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Abstract

Ontology-based data access (OBDA) generalizes query answering in
databases towards deduction since (i) the fact base is not assumed to
contain complete knowledge (i.e., there is no closed world assumption),
and (ii) the interpretation of the predicates occurring in the queries is
constrained by axioms of an ontology. OBDA has been investigated in
detail for the case where the ontology is expressed by an appropriate
Description Logic (DL) and the queries are conjunctive queries. Motivated
by situation awareness applications, we investigate an extension of OBDA
to the temporal case. As query language we consider an extension of the
well-known propositional temporal logic LTL where conjunctive queries
can occur in place of propositional variables, and as ontology language
we use the prototypical expressive DL ALC. For the resulting instance of
temporalized OBDA, we investigate both data complexity and combined
complexity of the query entailment problem.
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1 Introduction

Situation awareness tools [BBB+09, End95] try to help the user to detect certain
situations within a running system. Here “system” is seen in a broad sense: it may
be a computer system, air traffic observed by radar, or a patient in an intensive
care unit. From an abstract point of view, the system is observed by certain
“sensors” (e.g., heart-rate and blood pressure monitors for a patient), and the
results of sensing are stored in a fact base. Based on the information available in
the fact base, the situation awareness tool is supposed to detect certain predefined
situations (e.g., heart-rate very high and blood pressure low), which require a
reaction (e.g., fetch a doctor or give medication).

In a simple setting, one could realize such a tool by using standard database
techniques: the information obtained from the sensors is stored in a relational
database, and the situations to be recognized are specified by queries in an
appropriate query language (e.g., conjunctive queries [AHV95]). However, in
general we cannot assume that the sensors provide us with a complete description
of the current state of the system, and thus the closed world assumption (CWA)
employed by database systems (where facts not occurring in the database are
assumed to be false) is not appropriate (since there may be facts for which it
is not known whether they are true or false). In addition, though one usually
does not have a complete specification of the working of the system (e.g., a
complete biological model of a human patient), one has some knowledge about
how the system works. This knowledge can be used to formulate constraints on
the interpretation of the predicates used in the queries, which may cause more
answers to be found.

Ontology-based data access [DEFS99, PCDG+08] addresses these requirements.
The fact base is viewed to be a Description Logic ABox (which is not interpreted
with the CWA), and an ontology, also formulated in an appropriate DL, constrains
the interpretations of unary and binary predicates, called concepts and roles in the
DL community. As an example, assume that the ABox A contains the following
assertions about the patient Bob:

systolic_pressure(BOB,P1), High_pressure(P1),
history(BOB, H1), Hypertension(H1), Male(BOB)

which say that Bob has high blood pressure (obtained from sensor data), and is
male and has a history of hypertension (obtained from the patient records). In
addition, we have an ontology that says that patients with high blood pressure
have hypertension and that patients that currently have hypertension and also
have a history of hypertension are at risk for a heart attack:

∃systolic_pressure.High_pressure v ∃finding.Hypertension
∃finding.Hypertension u ∃history.Hypertension v ∃risk.Myocardial_infarction
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The situation we want to recognize for a given patient x is whether this patient is
a male person that is at risk for a heart attack. This situation can be described by
the conjunctive query ∃y.risk(x, y) ∧Myocardial_infarction(y) ∧Male(x). Given
the information in the ABox and the axioms in the ontology, we can derive that
Bob satisfies this query, i.e., he is a certain answer of the query. Obviously,
without the ontology this answer could not be derived.

The complexity of OBDA, i.e., the complexity of checking whether a given tuple
of individuals is a certain answer of a conjunctive query in an ABox w.r.t. an
ontology, has been investigated in detail for cases where the ontology is expressed
in an appropriate DL and the query is a conjunctive query. One can either
consider the combined complexity, which is measured in the size of the whole input
(consisting of the query, the ontology, and the ABox), or the data complexity,
which is measured in the size of the ABox only (i.e., the query and the ontology
are assumed to be of constant size). The underlying assumption is that query and
ontology are usually relatively small, whereas the size of the data may be huge.
In the database setting (where there is no ontology and CWA is used), answering
conjunctive queries is NP-complete w.r.t. combined complexity and in AC0 w.r.t.
data complexity [CM77, AHV95]. For expressive DLs, the complexity of checking
certain answers is considerably higher. For instance, for the well-known DL ALC,
OBDA is ExpTime-complete w.r.t. combined complexity and co-NP-complete
w.r.t. data complexity [CDL98, Lut08a, CDL+06]. For this reason, more light-
weight DLs have been developed, for which the data complexity of OBDA is still
in AC0 and for which computing certain answers can be reduced to answering
conjunctive queries in the database setting [CDL+09].

Unfortunately, OBDA as described until now is not sufficient to achieve situation
awareness. The reason is that the situations we want to recognize may depend
on states of the system at different time points. For example, assume that we
want to find male patients that have a history of hypertension, i.e., patients that
are male and at some previous time point had hypertension.1 In order to express
this kind of temporal queries, we propose to extend the well-known propositional
temporal logic LTL [Pnu77] by allowing the use of conjunctive queries in place of
propositional variables. For example, male patients with a history of hypertension
can then be described by the query

Male(x) ∧#−3−(∃y.finding(x, y) ∧ Hypertension(y)),

where #− stands for “previous” and 3− stands for “sometime in the past.” The
query language obtained this way extends the temporal description logic ALC-LTL
introduced and investigated in [BGL12]. In ALC-LTL, only concept and role
assertions (i.e., very restricted conjunctive queries without variables and existential
quantification) can be used in place of propositional variables. As in [BGL12], we

1Whereas in the previous example we have assumed that a history of hypertension was
explicitly noted in the patient records, we now want to derive this information from previously
stored information about blood pressure, etc.
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also consider rigid concepts and roles, i.e., concepts and roles whose interpretation
does not change over time. For example, we may want to assume that the concept
Male is rigid, and thus a patient that is male now also has been male in the past
and will stay male in the future.

Our overall setting for recognizing situations will thus be the following. In addition
to a global ontology T (which describes properties of the system that hold at every
time point, using the DL ALC), we have a sequence of ABoxes A0,A1, . . .An,
which (incompletely) describe the states of the system at the previous time points
0, 1, . . . , n − 1 and the current time point n. The situation to be recognized is
expressed by a temporal conjunctive query, as introduced above, which is evaluated
w.r.t. the current time point n. We will investigate both the combined and the
data complexity of this temporal extension of OBDA in three different settings:
(i) both concepts and roles may be rigid; (ii) only concepts may be rigid; and
(iii) neither concepts nor roles are allowed to be rigid. For the combined complexity,
the obtained complexity results are identical to the ones for ALC-LTL, though
the upper bounds are considerably harder to show. For the data complexity, the
results for the settings (ii) and (iii) coincides with the one for atemporal OBDA
(co-NP-complete). For the setting (i), we can show that the data complexity is in
ExpTime (in contrast to 2-ExpTime-completeness for the combined complexity),
but we do not have a matching lower bound.

2 Preliminaries

In this section, we present the preliminaries that we need in this report.

2.1 Description Logics

Description Logics (DLs) are a family of knowledge representation formalisms (for
an introduction, see [BCM+03]). While in principle our temporal query language
can be parameterized with any DL, in this report we focus on ALC [SS91] and its
extension with role conjunctions ALC∩ as prototypical expressive DLs.

