic programming language with Prolog-like syntax under
the stable model semantics, originally proposed by [Gelfond
and Lifschitz, 1988]. An ASP program is a finite set of ASP
rules of the form:

H eplv"wpk?n()tql?"'7nOtQ7n)

where p;(1 < i < k), and ¢;(1 < j < m) are literals, and
H is either empty or a literal. A literal is a formula of the
form a or —a, where a is an atom. If H is empty, this ASP
rule is also called a constraint. An ASP rule consisting of
only H is called a fact. There are two kinds of negations
in ASP, the classical negation — and non-classical one not,
i.e., negation as failure. The meaning of the formula not a
could be interpreted that a is not derivable from the program.
Similarly, a constraint <— p1, ..., pg specifies that p1, ..., px
cannot be jointly derived from the program. ASP provides the
non-monotonic mechanism of action reasoning for our robot.

Our translation from the action knowledge in OMICS to
the ASP rules is not immediate. Since a piece of action
knowledge, even its elements (i.e., English sentences), will
be associated with multiple ASP rules, the direct transla-
tion is complex and implicit. Therefore we propose a new
semantic representation for the action knowledge, which is
called Action Knowledge Representation Structure (AKRS).
This representation has a good interface to the ASP rules,
which means that it could be semantic-equivalently converted
into some ASP rules. Our AKRS translation is implemented
by adapting the existing approach [Zettlemoyer and Collins,
2005], which takes the Combinatory Categorial Grammar
(CCG) [Steedman, 1996; 2000] as the underlying parsing for-
malism. The advantage of this semantic parser is that it is
capable of not only formalizing the natural language but also
inducing automatically the semantic lexicon from the anno-
tated data.

54

3 Related Work

Building systems being able to acquire open knowledge has
recently received some attentions. [Kunze et al, 2010]
present a robotic system that tranlates the OMICS knowledge
into a formal representation. [Tenorth ef al., 2010] propose
extracting the action knowledge from the natural language
instructions from the World Wide Web. [Chen et al., 2010]
demonstrate the high-level cognitive functions for a robot to
acquire knowledge from human-robot dialog. [Chen et al.,
2012] propose a whole architecture for identifying knowledge
gaps, searching for the missing knowledge, translating and in-
tegrating them for action reasoning. However, the approaches
to open knowledge formalization in these works are limited
in the usage of some syntactic patterns for translation or their
manual construction for the natural language semantic lexi-
con. Unlike previous works, in this paper, our work improves
the open knowledge formalization in terms of automatically
learning from some annotated data to semantically parse the
open knowledge.

There have been a number of approaches to semantic pars-
ing. These previous works have focused on various se-
mantic representations, including the A-calculus representa-
tions [Zettlemoyer and Collins, 2005], the one based on Pro-
log [Wong and Mooney, 20071, and the robot control lan-
guage [Matuszek er al., 2012]. The work most simliar to
ours is [Baral and Gonzalez, 2011], in which the puzzles
in natural language are translated into ASP language. Al-
though we share the same underlying formalism of seman-
tic parsing (i.e., CCG) and the same forms of output seman-
tics (i.e., in ASP language), what distinguish us from them
are our application which is oriented to action reasoning and
our way to the final action semantics through the intermediate
representation AKRS. There are also other works on seman-
tic parsing based on CCG [Zettlemoyer and Collins, 2007,
Lu et al., 2008; Zettlemoyer and Collins, 2009; Kwiatkowski
et al., 2010; 2011]. However they focused on how to learn
the semantic parser instead of formalizing the action knowl-
edge for indoor robots. In this paper our contribution is not in
the improvement for state of the art of semantic parsing, but
rather in the novel exploration of action knowledge transla-
tion with semantic parsing.

4 Modeling Action Knowledge

As proposed in [Chen er al., 2012], we classify the action
knowledge for indoor robots into the functional knowledge
and the procedural knowledge. The functional knowlege de-
scribes the effects of a task and the procedural knowledge ex-
presses the steps of how to accomplish a task. Most of the ac-
tion knowledge in OMICS is procedural as shown as Table 1.
We follow the architecture proposed by [Chen ef al., 2012]
to enable the mixed reasoning of functional knowledge and
procedural knowledge. Given a model M = (A, T, O, F, P),
where A is a action model in which the preconditions and ef-
fects of a primitive action of a robot are defined, 7 is a set
of tasks to be accomplished, O is a set of facts having been
observed, and F' and P are respectively the functional knowl-
edge and procedural knowledge having been obtained, the ac-
tion reasoning on M is cast to find answer sets of an ASP

program M. Based on this architecture, the action knowl-
edge translated into ASP rules could be non-monotonically
reasoned about by our robot to enhance its capability of ac-
complishing tasks.

