Out of the Lab, Into the Wild:
Growing Open Source Communities around Academic Projects

Academic researchers develop large amounts of softwarefdyevalidating a hypoth-
esis, for illustrating a new approach, or merely as a toolidosame study. In most
cases, a small focussed prototype does the job, and it isgisipquickly after the fo-
cus of research moves on. However, once in a while, a novebapp or upcoming
technology bears the potential to really change the way iictwa problem is solved.
Doing so promises professional reputation, commerciatess; and the personal grat-
ification of realizing the full potential of a new idea. Thesearcher who made this
discovery then is tempted to go beyond a prototype towamsduct that is actually
used — and is faced by a completely new set of practical pnudle

The Fear of the User

Frederick P. Brooks, Jr., in one of his famous essays on aoét@ngineering, gives
a good picture of theftorts related to maintaining real software, and warns us®f th
user:

“The total cost of maintaining a widely used program is tytlic40 per-
cent or more of the cost of developing it. Surprisingly, tost is strongly
affected by the number of users. More users find more bligs.”

While this figure might well be dierent in today’s environment, the basic observation
is still true, and may even have been aggravated by the usestantaneous global
communication. Even worse, more users not only find moreahtiugs, but also ar-
ticulate more wishes in general. Be it a genuine error, aifeatequest, or merely a
fundamental misunderstanding of the software’s operatt@ntypical user request is
far from being a technically precise bug report. And eacliestjdemands the attention
of the developers, consuming precious time that is notabvklto actually write code.

The analytical mind of the researcher foresees this issuk jmits natural struggle
to prevent a gloomy future in customer care, may develop amghtifear of the user.

In the worst case, this may lead to a decision against theeypr@ject, in a weaker
form it may still lead researchers to practically hide bailt software products from
potential users. More than once have | heard researchargsayve don't need more
visibility, we are getting enough emails already!” And irede there are cases where
the communicationféort related to a software tool exceeds tli®e that a researcher
can invest without abandoning her main job.

Often, however, this tragic outcome could easily have beevamted. Brooks could
hardly foresee this. When he wrote his essays, users wesedntlistomers, and soft-
ware maintenance was part of the product they purchasedlafvdsmhad to be found
between developmentfert, market demand, and pricing. This is still the case fonyna
commercial software products today, but has little to ddwlie reality of small-scale
Open Source development. Typical OSS users do not pay faetivice they receive.
Their attitude accordingly is not that of a demanding cusigriout more often that of
a grateful and enthusiastic supporter. No small part of thefasuccessful OSS main-
tenance is turning this enthusiasm into much needed suyadaincing the increase in
user interest with an increase in user contribution.

1 Frederick P. Brooks, Jr.: The Mythical Man-Month. EssaysSoftware Engineering. Anniversary Edi-
tion. Addison-Wesley, 1995.



Recognizing that Open Source users are not just “custontessien’t pay” is an
important insight. But it must not lead us to overestima&rthotential. The optimistic
counterpart of the irrational fear of the user is the beheat aictive and supportive Open
Source communities grow naturally, based merely on thedieghat was chosen for
publishing code. This grave error of judgement is still sisipgly common, and has
sealed the doom of many attempts of creating open commesinitie

Sowing and Reaping

The plural of “user” is not “community.” While the former mayow in numbers, the
latter does not grow by itself, or grows wildly without yiéhg) the hoped-for support
for the project. The task of the project maintainer who seelksenefit from the users’
raw energy therefore resembles that of a gardener who nepdsare a fertile ground,
plant and water the seedlings, and possibly prune undestieats before being able to
reap the fruits. Compared to the rewards the ovefidreis little, but it is vital do the
right things, at the right time.

Preparing the Technical Ground Building a community starts even before the first
user appears. Already the choice of the programming laregdatermines how many
people will be able to deploy and debug our code. Objectival@aight be a beautiful
language, but using Java instead will increase the amoupotehtial users and con-
tributors by orders of magnitude. Developers thus must comfse, since the most
widespread technology is rarely mo#figent or elegant. This can be particularly hard
step for researchers who often prefer superiority of laggudesign. When working
on Semantic MediaWiki, | have often been asked why in the dvaed would use PHP
when server-side Java would be so much cleaner and nfioceeet. Comparing the
community size of Semantic MediaWiki with similar Java-basfforts may answer
this question. This example also illustrates that the taagdience determines the best
choice of base technology. The developer herself should tre/necessary insight to
make a most opportunistic decision.