The syntax of ALC∩ is defined as follows.

Definition 2.1 (syntax of ALC∩). Let NC, NR, and NI, respectively, be non-
empty, pairwise disjoint sets of concept names, role names, and individual names.
The set of concept descriptions (or concepts) is the smallest set such that

• all concept names A ∈ NC are concepts, and

• if C,D are concepts, and r ∈ NR, then ¬C (negation), C uD (conjunction),
and ∃(r1 ∩ · · · ∩ r`).C (existential restriction) are also concepts.
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A general concept inclusion (GCI) is of the form C v D, where C,D are concepts,
and an assertion is of the form C(a) or (r1 ∩ · · · ∩ r`)(a, b) with ` > 0, where C
is a concept, r1, . . . , r` ∈ NR, and a, b ∈ NI. We call both GCIs and assertions
axioms.

A Boolean combination of axioms is called a Boolean knowledge base, i.e.,

• every axiom is a Boolean knowledge base and

• if B1,B2 are Boolean knowledge bases, then so are ¬B1 and B1 ∧ B2.

A TBox (or ontology) is a finite set of GCIs and an ABox is a finite set of
assertions.

We denote by Ind(B) the set of individual names that occur in the Boolean
knowledge base B. As usual, we use the concept C t D (disjunction) as an
abbreviation for the concept ¬(¬C u ¬D), the concept ∀(r1 ∩ · · · ∩ r`).C (value
restriction) as an abbreviation for ¬(∃(r1 ∩ · · · ∩ r`).¬C), the concept > (top) as
abbreviation for an arbitrary (but fixed) tautology such as A t ¬A for A ∈ NC,
and the concept ⊥ (bottom) as abbreviation for ¬>.

The semantics of ALC∩ is defined in a model-theoretic way.

Definition 2.2 (semantics of ALC∩). An interpretation is a pair I = (∆I , ·I),
where ∆I is a non-empty set (called domain), and ·I is a function that assigns to
every A ∈ NC a set AI ⊆ ∆I, to every r ∈ NR a binary relation rI ⊆ ∆I ×∆I,
and to every a ∈ NI an element aI ∈ ∆I.

This function is extended to concept descriptions as follows:

• (¬C)I := ∆I \ CI;

• (C uD)I := CI ∩DI; and

• (∃(r1 ∩ · · · ∩ r`).C)I := {d ∈ ∆I | there is an e ∈ ∆I with
(d, e) ∈ rI1 ∩ · · · ∩ rI` and e ∈ CI}.

The interpretation I is a model of the axiom α if

• CI ⊆ DI if α = C v D;

• aI ∈ CI if α = C(a); and

• (aI , bI) ∈ rI1 ∩ · · · ∩ rI` if α = (r1 ∩ · · · ∩ r`)(a, b).
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We write I |= α if I is a model of the axiom α, I |= T if I is a model of all GCIs
in the TBox T , and I |= A if I is a model of all assertions in the ABox A.

The notion of a model is extended to Boolean ALC∩-knowledge bases as follows:
I |= ¬B iff I 6|= B, and I |= B1 ∧ B2 iff I |= B1 and I |= B2. We say that the
Boolean ALC∩-knowledge base B is consistent iff it has a model.

We assume that all interpretations I satisfy the unique name assumption (UNA),
i.e., for all a, b ∈ NI with a 6= b we have aI 6= bI .

The syntax and semantics of the DL ALC is obtained from ALC∩ by restricting the
variable ` to ` = 1 in the above definitions, i.e., role conjunctions are disallowed.

2.2 Temporal Conjunctive Queries

We now introduce a temporal query language that generalizes a subset of first-
order queries called conjunctive queries [AHV95, CM77] and the temporal DL
ALC-LTL [BGL12]. In this section, we focus on the DL ALC, but in principle,
the temporal query language can be defined using any other DL.

In the following, we assume (as in [BGL12]) that a subset of the concept and
role names is designated as being rigid. The intuition is that the interpretation
of the rigid names is not allowed to change over time. Let NRC denote the rigid
concept names, and NRR the rigid role names with NRC ⊆ NC and NRR ⊆ NR.
We sometimes call the names in NC \NRC and NR \NRR flexible. All individual
names are implicitly assumed to be rigid, i.e., an individual always keeps its name.
Definition 2.3. A temporal knowledge base (TKB) K = 〈(Ai)0≤i≤n, T 〉 consists
of a finite sequence of ABoxes Ai and an TBox T , where the ABoxes Ai can only
contain concept names that also occur in T .2

Let I = (Ii)i≥0 be an infinite sequence of interpretations Ii = (∆, ·Ii) over a fixed
non-empty domain ∆ ( constant domain assumption). Then I is a model of K
(written I |= K) if

• Ii |= Ai for all i, 0 ≤ i ≤ n,

• Ii |= T for all i ≥ 0, and

• I respects rigid names, i.e., xIi = xIj for all x ∈ NI ∪NRC ∪NRR and all
i, j ≥ 0.

We denote by Ind(K) the set of all individual names occurring in the TKB K. As
query language, we use a temporal extension of conjunctive queries.

2This restriction is motivated by the intuition that the TBox T contains all concepts relevant
for a knowledge domain, while the ABoxes Ai contain observations of the real world that are
formulated using the terminology given by T .
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Definition 2.4. Let NV be a set of variables. A conjunctive query (CQ) is of the
form φ = ∃y1, . . . , ym.ψ, where y1, . . . , ym ∈ NV and ψ is a (possibly empty) finite
conjunction of atoms of the form

• A(z) for A ∈ NC and z ∈ NV ∪NI (concept atom); or

• r(z1, z2) for r ∈ NR and z1, z2 ∈ NV ∪NI (role atom).

The empty conjunction is denoted by true. Temporal conjunctive queries (TCQs)
are built from CQs as follows:

• each CQ is a TCQ; and

• if φ1 and φ2 are TCQs, then so are:

– ¬φ1 (negation), φ1 ∧ φ2 (conjunction),
– #φ1 (next), #−φ1 (previous),
– φ1Uφ2 (until), and φ1Sφ2 (since).

We denote the set of individuals occurring in a TCQ φ by Ind(φ), the set of
variables occurring in φ by Var(φ), the set of free variables occurring in φ by
FVar(φ), and the set of atoms occurring in φ by At(φ). We call a TCQ φ with
FVar(φ) = ∅ a Boolean TCQ.

As usual, we use the following abbreviations: φ1∨φ2 (disjunction) for ¬(¬φ1∧¬φ2),
3φ (eventually) for trueUφ, 2φ (always) for ¬3¬φ, and analogously for the past:
3−φ for trueSφ, and 2−φ for ¬3−¬φ.

A union of CQs is a disjunction of CQs.

For our purposes, it is sufficient to define the semantics of CQs and TCQs only for
Boolean queries. As usual, it is given using the notion of homomorphisms [CM77].

Definition 2.5. Let I = (∆, ·I) be an interpretation and ψ be a Boolean CQ. A
mapping π : Var(ψ) ∪ Ind(ψ)→ ∆ is a homomorphism of ψ into I if

• π(a) = aI for all a ∈ Ind(ψ);

• π(z) ∈ AI for all concept atoms A(z) in ψ; and

• (π(z1), π(z2)) ∈ rI for all role atoms r(z1, z2) in ψ.