4.1 Action Knowledge Representation Structure

The Action Knowledge Representation Structure is designed
to be an intermediate for the translation from action knowl-
edge to its semantically equivalent ASP rules. This represen-
tation has a direct conversion to ASP rules. While our under-
lying reasoning mechanism of ASP is non-monotonic, AKRS
is endowed with the ability to capture non-monotonic aspects
of action knowledge.

The complete syntax definition of AKRS is listed in Ap-
pendix A. The form of AKRSs is Lisp-like. Some key-
words are predefined to identify the types of AKRSs and to
indicate the attributes in them. Two main types of AKRSs
are (:prock T 1) denoting the procedural knowledge about
task 7" and its steps v, and (:funck T" ¢) denoting the func-
tional knowledge about the effects ¢ of task T'. The pred-
icates and fluents of AKRS are used to describe the prop-
erties of objects. They are the atomic formulae. The com-
plex formulae include the negation, conjunction, and dis-
junction. A “procedure” of AKRS could be an action, a
task, a test, a sequence, non-deterministic choice, a condi-
tional, or a loop. For example, an AKRS action of the form
(:act move :params (X) :conds (:pred room X)) would be in-
terpreted as an action move whose destination is a room.
The “:params” section of an AKRS action is its arguments.
And the “:conds” section is the conditions that action’s ar-
guments should satisfy. In the move case, the AKRS predi-
cate (:pred room X) constrains the argument X to be of room
type. The same interpretation applies to an AKRS task. Fig-
ure 1 illustrates the AKRS of the action knowledge shown as
in Table 1.

(:prock (:task heat :params (X Y)
:conds (and (:pred food X)
(:pred microwave_oven Y)))
(:seq
(:task place :params (X Y)
:conds (and (:pred food X)
(:pred microwaveable Y)
(:pred dish Y)))
(:task place :params (X Y)
:conds (and (:pred dish X)
(:pred microwave_oven Y)))
(:seq
(:task ser :params (X) :conds (:pred power X))
(:task set :params (X) :conds (:pred timer X)))
(:task press :params (X) :conds (:pred start_button X))
(:do (:task wait :params ())
:until (and (:pred food X) (:fluent heated X)))
(:task take out :params (X Y)
:conds (and (:pred dish X)
(:pred microwave_oven Y)))))

Figure 1: The AKRS of the action knowledge as shown in
Table 1.

4.2 ASP Conversion
In this section, we will demonstrate how an AKRS be con-
verted into its semantic-equivalent ASP rules.

An ASP predicate or fluent translated from an AKRS s is
denoted as T¢(s). If s = (:pred name termy ... term,), then
Ti(s) = name(termy, . . ., term,,). If s = (:fluent name termy

. termy,), then T;(s) = holds(name(termy, . . ., termy,),t).
t is the meta-variable ranging over time names {0,1,...,d}.
The conversion for AKRS procedures is shown as follows:

o If s = (:test ¢) where ¢ is a AKRS formula, let p, be the

. m o’ j nJ i

index of s and \/;_, (Aj—; f] N N\iZpi 11 —f]) a DNF
of ¢ where fs are either predicates or fluents, then s is
translated to the following ASP rules (1 < j < m):

proc(ps,tit2) < N To (), N T (),
1<i<od 07 <i<ni
ty < to.

o If s = (cact name :params (Xg ... X,,) :conds ¢), then s
is translated to the following ASP rules (1 < j < m):

proc(ps,tl,tg) < /\ 7;1(.]03)’ /\ - tl(fij)7
1<i<od ol<i<ni
, Xn),occurs(t,t1),t1 < to.

o If s = (:task name :params (X ... X,,) :conds ¢), then
s is translated to the following ASP rules (1 < 5 < m):
proc(p57t17t2) — /\ 7;1(]01‘])7 /\ - tl(fij)a
1<i<od ol<i<ni
) Xn)a Completed(T, tl; t2)7 tl S t2-

name(t, Xo, . - .