Thoroughly Working the Ground A related issue is the creation of readable and
well documented code from the very start. In an academicremwient, some soft-
ware projects are touched by many temporary contributdran@ing st and student
projects may deteriorate code quality. | remember a sméiace project at TU Dres-
den that had been maintained quite well by a student astigttiar he had left it was
found that his code was thoroughly documented — in Turkishegearcher can only
be a part-time programmer, so special discipline is needehtorce the extra work
needed for accessible code. The reward will be a much grefaagice of informed bug
reports, useful patches, or even external developersdater

Spreading the Seeds of Communities Inexperienced Open Source developers
often think it as a big step to publish their code openly. lalitg nobody else will
notice. To attract users and contributors alike one hasreasipthe word. The public
communication of a real project should at least involve amtements for every new
release. Mailing lists are probably the best channels fsr Bome social skill is needed
to find the balance between annoying spam and shy understateRrojects that are
motivated by the honest conviction that they will help usersolve real problems



should be easy to advertise respectably. Users will quinklyce the diference be-
tween shameless advertising and useful information. Qislpactive announcements
should wait until the project is ready. This does not onlyude its actual code but also
its homepage and basic usage documentation.

Throughout its lifetime, the project should be mentionedlirappropriate places,
including Web sites (start with your homepage!), presémat scientific papers, online
discussions. One cannot appreciate enough the power antile Bnk that leads a later
main contributor to his first visit of the project's homepa&esearchers should not
forget to also publicise their software outside of their ietiate academic community.
Other researchers are rarely the best basis for an activeioaity.

Providing Spaces to Grow Trivially easy, yet often neglected is the duty of project
maintainers to provide for the communication spaces thatneonities can grow in. If
a project has no dedicated mailing list, then all supportiests will be sent privately
to the maintainer. If there is no public bug tracker, bug repwill be fewer and less
helpful. Without a world-editable wiki for user documeirtat, the developer is left
with extending and refining the documentation continuausiye development trunk
of the source code is not accessible, then users will not ketalcheck the latest
version before complaining about bugs. If the code repogsii® inherently closed,
then it is impossible to admit external contributors. Alltbis infrastructure is fiered
for free by a number of service providers. Not all forms oénaiction might be desired,
e.g. there are reasons to keep the group of developers cBseitlwould be foolish to
expect support from a community without even preparing #rgdspaces for this.

Encouraging and Controlling Growth Inexperienced developers often are con-
cerned that opening up mailing lists, forums, and wikis feens will require a lot of
additional maintenance. It rarely does, but some basivitet are of course neces-
sary. It starts wittrigorously enforcing the use of public communication. Users need
to be educated to ask questions publicly, to look up the decuation before asking,
and to report bugs in the tracker instead of via email. | tengfect all private support
requests, or to forward the answers to public lists. Thig alssures that solutions are
available on the Web for future users to find. In any case sustesuld be thanked ex-
plicitly for all forms of contribution — many enthusiastioédwell-meaning people are
needed for building a healthy community.

When a certain density of users is reached, support staltagpen from user to
user. This is always a magical moment for a project, and asgrethat it is on a good
path. Ideally, the core maintainers should still providemart for tricky questions, but
at some point certain users will take the lead in discussemd it is important to thank
them (personally) and to involve them further in the praoj€xdnversely, unhealthy de-
velopments must be stopped where possible, and in partagdmessive behaviour can
be a real danger to community development. Likewise, navell-meant enthusiasm
is productive, and it is often necessary to say no, friendhckearly, to prevent feature
creep.

The Future is Open

Building an initial community around a project is an impart@art of transforming a
research prototype into a grown Open Source software. lfdtseds, there are many



options for further developing the project, depending angbals of the project main-
tainer and community. Some general directions include:

e Continuing to grow and develop the project and its OSS conityilenlarging
the core team of developers and maintainers, and eventualyng it indepen-
dent of its academic origin. This may involve further comntyactivities (e.g.
dedicated events) and maybe establishing organizatiappbst.

e Founding a company for commercially exploiting the projeased on, e.g., a
dual-license or consulting business model. Establishald s;md vibrant commu-
nities are a major asset for a start-up company, and can lefitiahto several
business strategies without abandoning the original O8&uygt.

e Withdrawing from the project. There are many reasons whyrag no longer
be able to maintain the closdfitiation to the project. Having established a
healthy open community maximizes the chances that the giro@ continue
independently. In any case, it is much more respectable kema&lear cut than
to abandon the project silently, killing it by inactivity tiits reach is diminished
to the point where no future maintainer can be found.

The shape of the community will beftrent when working toward one of these prin-
cipal options. But in each case, the role of the researchanggs in the cause of the
project. The initial scientist and coder may turn into a nggreor technical director.

In this sense, the mainftierence between an influential OSS project and a perpetual
research prototype is not so much the amount of work but the ¢f work that is re-
quired to succeed. Understanding this is part of the suce#®s only other thing that

is needed is an awesome piece of software.