We say that I is a model of ψ (written I |= ψ) if there is such a homomorphism.
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Let now φ be a Boolean TCQ. For an infinite sequence of interpretations I = (Ii)i≥0
and i ≥ 0, we define I, i |= φ by induction on the structure of φ:

I, i |= ∃y1, . . . , ym.ψ iff Ii |= ∃y1, . . . , ym.ψ
I, i |= ¬φ1 iff I, i 6|= φ1
I, i |= φ1 ∧ φ2 iff I, i |= φ1 and I, i |= φ2
I, i |= #φ1 iff I, i+ 1 |= φ1
I, i |= #−φ1 iff i > 0 and I, i− 1 |= φ1
I, i |= φ1Uφ2 iff there is some k ≥ i such that I, k |= φ2

and I, j |= φ1 for all j, i ≤ j < k
I, i |= φ1Sφ2 iff there is some k, 0 ≤ k ≤ i such that I, k |= φ2

and I, j |= φ1 for all j, k < j ≤ i

Given a TKB K = 〈(Ai)0≤i≤n, T 〉, we say that I is a model of φ w.r.t. K if I |= K
and I, n |= φ. We call φ satisfiable w.r.t. K if it has a model w.r.t. K.

It should be noted that Boolean TCQs generalize ALC-LTL formulae as introduced
in [BGL12]. More precisely, every TCQ that contains only assertions instead of
general CQs and contains no past operators (#− or S) is an ALC-LTL formula.
ALC-LTL formulae may additionally contain local GCIs C v D. Such a GCI
can, however, be expressed by the TCQ ¬∃x.A(x) if we add the (global) GCIs
A v C u¬D, C u¬D v A to the TBox. Thus, TCQs together with a global TBox
can express all ALC-LTL formulae. TCQs are more expressive than ALC-LTL
formulae since CQs like ∃y.r(y, y), which says that there is a loop in the model
without naming the individual which has the loop, can clearly not be expressed in
ALC.

Before defining the main inference problem for TCQs to be investigated in this
report, we introduce some notation that will be used later on.

The propositional abstraction φ̂ of a TCQ φ is built by replacing each CQ occurring
in φ by a propositional variable such that there is a 1–1 relationship between the
CQs α1, . . . , αm occurring in φ and the propositional variables p1, . . . , pm occurring
in φ̂. The formula φ̂ obtained this way is a propositional LTL-formula [Pnu77].

Definition 2.6. Let {p1, . . . , pm} be a finite set of propositional variables. An
LTL-formula φ is built from these variables using the constructors negation (¬φ),
conjunction (φ ∧ φ′), next (#φ), previous (#−φ), until (φUφ′), and since (φSφ′).

An LTL-structure is an infinite sequence J = (wi)i≥0 of worlds wi ⊆ {p1, . . . , pm}.
The propositional variable pj is satisfied by J at time point i ≥ 0 (written J, i |= pj)
iff pj ∈ wi. The satisfaction of a complex propositional LTL-formula by an LTL-
structure is defined as in Definition 2.5.

Note that what we introduced above would usually be called Past-LTL, as LTL is
normally defined using only the operators # and U [Pnu77].
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A CQ-literal is a Boolean CQ ψ or a negated Boolean CQ ¬ψ. We will often
deal with conjunctions φ of CQ-literals. Since such a formula φ contains no
temporal operators, the satisfaction of φ by an infinite sequence of interpretations
I = (Ii)i≥0 at time point i only depends on the interpretation Ii. For simplicity,
we then often write Ii |= φ instead of I, i |= φ. By the same argument, we use
this notation also for unions of CQs. In this context, it is sufficient to deal with
classical knowledge bases K = 〈A, T 〉, i.e., temporal knowledge bases with only
one ABox, and we similarly write I0 |= K instead of I, 0 |= K.

A simplifying assumption we make in the remainder of this report is that all
Boolean CQs we encounter are connected in the sense that the variables and
individual names are related by roles, as defined e.g. in [RG10].
Definition 2.7. A Boolean CQ φ is called connected if for all x, y ∈ Var(φ) ∪
Ind(φ) there exists a sequence x1, . . . , xn ∈ Var(φ)∪Ind(φ) such that x1 = x, xn = y,
and for all i, 1 ≤ i < n, there is r ∈ NR such that either r(xi, xi+1) ∈ At(φ) or
r(xi+1, xi) ∈ At(φ). A collection of Boolean CQs φ1, . . . , φn is a partition of φ if
At(φ) = At(φ1) ∪ · · · ∪ At(φn), the sets Var(φi) ∪ Ind(φi), 1 ≤ i ≤ n, are pairwise
disjoint, and each φi is connected.

It follows from a result in [Tes01], that we can assume Boolean TCQs to contain
only connected CQs without loss of generality. Indeed, if a Boolean TCQ φ
contains a CQ ψ that is not connected, we can replace ψ by the conjunction
ψ1 ∧ · · · ∧ ψn, where ψ1, . . . , ψn is a partition of ψ. This conjunction is of linear
size in the size of ψ and the resulting TCQ has exactly the same models as φ since
every homomorphism of ψ into an interpretation I can be uniquely represented
as a collection of homomorphisms of ψ1, . . . , ψn into I. Thus, in the following we
always assume that Boolean TCQs contain only connected CQs.

3 The Entailment Problem

We are now ready to introduce the central reasoning problems of this report, i.e.,
the problem of finding so-called certain answers to TCQs and the corresponding
decision problems.
Definition 3.1. Let φ be a TCQ and K = 〈(Ai)0≤i≤n, T 〉 a temporal knowledge
base. The mapping a : FVar(φ)→ Ind(K) is a certain answer to φ w.r.t. K if for
every I |= K, we have I, n |= a(φ), where a(φ) denotes the Boolean TCQ that is
obtained from φ by replacing the free variables according to a.

The corresponding decision problem is the recognition problem, i.e., given a,
φ, and K, to check whether a is a certain answer to φ w.r.t. K. The (query)
entailment problem is to decide for a Boolean TCQ φ and a temporal knowledge
base K = 〈(Ai)0≤i≤n, T 〉 whether every model I of K satisfies I, n |= φ (written
K |= φ).
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Note that, for a TCQ φ, a temporal knowledge base K, and i ≥ 0, one can compute
all certain answers by enumerating all mappings a : FVar(φ)→ Ind(K) and then
solving the recognition problem for each a. Since there are |Ind(K)||FVar(φ)| such
mappings, in order to compute the set of certain answers, we have to solve the
recognition problem exponentially often.

As described in the introduction, in a situation awareness tool we want to solve
the recognition problem for temporal knowledge bases K = 〈(Ai)0≤i≤n, T 〉 and
TCQs. The intuition is that the ABoxes Ai describe our observations about the
system’s states at time points i = 0, . . . , n, where n is the current time point, and
the TCQ describes the situation we want to recognize at time point n for a given
instantiation of the free variables in the query (e.g., a certain patient).

Obviously, the entailment problem is a special case of the recognition problem,
where a is the empty mapping. Conversely, the recognition problem for a, φ,
and K is the same as the entailment problem for a(φ) and K. Thus, these two
problems have the same complexity.