name(t, Xo, . ..

o If s=(:seq 81 ... Sp), where s;(1 < i < m) are pro-
cedures, then we translate each s; to corresponding ASP
rules, with the addition of the following ASP rule:

p’/’OC(pS, tla t2) — proc(p.ﬁ) tla tnl)a
Proc(Psys tutytnz), ..., proc(ps, s tym-1,t2),
t1 <tpi,tnr <tpz, ... tym—1 <o,

o If s = (:choice s1 ... 8,,), where s;(1 < i < m) are
procedures, then we translate each s; to corresponding
ASP rules, with the addition of the following ASP rules
1<i<m):

proc(ps, ti,ta) < proc(ps,, ti,t2), t1 < ta.

o If s = (:if ¢ :then sy), where s; is procedure and ¢
is an AKRS formula, then we translate the procedure
(:seq (:test ¢) s1) (indexed as p’sl) to corresponding ASP
rules, with the addition of the following ASP rule:

proc(ps, t1, ta) < proc(py, ,t1,t2),t1 < to.

e If s = (if ¢ :then s; :else s3), where s; and s, are pro-
cedures and ¢ is an AKRS formula, then we translate
the procedures (:seq (:test ¢) s1) (indexed as p’sl) and
(:seq (:test (neg ¢)) so) (indexed as p;2) to correspond-
ing ASP rules, with the addition of the following ASP
rules:

proc(ps, t1, ta) < proc(pl,, t1,t2),t1 < ta.
p’roc(ps7tlat2) <~ pTOC(p;27t17t2)atl S t2~

e If s = (:while ¢ :do s1), where s; is a procedure and ¢
is an AKRS formula, then we translate the procedures
(:test ¢) (indexed as py) and sq to corresponding ASP
rules, with the addition of the following ASP rules:

proc(ps, t1,ta) <—not proc(pg, t1,t2), t1 < ta.

proc(ps, t1, ta) <=proc(ps,, t1,t'), proc(ps, t', t2),
t <t t <ty

e If s = (:do s1 :until ¢), where s; is a procedure and ¢
is an AKRS formula, then we translate the procedures
(:seq s1 (:while (neg ¢) :do s1)) (indexed as p/, ,) to cor-
responding ASP rules, with the addition of the following
ASP rule:

proc(ps, t1, ta) < proc(pl, t1,t2), t1 < ta.

Finally, for each piece of procedural knowledge of the
form (:prock (:task name :params (Xg ... X,,) :conds ¢) ¥),
where 9 is an AKRS procedure, let py, be the index of ¢ and

\/T:l(/\fi1 A /\;io_,-_s_1 —f7) a DNF of ¢, it is converted
into the following ASP rule:

< N\ Tu(),
1<i<od ol<i<ni
aX’VL)7pTOC(p1[)7 tly t2)7 tl S t2-

And for each piece of functional knowledge of the
form (:funck (:task name :params (Xg ... X,) :conds P)),
where ¢ and ¢ are AKRS formulae, let \/;nzl(/\f]=1 7 A

/\?ioj o f7) be a DNF of the AKRS conjunctive formula
(and ¢ (), it is converted into the following ASP rules (1 <

j < my
= N\ T A

1<i<od 0l <i<nd
; Xn)th <t < to.

Tt (fzj)v

completed(t,t1,ts)

name(t, Xo, . . .

Te(f)),

completed(r,t1,t2)

name(t, Xo, . . .

The example result of ASP conversion for an AKRS

(:prock (:task get :params (X Y')
:conds (and (:pred food X)
(:pred refrigerator Y)))
(:seq
(:task open :params (X)
:conds (:pred refrigerator_door X))
(:task pick_up :params (X)
:conds (:pred food X)))

is shown as follows:

completed(Tg, t1,ta) < food(X), refrigerator(Y),
get(70, X, Y), proc(po, t1,t2),t1 < to.
proc(po, t1,te) < proc(py, t1,ta), proc(ps, ta, ts),
t1 < to,ta < t3.
proc(p1, t1,te) < refrigerator_door(X),
open(1, X), completed(m,t1,t2),t1 < ta.
proc(pa, ti,t2) < food(X), pick_up(72, X),
completed(Ta, t1,t2),t1 < to.

