EXERCISE 5

Science of Computational Logic

Steffen Hölldobler, Marcos Cramer
International Masters Programme in Computational Logic — winter semester 2015/2016
25.01.2018

Problem 5.1

Show that first-order logic is monotonic.

Problem 5.2

Show that reasoning with CWA is non-monotonic.

Problem 5.3

Consider the language $\mathcal{L}(\mathcal{R},\mathcal{F},\mathcal{V})$, with $\mathcal{R}=\{p/0,q/0\}$. Given the set of formulas $\mathcal{S}=\{p\leftarrow \neg q,q\leftarrow \neg p\}$ Compute $\mathcal{C}_{\mathit{CWA}}(\mathcal{S})$.

Problem 5.4

Prove that the closed world assumption eliminated non-least Herbrand models:

If F is a formula and I is a non-least Herbrand model I of F, then $I \not\models C_{CWA(F)}$.

Problem 5.5

Proof the following proposition:

Let \mathcal{F} be a satisfiable set of Skolem formulas. Then it holds:

 $C_{CWA}(\mathcal{F})$ is satisfiable \Leftrightarrow \mathcal{F} admits a least Herbrand model.

Problem 5.6

Reconsider the theorem from the lectures proved in the preceding problem.

- 1. Show that the condition that \mathcal{F} a set of formulas in Skolem normal form is necessary for \Rightarrow -direction.
- 2. Show for the \Leftarrow -direction that without the condition that $\mathcal F$ a set of formulas in Skolem normal form the existence of a least Herbrand model of $\mathcal F$ does not entail the existence of a Herbrand model of $\mathcal C_{CWA}(\mathcal F)$.