Therefore, it is sufficient to analyze the complexity of the entailment problem.
We consider two kinds of complexity measures: combined complexity and data
complexity. For the combined complexity, all parts of the input, i.e., the TCQ φ and
the temporal knowledge base K, are taken into account. For the data complexity,
the TCQ φ and the TBox T are assumed to be constant, and the complexity
is measured only w.r.t. the data, i.e., the sequence of ABoxes. As usual when
investigating the data complexity of OBDA [CDL+09], we assume that the ABoxes
occurring in a temporal knowledge base and the query contain only concept and
role names that also occur in the global TBox.

It turns out that it is actually easier to analyze the complexity of the complement
of this problem, i.e., non-entailment K 6|= φ. This problem has the same complexity
as the satisfiability problem. In fact, K 6|= φ iff ¬φ has a model w.r.t. K, and
conversely φ has a model w.r.t. K iff K 6|= ¬φ.

We first analyze the (atemporal) special case of the satisfiability problem where φ
is a conjunction of CQ-literals. The following result will turn out to be useful also
for analyzing the general case.

Theorem 3.2. Let K = 〈A, T 〉 be a knowledge base and φ be a conjunction of
CQ-literals. Then deciding whether φ has a model w.r.t. K is ExpTime-complete
w.r.t. combined complexity and NP-complete w.r.t. data complexity.

Proof. For the lower bound for combined complexity, we reduce the ExpTime-
hard concept satisfiability problem for ALC w.r.t. TBoxes [Sch91]. Consider a
concept C and a TBox T . Let T ′ := T ∪ {A v C,C v A}, where A does not
occur in T , and let φ′ := ∃x.A(x). Obviously, C is satisfiable w.r.t. T iff there is
an interpretation I with I |= 〈∅, T ′〉 and I |= φ′.
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For the remaining lower bound, we know that already for a Boolean conjunc-
tive query ψ the query entailment problem is co-NP-hard w.r.t. data complex-
ity [CDL+06]. This problem is obviously a special case of the complement of our
problem.

To check whether there is an interpretation I with I |= K and I |= φ, we reduce
this problem to a query non-entailment problem of known complexity. Let

φ = χ1 ∧ . . . ∧ χ` ∧ ¬ρ1 ∧ . . . ∧ ¬ρm
for Boolean CQs χ1, . . . , χ`, ρ1, . . . , ρm. First, we instantiate the non-negated CQs
χ1, . . . , χ` by omitting the existential quantifiers and replacing the variables by
fresh individual names. The set A′ of all resulting atoms can thus be viewed as
an additional ABox that restricts the interpretation I.

We now show that the existence of an interpretation I with I |= K and I |= φ
is equivalent to the existence of an interpretation I ′ with I ′ |= 〈A ∪ A′, T 〉 and
I ′ |= ¬ρ1 ∧ . . . ∧ ¬ρm.

The “if” direction is easy to see. For the “only if” direction, assume that I |= K
and I |= φ. We extend I to a model I ′ that additionally satisfies the assertions in
A′. The idea is that we can define the interpretation of the fresh individual names
in A′ according to the homomorphisms that must exist from the non-negated
CQs in φ into I. Assume now that two of these individual names a, a′ are then
interpreted in I ′ by the same individual x ∈ ∆I′ , thus violating the UNA. We can
introduce a fresh copy x′ of x into I ′ and interpret the concept and role names as
for x, such that we have x′ ∈ AI′ iff x ∈ AI′ for any A ∈ NC, and (x′, y) ∈ rI′ iff
(x, y) ∈ rI′ as well as (y, x′) ∈ rI′ iff (y, x) ∈ rI′ and (x′, x′) ∈ rI′ iff (x, x) ∈ rI′

for any r ∈ NR and y ∈ ∆I′ \ {x, x′}. We also change the interpretation of a to x′
instead of x. The resulting interpretation is still a model of the original knowledge
base 〈A, T 〉 and the instantiated atoms in A′. Note also that there can still be no
homomorphism from any of the CQs ρ1, . . . , ρm into I ′ since they cannot contain
a and a′ and or distinguish between unnamed individuals satisfying the same
concept names and having the same role connections. After we have done this
construction for all pairs of fresh individual names violating the UNA, we have
constructed a model of 〈A ∪ A′, T 〉 and ¬ρ1 ∧ · · · ∧ ¬ρm.

The above problem is thus equivalent to finding an interpretation I with I |=
〈A ∪A′, T 〉 and I 6|= ρ, where ρ = ρ1 ∨ · · · ∨ ρm is the union of Boolean CQs that
results from negating the conjunction of all negated CQs in φ. This is the same
as asking whether the knowledge base 〈A ∪ A′, T 〉 does not entail the union of
conjunctive queries ρ.

The complexity of this kind of entailment problems is known: it is ExpTime-
complete w.r.t. combined complexity [CDL98, Lut08a] and co-NP-complete w.r.t.
data complexity [OCE06].

In the remainder of this report, we will present several constructions, most of
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Data complexity Combined complexity
NRC = NRR = ∅ co-NP-complete ExpTime-complete

(Cor. 3.4 and Thm. 3.14) (Thms. 3.5 and 3.14)
NRC 6= ∅, NRR = ∅ co-NP-complete co-NExpTime-complete

(Cor. 3.4 and Thm. 4.2) (Thms. 3.5 and 5.8)
NRR 6= ∅ co-NP-hard/in ExpTime 2-ExpTime-complete

(Cor. 3.4 and Thm. 3.16) (Thms. 3.5 and 3.16)

Table 3.3: The complexity of the entailment problem.

which use the above theorem, to derive the complexity results shown in Table 3.3
for the entailment problem in general. The results depend on which symbols are
allowed to be rigid. It is well-known that one can simulate rigid concept names by
rigid role names [BGL12], which is why there are only three cases to consider.

3.1 Lower Bounds for the Entailment Problem

For data complexity, we obtain the lower bounds as a corollary of Theorem 3.2.

Corollary 3.4. The entailment problem is co-NP-hard w.r.t. data complexity.

Proof. Theorem 3.2 states that for conjunctions of CQ-literals φ and atemporal
knowledge bases K, deciding whether φ has a model w.r.t. K is NP-complete
w.r.t. data complexity. Since φ is a special TCQ and rigid names are irrelevant
in the atemporal case, we obtain co-NP-hardness w.r.t. data complexity for the
entailment problem in all the cases in Table 3.3.

For the combined complexity, we get the lower bounds by a simple reduction of
the satisfiability problem of the temporal DL ALC-LTL [BGL12].

Theorem 3.5. The entailment problem w.r.t. combined complexity is

• ExpTime-hard if NRC = NRR = ∅;

• co-NExpTime-hard if NRC 6= ∅ and NRR = ∅; and

• 2-ExpTime-hard if NRR 6= ∅.

Proof. The satisfiability problem of the temporal DL ALC-LTL is ExpTime-
complete without rigid concept and role names, NExpTime-complete w.r.t. rigid
concept names, and 2-ExpTime-complete w.r.t. rigid concept and role names
(see [BGL12]).
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Let φ be an ALC-LTL formula, let C1 v D1, . . . , Cp v Dp be all GCIs occurring
in φ, and let E1(a1), . . . , Em(am) be all concept assertions occurring in φ. Let ψ
be the Boolean TCQ obtained from φ by replacing each Ci v Di with ¬(∃x.Ai(x))
and each Ej with Bj , where Ai, Bj are assumed to not occur in φ, for i, j, 1 ≤ i ≤ p,
1 ≤ j ≤ m. Furthermore, we define

T := {Ai v Ci u ¬Di | 1 ≤ i ≤ p} ∪ {Ci u ¬Di v Ai | 1 ≤ i ≤ p}∪
{Bj v Ej | 1 ≤ j ≤ m} ∪ {Ej v Bj | 1 ≤ j ≤ m}.