56

5 Action Knowledge Translation

For the reason of the explicit conversion (as shown in the
previous section) from AKRSs to ASP rules, we now turn
to formalizing the action knowledge into AKRSs. The ac-
tion knowledge translation on OMICS consists of two phases:
the semantic parsing and the AKRS combination. The action
knowledge in OMICS as shown in Table 1 is the procedural
knowledge. We could combine all the AKRSs of elememts in
Tasks/Steps table by using the following template:

(:prock T (:seq [So, - - -, Sn]))

where T' is the AKRS of English sentence in fask column
of Tasks/Steps Table and [Sy, . .., S,] is a list (orderd by the
number in num column) of AKRS results of step column.
Figure 1 shows an AKRS results from our action knowledge
translation.

5.1 Semantic Parsing

Our approach to semantic parsing is based on CCG. CCG is
a linguistic formalism that provides a tight interface between
natural language syntax and its semantics and has beed used
to model a wide range of language phenomena. The core
of any CCG is the semantic lexicon. In the lexicon, a word
with its syntactic category and semantic form is defined. For
example, the lexicon for AKRS would be as follows:

button := N P : \x.(:pred button x)
press := S/NP : \f.(:task press :params (X) :conds f@QX)
if :=(5/5)/S : Af.Ag.Cif f :then g)

The syntactic categories in CCG could be either primitive
(e.g., NP or S), or complex (of the form A/B or A\B).
In the above lexicon button has the syntactic category NP
which stands for the linguistic notions of noun-phrase. In our
case the semantic forms are the AKRSs. For example, the
semantic form of press is a semi-AKRS task of which the
conditions are A-abstracted to a A-application f@QX.

A CCG also has a set of combinatory rules to combine
syntactic categories ad semantic forms which are adjacent in a
string. The basic combinatory rules are the application rules:

X/Y:f Y:g=X:[fQg (>)
Y:g X\YV:f=X:fQg (<)

The first rule is the forward (>) application indicating that
a syntactic category X/Y with a semantic form f can
be combined with a syntactic category Y with a semantic
form ¢ to generate a new syntactic category X whose se-
mantic form is formed by A-applying f to g. Symmetri-
cally the second rule, backward (<) application, generates
a new syntactic category and semantic form by applying
the right one to its left. For example, in the above lexi-
con, press can be combined with butfon to generate a phrase
press button with syntactic category S and semantic form
(:task press :params (X) :conds (:pred button X)).

The other rules, like the composition rules, and the type-
raising rules, give the allowance of an unrestricted notion of
constituency which is useful for dealing with the long-range
dependencies inherent in certain constructions, such as coor-
dination [Steedman, 2000]. In our semantic parser the above

heat food in microwave
(S/AP)/NP NP AP/NP NP
Af.Ag.(:task heat :params (X Y) Az.(:pred food) A\T.x Az.(:pred microwave oven)
:conds (and f@QX ¢gQY"))
S/AP AP

Ag.(:task heat :params (X Y)
:conds (and (:pred food X) gQY))

Az.(:pred microwave oven)

S

(:task heat :params (X Y') :conds (and (:pred food X) (:pred microwave ovenY))

Figure 2: An example derivation of semantic parsing for heat food in microwave.

combinatory rules are all employed. One example of the CCG
derivation for the natural language sentence heat food in mi-
crowave is illustrated in Figure 2.

However a CCG parser will generate a number of parses
for each natural language sentences. Hence a conditional log-
linear model is employed to select the best scored parses. It
defines the joint probability of an AKRS z constructed with a
syntactic parse y, given a sentence x:

eXP[9 f(.y, %)]

where A is the semantic lexicon. f(z,y, z) is a feature vector
evaluating on the sub-structures within (z, y, z). It is param-
eterized by # € R?. In this paper we make use of the lexical
features. Each lexical feature counts the number of times that
a lexical entry is used in y. With the probabilistic model, the
semantic parsing then turn to compute:

P(y, z|lz; 0, A) =

arg max P(z|z; 0, A) = arg max Z P(y, z|x; 0, A)
z z y

In this formalism the distribution over the syntactic parses
vy is modeled as a hidden variable. The sum over y can be cal-
culated efficiently by using the dynamic programming (i.e.,
CKY-style) algorithms. In addition, the beam-search during
parsing is employed, in which sub-derivations with low prob-
ability under some level are removed.

5.2 Semantic Lexicon Induction

To induce the semantic lexicon, the training examples,
{(zi,2):1=1,...,n}, are assumed having been accessed.
The task of semantic lexicon induction consists of generat-
ing possible lexical items that are generalized enough, and
estimating the parameter vector 6 over the training examples.
[Zettlemoyer and Collins, 2005] gives a lexicon learning al-
gorithm to fulfill this task.

Given an example pair (z;, 2;), all possible lexical items
will be generated first by a lexical item generation function
GENLEX. Through picking out the lexical items used in the
highest scored parse(s) leading z;, a compact lexicon A; for
paring z; is obtained. After collecting all compact lexicons,
a complete lexicon A = U;A; is used to estimate the param-
eters over the training examples. The objective of estimat-
ing on parameters is to maximize the log-likelihood of the
training examples £ = >, log P(z;|z;;60,A). Hence the

57

parameters are updated in term of the following formula:

n

= Z Epylzs 2005 (@05 Y, 2i)]

Z

It involves calculating the expectations of features under the
distributions p(y|xz;, z;; 0, A) and p(y, z|z;; 0, A). This cal-
culation again can be reached by using a dynamic program-
ming algorithm, a variant of the inside-outside algorithm. A
stochastic gradient ascent algorithm is employed to maximize
the likelihood.

The core of the learning algorithm proposed by [Zettle-
moyer and Collins, 2005] is the lexical item generation func-
tion GENLEX. To adapt their learning algorithm to our ac-
tion knowledge translation, it needs a new GENLEX function
that could be able to generate the lexical items for parsing
AKRSs. The GENLEX function consists of a set of trigger
rules where each rule takes as input a semantic form and out-
puts the possible syntactic categories with corresponding se-
mantic forms. The GENLEX takes as input the semantic form
z (in our case it is AKRS), then calls each trigger rule to pro-
duce all the category outputs of z, and finally generate the
lexical items by combining each category output with all pos-
sible sub-string of the sentence z. Some of our trigger rules
for the new GENLEX function are presented in Table 2.

ot
00,

p(y,z|zi;0,A) f](xz»yv)]

6 Experiment

The semantic parsing for natural language sentences is the
core of our action knowlege translation. Once the sentences
are correctly parsed into the AKRSs, through the template de-
scribed in Section 5, the action knowledge is correctly trans-
lated. Therefore, our experimental evaluation mainly focused
on the performance of the semantic parser.

There are 17,481 pairs of a task and a set of its steps in
OMICS. These tasks and steps consist of 28,846 literally
unique natural language sentences. To evaluate the semantic
parser, sentences needed to be annotated with their AKRSs.
The quantity of sentences is tremendous and the annotation
would be exhausting. Hence we picked out 471 sentences that
are in the action knowledge most commonly appearing in the
domain, such as the knowledge about task heat food in mi-
crowave. These sentences were annotated manually and were

Trigger Rules

Examples

Input AKRS | Output Category

Input | Output

a task named n

with no parameter S : (:task n :params ())

(:task wait :params ())

S :(:task wait :params ())

a task named n
with one parameter

S/NP : \f.(task n :params (X)
:conds fQX)

(:task press :params (X)
:conds (:pred button X))

S/NP : \f.(task press
:params (X) :conds fQX)

a predicate named p

with one term NP : A\z.(:pred p x)

(:pred food X) NP : Ax.(:pred food x)

a predicate named p
with one term

NP/NP : AfAx.
(and (:pred p) fQx)

(:pred microwaveable X)

NP/NP : Af .
(and (:pred microwaveable x) fQx)

Table 2: Some examples of trigger rules in GENLEX used for generating the AKRS lexical items.

randomly split into 330 training examples and 141 test ex-
amples. We evaluate the performance of semantic parser by
giving its precision (percentage of parsed AKRSs that were
correct), recall (percentage of test examples with correctly
parsed AKRSs) and FI-measure (harmonic mean of preci-
sion and recall). The sentences were correctly parsed only if
their parsed AKRSs were totally matched the annotated ones.
In addition, we adopted the two-pass parsing strategy mean-
ing that if the sentence fails to parse, it would be parsed again
by deleting some words at some cost. This strategy is for the
purpose of dealing with the words that were never observed
in the training examples. The experimental results are shown
in Table 3.

| | Test set [Training set |
Precision | 64.84% 87.42%
Recall 41.84% 84.24%
F1 50.86% 85.80%

Table 3: Performance of the semantic parser for AKRS.