It is easy to see that φ is satisfiable iff 〈∅, T 〉 6|= ¬ψ. We have thus reduced the
satisfiability problem of ALC-LTL to the non-entailment problem, which yields
the claimed lower bounds.

In the following sections, we present the ideas for the upper bounds w.r.t. combined
complexity and data complexity. For the former, we can match all lower bounds
we have from Theorem 3.5. For the latter, unfortunately we cannot match the
lower bound of co-NP in the case where we have rigid role names. While the
results need to deal with CQs in an appropriate way, the basic ideas to prove
them are similar to those presented for ALC-LTL in [BGL12].

3.2 Upper Bounds for the Entailment Problem

We now describe an approach to solving the satisfiability (and thus the non-
entailment problem) in general to obtain the upper bounds of Table 3.3. The
basic idea is to reduce the problem to two separate satisfiability problems, similar
to what was done for ALC-LTL in Lemma 4.3 of [BGL12].

Let K = 〈(Ai)0≤i≤n, T 〉 be a TKB and φ be a Boolean TCQ, for which we want to
decide whether φ has a model w.r.t. K. Recall that the propositional abstraction φ̂
of φ contains the propositional variables p1, . . . , pm in place of the CQs α1, . . . , αm
occurring in φ. We assume in the following that αi was replaced by pi for all i,
1 ≤ i ≤ m. We now consider a set S ⊆ 2{p1,...,pm}, which intuitively specifies the
worlds that are allowed to occur in an LTL-structure satisfying φ̂. To express this
restriction, we define the propositional LTL-formula

φ̂S := φ̂ ∧2−2

 ∨
X∈S

 ∧
p∈X

p ∧
∧
p/∈X
¬p

 .3

An obvious connection between φ and φ̂S is formalized in the next lemma.

Lemma 3.6. If φ has a model w.r.t. K, then there is a set S ⊆ 2{p1,...,pm} and a
propositional LTL-structure that satisfies φ̂S at time point n.

3Note that a formula 2−2ψ is satisfied iff ψ holds at all time points.
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Proof. Let I = (Ii)i≥0 be a sequence of interpretations that respects rigid names,
is a model of K, and satisfies I, n |= φ. For each interpretation Ii of I, we set

Xi := {pj | 1 ≤ j ≤ m and Ii satisfies αj},

and then consider the set S := {Xi | i ≥ 0} induced by I. The propositional
abstraction Î = (wi)i≥0 of I is now defined by wi := Xi for all i ≥ 0. It is easy to
check that the fact that I satisfies φ at time point n implies that Î satisfies φ̂S at
time point n.

However, guessing a set S and then testing whether the induced LTL-formula φ̂S
is satisfiable at time point n is not sufficient for checking whether φ has a model
w.r.t. K. We must also check whether the guessed set S can indeed be induced by
some sequence of interpretations that is a model of K. The following definition
introduces a condition that need to be satisfied for this to hold.

Definition 3.7. Given a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and a mapping
ι : {0, . . . , n} → {1, . . . , k}, we say that S is r-consistent w.r.t. ι and K if there
exist interpretations J1, . . . ,Jk, I0, . . . , In such that

• the interpretations share the same domain and respect rigid names;4

• the interpretations are models of T ;

• for i, 0 ≤ i ≤ k, Ji is a model of χi := ∧
pj∈Xi αj ∧

∧
pj /∈Xi ¬αj; and

• for i, 0 ≤ i ≤ n, Ii is a model of Ai and χι(i).

The intuition underlying this definition is the following. The existence of the
interpretation Ji (1 ≤ i ≤ k) ensures that the conjunction χi of the CQ-literals
specified by Xi is consistent. In fact, a set S containing a set Xi for which this
does not hold cannot be induced by a sequence of interpretations. The interpreta-
tions Ii (0 ≤ i ≤ n) are supposed to constitute the first n+ 1 interpretations in
such a sequence. In addition to inducing a set Xι(i) ∈ S and thus satisfying the
corresponding conjunction χι(i), the interpretation Ii must thus also satisfy the
ABox Ai. The first and the second condition ensure that a sequence of interpreta-
tions built from J1, . . . ,Jk, I0, . . . , In respects rigid names and satisfies the global
TBox T . Note that we can use Theorem 3.2 to check whether interpretations
satisfying the last three conditions of Definition 3.7 exist. As we will see below,
the difficulty lies in ensuring that they also satisfy the first condition.

Satisfaction of the temporal structure of φ by a sequence of interpretations built
this way is ensured by testing φ̂S for satisfiability, which can basically be done
using algorithms for testing satisfiability in propositional LTL [VW94].

4This is defined analogously to the case of sequences of interpretations (Definition 2.3).
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Lemma 3.8. The TCQ φ has a model w.r.t. the TKB K iff there is a set
S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and a mapping ι : {0, . . . , n} → {1, . . . , k} such
that

• S is r-consistent w.r.t. ι and K and

• there is an LTL-structure J = (wi)i≥0 such that J, n |= φ̂S and wi = Xι(i)
for all i, 0 ≤ i ≤ n.

Proof. For the “only if” direction, assume that φ has a model w.r.t. K. Thus, there
is a sequence of interpretations I = (Ii)i≥0 of ALC-interpretations with I |= K
and I, n |= φ. Recall that we have already seen in Lemma 3.6 that I induces a set
S ⊆ 2{p1,...,pm} such that φ̂S is satisfiable at time point n. Let S = {X1, . . . , Xk}.
For each i ≥ 0, there is an index νi ∈ {1, . . . , k} such that Ii induces the set Xνi ,
i.e.,

Xνi = {pj | 1 ≤ j ≤ m and Ii satisfies αj},
and, conversely, for each ν ∈ {1, . . . , k}, there is an index i ≥ 0 such that ν = νi.
We define the mapping ι as follows: ι(i) = νi for all i, 0 ≤ i ≤ n. Let Î = (wi)i≥0
be the propositional abstraction of I. As argued in Lemma 3.6, Î is a model of
φ̂S at time point n. By definition of ι, Xνi and Î, we also have wi = Xι(i) for all i,
0 ≤ i ≤ n.

For i, 1 ≤ i ≤ k, the interpretation Ji is obtained as follows. Let `1, . . . , `k be
such that ν`1 = 1, . . . , ν`k = k. Now, if we set Ji := I`i , then it is clear that Ji is
a model of χi. It is now easy to see that the interpretations J1, . . . ,Jk, I0, . . . , In
satisfy the conditions for r-consistency of S w.r.t. ι and K.

To show the “if” direction, assume that there is a set S = {X1, . . . , Xk}, a mapping
ι : {0, . . . , n} → {1, . . . , k}, and an LTL-structure J = (wi)i≥0 such that J is a
model of φ̂S at time point n and wi = Xι(i) for all i, 0 ≤ i ≤ n, and S is r-consistent
w.r.t. ι and K. Let J1, . . . ,Jk, I0, . . . , In be the models of T with the properties
of Definition 3.7.

By the definition of φ̂S , for every world wi, there is exactly one index νi ∈ {1, . . . , k}
such that wi satisfies ∧

p∈Xνi

p ∧
∧

p/∈Xνi

¬p.

Since wi, 0 ≤ i ≤ n, satisfies exactly the propositional variables of Xι(i), we have
ι(i) = νi. We can now define a sequence of ALC-interpretations respecting rigid
names as follows: I := (Ii)i≥0 where Ii := Jνi for i > n. By Definition 3.7, each
Ii satisfies exactly the CQs specified by the propositional variables in Xνi . Since
J, n |= φ̂S , this means that I, n |= φ. It also follows directly from Definition 3.7
that I |= K. Hence, we have that φ has model w.r.t. K.

Since the overall complexity of the satisfiability problem depends on which symbols
are allowed to be rigid, we obtain the set S and the function ι either by enumeration,
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guessing, or direct construction. Given S and ι, it remains to check the two
conditions of the lemma. This means that, in order to decide satisfiability of φ
w.r.t. K, we only need to solve the above two satisfiability problems in ALC and
LTL, respectively, similar to what was done for deciding satisfiability in ALC-
LTL [BGL12]. For the r-consistency test, we need to use different constructions
depending on which symbols are allowed to be rigid. Using these constructions,
we obtain the complexity results for the entailment problem shown in Table 3.3.
The details can be found in later sections. First, we focus on the second condition
of Lemma 3.8.

3.2.1 An Automaton for LTL-Satisfiabilty

For the second condition of Lemma 3.8, we construct a generalized Büchi automa-
ton similar to the standard construction for satisfiability of LTL-formulae [WVS83,
VW94]. Emptiness of this automaton is equivalent to satisfiability of φ̂S .

Definition 3.9. A generalized Büchi automaton G = (Q,Σ,∆, Q0,F) consists
of a finite set of states Q, a finite input alphabet Σ, a transition relation ∆ ⊆
Q×Σ×Q, a set Q0 ⊆ Q of initial states, and a set of sets of final states F ⊆ 2Q.

Given an infinite word w = σ0σ1σ2 . . . ∈ Σω, a run of G on w is an infinite word
q0q1q2 . . . ∈ Qω such that q0 ∈ Q0 and (qi, σi, qi+1) ∈ ∆ for all i ≥ 0. This run is
accepting if, for every F ∈ F , there are infinitely many i ≥ 0 such that qi ∈ F .
The language accepted by G is defined as

Lω(G) := {w ∈ Σω | there is an accepting run of G on w}.

The emptiness problem for generalized Büchi automata is the problem of deciding,
given a generalized Büchi automaton G, whether Lω(G) = ∅ or not.

We use generalized Büchi automata rather than normal ones (where |F| = 1) since
this allows for a simpler construction below. It is well-known that a generalized
Büchi automaton can be transformed into an equivalent normal one in polynomial
time [GPVW96, BK08]. Together with the fact that the emptiness problem for
normal Büchi automata can be solved in polynomial time [VW94], this yields a
polynomial time bound for the complexity of the emptiness problem for generalized
Büchi automata.

To define our automaton, we need the notion of a type for φ̂.

Definition 3.10. A sub-literal of φ̂ is a sub-formula of φ̂ or its negation. A set
T of sub-literals of φ̂ is a type for φ̂ iff the following properties are satisfied:

1. for every sub-formula ψ of φ̂, we have ψ ∈ T iff ¬ψ /∈ T ;

2. for every sub-formula ψ1 ∧ ψ2 of φ̂, we have ψ1 ∧ ψ2 ∈ T iff {ψ1, ψ2} ⊆ T ;
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We denote the set of all types for φ̂ by T. We further define the set T|S ⊆ T that
contains all types T for φ̂ for which T ∩ {p1, . . . , pm} ∈ S.

The reason that we use the types for φ̂ and not for φ̂S is that the latter formula
is exponentially larger than the former. To avoid this exponential blowup in
the automaton, we check the additional condition of φ̂S , namely that each world
must occur in the set S, by restricting the first component of the state set of the
automaton to T|S .

Another difference to the standard construction is the additional condition that
wi = Xι(i) should hold for i, 0 ≤ i ≤ n. We check this by attaching a counter from
{0, . . . , n+ 1} to the states of the automaton. Transitions where the counter is
i < n+ 1 check if the current world corresponds to Xι(i) and increase the counter
by 1. At i = n, we ensure that φ̂S is satisfied.

Definition 3.11. The generalized Büchi-automaton G = (Q,Σ,∆, Q0,F) is de-
fined as follows:

• Q := T|S × {0, . . . , n+ 1};

• Σ := 2{p1,...,pm};

• ∆ ⊆ Q× Σ×Q is defined as follows: ((T, k), σ, (T ′, k′)) ∈ ∆ iff

– σ = T ∩ {p1, . . . , pm};
– #ψ ∈ T iff ψ ∈ T ′;
– #−ψ ∈ T ′ iff ψ ∈ T ;
– ψ1Uψ2 ∈ T iff (i) ψ2 ∈ T or (ii) ψ1 ∈ T and ψ1Uψ2 ∈ T ′;
– ψ1Sψ2 ∈ T ′ iff (i) ψ2 ∈ T ′ or (ii) ψ1 ∈ T ′ and ψ1Sψ2 ∈ T ;
– k < n+ 1 implies σ = Xι(k);

– k = n implies φ̂ ∈ T ; and

– k′ =

k + 1 if k < n+ 1, and
k otherwise.

• Q0 := {(T, 0) | ψ1Sψ2 ∈ T ⇒ ψ2 ∈ T , and #− ψ /∈ T}; and

• F := {Fψ1Uψ2 × {n+ 1} | ψ1Uψ2 is a sub-formula of φ}, where
Fψ1Uψ2 := {T ∈ T | ψ1Uψ2 ∈ T ⇒ ψ2 ∈ T}.

We now show that this automaton accepts exactly those sequences of worlds that
satisfy the conditions imposed in Lemma 3.8.
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Lemma 3.12. For every infinite word w = w0w1 . . . ∈ Σω, we have w ∈ Lω(G)
iff the LTL structure J := (wi)i≥0 satisfies J, n |= φ̂S and wi = Xι(i) for all i,
0 ≤ i ≤ n.

Proof. (⇐=) Assume that the LTL structure J := (wi)i≥0 is a model of φ̂S at time
point n and wi = Xι(i) for all i, 0 ≤ i ≤ n.

If we define Si := {ψ | J, i |= ψ, and ψ is a sub-literal of φ̂} for i ≥ 0, then

(S0, 0)(S1, 1) . . . (Sn, n)(Sn+1, n+ 1)(Sn+2, n+ 1) . . .

is a run on G:

• We have (Si, k) ∈ Q for all i ≥ 0 and k, 0 ≤ k ≤ n+ 1:

– For every sub-formula ψ of φ̂S , we have either J, i |= ψ or J, i |= ¬ψ.
Thus, we have ψ ∈ Si iff ¬ψ /∈ Si.

– For every sub-formula ψ1∧ψ2 of φ̂S , we have J, i |= ψ1∧ψ2 iff J, i |= ψ1
and J, i |= ψ2. Thus, we have ψ1 ∧ ψ2 ∈ Si iff {ψ1, ψ2} ⊆ Si.