There were 64.84% of sentences that were parsed and cor-
rectly translated into AKRSs, meaning that our parser could
translate the action knowledege into AKRSs, then converted
into ASP representations. However, there were only 64.54%
of unseen sentences that had returned AKRSs. Compared to
the results on the training set, our parser performed worse on
the unseen examples. The main reason is that the sentences
collected in OMICS are open ended. They are full of ellipses
and the same meaning could be expressed in various ways.
This would result in the sparsity of training examples, espe-
cially our small amount of trainig sentences. However, this
is our first step to the wide coverage formalization of action
knowledge from an open knowledge database. More anno-
tated examples would be added to the training. Our approach
to translating action knowledge is still promising.

7 Conclusion

In this paper, we presented an approach to translating the ac-
tion knowledge into the underlying semantic representation
of cognitive robots. To facilitate the translation we proposed
a new semantic representation for action knowledge, i.e., Ac-
tion Knowledge Representation Structure. This representa-
tion captures most phenomena in action knowledge and has

58

been shown its direct and explicit conversion into ASP lan-
guage. Based on this semantic representation, we employed
an existing semantic parser to formalize the natural language
elements in the action knowledge. The results then are com-
bined together to obtain the whole semantic representation of
the action knowledge. The experimental evaluation on our ac-
tion knowledge translation implies that there are lots of rooms
for improvement.

Acknowledgments

This work is supported by the National Hi-Tech Project of
China under grant 2008AA01Z150 and the Natural Science
Foundation of China under grant 60745002 and 61175057, as
well as the USTC Key Direction Project and the USTC 985
Project. We are grateful to the anonymous reviewers for their
helpful comments on the earlier version of this paper.

A BNF Definition of AKRS Syntax
(term) := (constant) | (variable)
(predicate) = (:pred (predicate name) (term)*)
(fluent) = (:fluent {fluent name) (term)*)
(formula) = (predicate) | (fluent) | (neg (formula)) |
(and (formula)™) | (or {formula)™)
(conditions) = [:conds (formula)]
(action) = (cact {action name)
:params ((variable)*)
(conditions))
(task) = (:task (task name)
:params ((variable)*)
(conditions))
(test) n= (ctest {formula))
(sequence) ::= (:seq (procedure) (procedure)™)
(choice) ::= (:choice {procedure) (procedure)™)
(

conditional) ::= (:if (formula) :then (procedure)) |
(:if (formula) :then (procedure)
:else (procedure))

(loop) = (:while (formula) :do (procedure)) |
(:do (procedure) :until (formula))
(procedure) = (action) | (task) | (test) | (sequence) |

choice) | {conditional) | (loop)
(:prock (task) {procedure))
(:funck (task) (formula))

(
(proc_knowledge)
(func_knowledge)

References

[Baral and Gonzalez, 2011] Chitta Baral and Marcos Al-
varez Gonzalez. Using Inverse Lambda and Generaliza-
tion to Translate English to Formal Languages. In Pro-
ceedings of the Ninth International Conference on Com-
putational Semantics, number 2000, 2011.

[Chen et al., 2010] Xiaoping Chen, Jianmin Ji, Jiehui Jiang,
Guogiang Jin, Feng Wang, and Jiongkun Xie. Develop-
ing High-level Cognitive Functions for Service Robots. In
Proceedings of the 9th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS-10),
pages 989-996, Toronto, Canada, 2010. IFAAMAS.

[Chen et al., 2012] Xiaoping Chen, Jiongkun Xie, Jianmin
Ji, and Zhiqgiang Sui. Toward Open Knowledge Enabling
for Human-Robot Interaction. Journal of Human-Robot
Interaction (JHRI), 1(2):100-117, 2012.

[Gelfond and Lifschitz, 1988] M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming. In
Proceedings of the 5th International Conference on Logic
programming (ICLP-88), pages 1070-1080, 1988.