– For each world wi, i ≥ 0, we have wi ∈ S since J satisfies φ̂S . Thus,
we have Si ∩ {p1, . . . , pm} = wi ∈ S for all i ≥ 0.

• We have for every sub-formula #−ψ of φ̂S that J, 0 6|= #−ψ, and thus
#−ψ /∈ S0. Additionally, we have for every ψ1Sψ2 ∈ S0, since J, 0 |= ψ1Sψ2
also J, 0 |= ψ2. This implies that (S0, 0) ∈ Q0.

• We have for all i, 0 ≤ i ≤ n,

((Si, i), wi, (Si+1, i+ 1)) ∈ ∆,

and for all i ≥ n+ 1,

((Si, n+ 1), wi, (Si+1, n+ 1)) ∈ ∆,

since:

– by the definition of Si, we have wi = Si ∩ {p1, . . . , pm};
– for every sub-formula #ψ of φ̂S , we have #ψ ∈ Si iff J, i |= #ψ iff

J, i+ 1 |= ψ iff ψ ∈ Si+1;
– for every sub-formula #−ψ of φ̂S , we have #−ψ ∈ Si+1 iff J, i+1 |= #−ψ

iff J, i |= ψ iff ψ ∈ Si;
– for every sub-formula ψ1Uψ2 of φ̂S , we have ψ1Uψ2 ∈ Si iff J, i |= ψ1Uψ2

iff (i) J, i |= ψ2 or (ii) J, i |= ψ1 and J, i+ 1 |= ψ1Uψ2 iff (i) ψ2 ∈ Si or
(ii) ψ1 ∈ Si and ψ1Uψ2 ∈ Si+1;
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– for every sub-formula ψ1Sψ2 of φ̂S , we have ψ1Sψ2 ∈ Si+1 iff J, i+ 1 |=
ψ1Sψ2 iff (i) J, i + 1 |= ψ2 or (ii) J, i + 1 |= ψ1 and J, i |= ψ1Sψ2 iff
(i) ψ2 ∈ Si+1 or (ii) ψ1 ∈ Si+1 and ψ1Sψ2 ∈ Si;

– i < n+ 1 implies wi = Xι(i) by assumption;

– for i = n− 1 we have J, n |= φ̂S , and thus φ̂S ∈ Sn = Si+1;
– the condition for incrementing the second component of a state (until
n+ 1 is reached) is obviously also satisfied.

Moreover, the above run is accepting. We prove this by contradiction. Suppose
for some sub-formula ψ1Uψ2, the set {i ≥ 0 | Si ∈ Fψ1Uψ2} is finite. Then there
exists a k ≥ 0 such that S` 6∈ Fψ1Uψ2 for all ` ≥ k. This means ψ1Uψ2 ∈ S` and
ψ2 6∈ S` for all ` ≥ k. Hence, I, k |= ψ1Uψ2 and I, ` 6|= ψ2 for all ` ≥ k. This
contradicts the semantics of U.

(=⇒) Assume that w ∈ Lω(G). Let

(S0, 0)(S1, 1) . . . (Sn, n)(Sn+1, n+ 1)(Sn+2, n+ 1) . . .

be an accepting run of G on w = w0w1 . . ..

It is left to be shown that the LTL structure J := (wi)i≥0 is a model of φ̂S at time
point n and that wi = Xι(i) for all i, 0 ≤ i ≤ n. We get the latter immediately
from the definition of ∆, i.e., i < n+ 1 implies that wi = Xι(i). For the former,
observe that for each i ≥ 0 we have wi = Si ∩ {p1, . . . , pm} ∈ S by definition of
the state set Q. Thus, the conjunct

2−2

 ∨
X∈S

 ∧
p∈X

p ∧
∧
p/∈X
¬p


of φ̂S is clearly satisfied by J (at any time point).

Furthermore, we have that φ̂ ∈ Sn again by the definition of ∆, and thus it is
now enough to show that ψ ∈ Si iff J, i |= ψ for each i ≥ 0. This can be shown by
induction on the structure of ψ.

• If ψ is a propositional variable, we have ψ ∈ Si iff ψ ∈ wi iff wi |= ψ iff
J, i |= ψ.

• If ψ = ¬χ, we have ¬χ ∈ Si iff χ /∈ Si iff J, i 6|= χ iff J, i |= ¬χ.

• If ψ = χ1 ∧ χ2, we have χ1 ∧ χ2 ∈ Si iff {χ1, χ2} ⊆ Si iff J, i |= χ1 and
J, i |= χ2 iff J, i |= χ1 ∧ χ2.

• If ψ = #χ, we have #χ ∈ Si iff χ ∈ Si+1 iff J, i+ 1 |= χ iff J, i |= #χ.
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• If ψ = #−χ, we have #−χ ∈ Si iff i > 0 and χ ∈ Si−1 iff i > 0 and
J, i− 1 |= χ iff J, i |= #−χ. The first iff holds because of the definition of
Q0.

• If ψ = χ1Uχ2, we prove χ1Uχ2 ∈ Si iff J, i |= χ1Uχ2 as follows.
(⇐=) Assume J, i |= χ1Uχ2. Then there exists a k ≥ i such that J, k |= χ2
and J, ` |= χ1 for all `, i ≤ ` < k. We show by induction on j that
χ1Uχ2 ∈ Sk−j for j ≤ k − i.
For j = 0, we have: J, k |= χ2 implies χ2 ∈ Sk by the outer induction
hypothesis, and the definition of ∆ yields χ1Uχ2 ∈ Sk.
For j > 0, we have: J, k − j |= χ1 implies χ1 ∈ Sk−j by the outer induction
hypothesis. By the inner induction hypothesis, we have χ1Uχ2 ∈ Sk−j+1.
Thus, by the definition of ∆, it follows that χ1Uχ2 ∈ Sk−j.
(=⇒) Assume χ1Uχ2 ∈ Si. Since states of Fχ1Uχ2 occur infinitely often
among S0, S1, S2 . . ., there is a k ≥ i such that Sk ∈ Fχ1Uχ2 . Let k be the
smallest index with that property. Then it follows that χ1Uχ2 ∈ S` and
χ2 /∈ S` for all `, i ≤ ` < k.
χ1Uχ2 ∈ S` and χ2 /∈ S` for all `, i ≤ ` < k, yield χ1 ∈ S` because of the
definition of ∆. Thus, J, ` |= χ1 for all `, i ≤ ` < k (∗).
χ1Uχ2 ∈ Sk−1 and χ2 /∈ Sk−1 imply χ1Uχ2 ∈ Sk because of the definiton of
∆. This yields χ2 ∈ Sk since Sk ∈ Fχ1Uχ2 , and thus J, k |= χ2 (∗∗).
(∗) and (∗∗) yield that J, i |= χ1Uχ2 by the semantics of U.