[Gupta and Kochenderfer, 2004] Rakesh Gupta and Mykel J.
Kochenderfer. Common Sense Data Acquisition for In-
door Mobile Robots. In Proceedings of the 19th National
Conference on Artificial Intelligence and the 16th Confer-
ence on Innovative Applications of Artificial Intelligence
(AAAI-04), volume 300, pages 605-610, San Jose, Cali-
fornia, USA, 2004. AAAL

[Kunze et al., 2010] Lars Kunze, Moritz Tenorth, and
Michael Beetz. Putting People’s Common Sense into
Knowledge Bases of Household Robots. In Proceedings
of KI 2010: Advances in Artificial Intelligence, 33rd An-
nual German Conference on Al, pages 151-159, Karl-
sruhe, Germany, 2010. Springer.

[Kwiatkowski et al., 2010] Tom Kwiatkowski, Luke S.
Zettlemoyer, Sharon Goldwater, and Mark Steedman.
Inducing Probabilistic CCG Grammars from Logical
Form with Higher-Order Unification. In Proceedings of
the 2010 Conference on Empirical Methods in Natural
Language Processing (EMNLP-10), pages 1223-1233,
MIT Stata Center, Massachusetts, USA, 2010. ACL.

[Kwiatkowski ef al., 2011] Tom Kwiatkowski, Luke S.
Zettlemoyer, Sharon Goldwater, and Mark Steedman.
Lexical Generalization in CCG Grammar Induction for
Semantic Parsing. In Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP-11), pages 1512-1523, John Mclntyre
Conference Centre, Edinburgh, UK, 2011. ACL.

[Lu et al., 2008] Wei Lu, Hwee Tou Ng, Wee Sun Lee, and
Luke S. Zettlemoyer. A Generative Model for Parsing Nat-
ural Language to Meaning Representations. In Proceed-
ings of the 2008 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP-08), pages 783792,
Honolulu, Hawaii, USA, 2008. ACL.

[Matuszek et al., 2012] Cynthia Matuszek, Evan Herbst,
Luke S. Zettlemoyer, and Dieter Fox. Learning to Parse

59

Natural Language Commands to a Robot Control System.
In Proceedings of the 13th International Symposium on
Experimental Robotics (ISER-12), 2012.

[Steedman, 1996] Mark Steedman. Surface Structure and In-
terpretation. MIT Press, 1996.

[Steedman, 2000] Mark Steedman. The Syntactic Process.
MIT Press, 2000.

[Tenorth er al., 2010] Moritz Tenorth, Daniel Nyga, and
Michael Beetz. Understanding and Executing Instruc-
tions for Everyday Manipulation Tasks from the World
Wide Web. In Proceedings of the 2010 IEEE International
Conference on Robotics and Automation (ICRA-10), pages
1486-1491, Anchorage, Alaska, USA, 2010. IEEE.

[Wong and Mooney, 2007] Yuk Wah Wong and Raymond J.
Mooney. Learning Synchronous Grammars for Semantic
Parsing with Lambda Calculus. In Proceedings of the 45th
Annual Meeting of the Association for Computational Lin-
guistics (ACL-07), number June, pages 960-967, Prague,
Czech Republic, 2007. ACL.

[Zettlemoyer and Collins, 2005] Luke S. Zettlemoyer and
Michael Collins. Learning to Map Sentences to Logical
Form: Structured Classification with Probabilistic Catego-
rial Grammars. In Proceedings of the 21st Conference in
Uncertainty in Artificial Intelligence (UAI-05), number X,
pages 658666, Edinburgh, Scotland, 2005. AUAI Press.

[Zettlemoyer and Collins, 2007] Luke S. Zettlemoyer and
Michael Collins. Online Learning of Relaxed CCG Gram-
mars for Parsing to Logical Form. In Proceedings of
the 2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natural
Language Learning (EMNLP/CoNLL-07), pages 678—687,
Prague, Czech Republic, 2007. ACL.

[Zettlemoyer and Collins, 2009] Luke S. Zettlemoyer and
Michael Collins. Learning Context-Dependent Mappings
from Sentences to Logical Form. In Proceedings of the
47th Annual Meeting of the Association for Computa-
tional Linguistics and the 4th International Joint Con-
ference on Natural Language Processing of the AFNLP
(ACL/AFNLP-09), pages 976-984, Singapore, 2009. ACL.