• If ψ = χ1Sχ2, we prove χ1Sχ2 ∈ Si iff J, i |= χ1Sχ2 as follows.
(⇐=) Assume J, i |= χ1Sχ2. Then there exists a k, 0 ≤ k ≤ i such that
J, k |= χ2 and J, ` |= χ1 for all `, k < ` ≤ i. We show by induction on j
that χ1Sχ2 ∈ Sk+j for j ≤ i− k.
For j = 0, we have: J, k |= χ2 implies χ2 ∈ Sk by the outer induction
hypothesis, and the definition of ∆ yields χ1Sχ2 ∈ Sk.
For j > 0, we have: J, k + j |= χ1 χ1 ∈ Sk+j by the outer induction
hypothesis. By the inner induction hypothesis, we have χ1Sχ2 ∈ Sk+j−1.
Thus, by the definition of ∆, it follows that χ1Sχ2 ∈ Sk+j.
(=⇒) Assume χ1Sχ2 ∈ Si. There are two cases: either i = 0 or i > 0.
For i = 0, we have: χ1Sχ2 ∈ S0 implies χ2 ∈ S0 by the definition of Q0.
This yields J, 0 |= χ2, and thus J, 0 |= χ1Sχ2.
For i > 0, we have again two cases: either χ2 ∈ Si or χ1 ∈ Si and χ1Sχ2 ∈
Si−1. For the case where χ1 ∈ Si, it directly follows that J, i |= χ1Sχ2.
For the other case where χ1 ∈ Si and χ1Sχ2 ∈ Si−1, we have by the inner
induction hypothesis: J, i− 1 |= χ1Sχ2. Thus, there is a k, 0 ≤ k ≤ i− 1,
such that J, k |= χ2 and J, j |= χ1 for all j, k < j ≤ i− 1. Since we have by
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the outer induction hypothesis also that J, i |= χ1, it follows that there is a
k, 0 ≤ k ≤ i, such that J, k |= χ2 and J, j |= χ1 for all j, k < j ≤ i. Hence,
J, i |= χ1Sχ2.

This yields that Lω(G) 6= ∅ iff there is an LTL-structure J = (wi)i≥0 such that
J, n |= φ̂S and wi = Xι(i) for all i, 0 ≤ i ≤ n. We can thus decide the latter
problem by testing G for emptiness, which yields the following complexity results.

Lemma 3.13. Given a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and a mapping
ι : {0, . . . , n} → {1, . . . , k}, the problem of deciding the existence of an LTL-
structure J = (wi)i≥0 such that J, n |= φ̂S and wi = Xι(i) for all i, 0 ≤ i ≤ n,
is

• in ExpTime w.r.t. combined complexity and

• in P w.r.t. data complexity.

Proof. For combined complexity, there are exponentially many types for φ̂ and
exponentially many input symbols in 2{p1,...,pm}. The set F contains linearly
many sets of size at most exponential, while the size of Q0 and ∆ is bounded
polynomially in the size of Q (which is exponential). Since all conditions that need
to be checked to construct the components of G can be checked in exponential
time, and the size of G is exponential in the size of K and φ, the emptiness test
can be done in ExpTime.

For data complexity, the size of G is polynomial in n because of the following
reasons: the size of T|S is constant since the size of S is constant, and thus the
size of Q is linear in n. The size of Σ is constant. Obviously, then the size of ∆ is
polynomial in n. The size of Q0 is linear in n, because Q0 ⊆ Q. The size of F is
also linear in n, because each set Fψ1Uψ2 is of constant size, and the number of
such sets does not depend on n. Obviously, G can also be constructed in time
polynomial in n. The data complexity of the emptiness test is thus in P.

However, the complexity of the entailment problem also depends on the complexity
of the r-consistency test for S. In the following sections, we will establish some
results as to this complexity in the cases without rigid names, and with rigid
concept and role names. The most interesting (and most complex) case without
rigid role names, but with rigid concept names, is considered in Section 4 for data
complexity and in Section 5 for combined complexity.

3.2.2 The Case Without Rigid Names

To check r-consistency of a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} w.r.t. a mapping
ι : {0, . . . , n} → {1, . . . , k} and K without rigid names, it clearly suffices to check
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the consistency of the following conjunctions of CQ-literals w.r.t. the TBox T
individually:

• for each i, 1 ≤ i ≤ k, the conjunction χi; and

• for each i, 0 ≤ i ≤ n, the conjunction χι(i) ∧
∧
α∈Ai α.5

Each of these conjunctions of CQ-literals is of polynomial size in the size of K
and φ. We can now use Theorem 3.2 to establish the complexity of the entailment
problem without rigid names.

Theorem 3.14. If NRC = NRR = ∅, then the entailment problem is

• in ExpTime w.r.t. combined complexity and

• in co-NP w.r.t. data complexity.

Proof. For combined complexity, note that we do not need to guess the set S.
Since the r-consistency test imposes no dependency between the sets X ∈ S,
it suffices to define S as the set of all sets Xi that pass the consistency test
of the corresponding conjunction χi. Since there are exponentially many such
sets, but each of them is of polynomial size, by Theorem 3.2 we only have to do
exponentially many ExpTime-tests to construct S. We can further enumerate
all possible mappings ι in exponential time and check for each ι the consistency
of the conjunctions χι(i) ∧

∧
α∈Ai α again in ExpTime. For each ι that passes

these tests, we can check the existence of the required LTL-structure in ExpTime
by Lemma 3.13. Lemma 3.8 now yields a total complexity of ExpTime for the
non-entailment problem, and therefore also for the entailment problem.

For data complexity, note that since S is of constant size w.r.t. the ABoxes and ι
is linear in n, guessing S and ι can be done in NP. Since the LTL-satisfiability
test can be done in P (Lemma 3.13) and the consistency tests for r-consistency of
S can be done in NP (Theorem 3.2), by Lemma 3.8 the non-entailment problem
is also in NP.

3.2.3 The Case With Rigid Role Names

If the sets NRC and NRR are allowed to be non-empty, the consistency tests for the
r-consistency of S are not independent anymore. To make sure that the models
respect the rigid symbols, we use a renaming techique similar to the one used
in [BGL12] that works by introducing enough copies of the flexible symbols.

5We can assume that all of these models have the same domain since their domains can be
assumed to be countably infinite by the Löwenheim-Skolem theorem. We can further assume
that all individual names are interpreted by the same domain elements in all models.
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For every i, 1 ≤ i ≤ k + n+ 1, and every flexible concept name A (every flexible
role name r) occurring in φ or in T , we introduce a copy A(i) (r(i)). We call A(i)

(r(i)) the i-th copy of A (r). The conjunctive query α(i) (the GCI β(i)) is obtained
from a CQ α (a GCI β) by replacing every occurrence of a flexible name by its
i-th copy. Similarly, for 1 ≤ ` ≤ k, the conjunction of CQ-literals χ(i)

` is obtained
from χ` (see Definition 3.7) by replacing each CQ αj by α(i)

j . Finally, we define

χS,ι :=
∧

1≤i≤k
χ

(i)
i ∧

∧
0≤i≤n

χ(k+i+1)
ι(i) ∧

∧
α∈Ai

α(k+i+1)

 and

TS,ι := {β(i) | β ∈ T and 1 ≤ i ≤ k + n+ 1}.

Note that here it is essential that the ABoxes do not contain complex concepts.

Lemma 3.15. The set S is r-consistent w.r.t. ι and T iff the conjunction of
CQ-literals χS,ι has a model w.r.t. TS,ι.

Proof. Let J1, . . . ,Jk, I0, . . . , In be the interpretations required by Definition 3.7
for the r-consistency of S w.r.t. ι and K. We construct the interpretation J as
follows:

• the domain of J is the shared domain of the above interpretations;

• the rigid names are interpreted as in the above interpretations;

• the i-th copy, 1 ≤ i ≤ k, of each flexible name is interpreted like the original
name in Ji; and

• the i-th copy, k + 1 ≤ i ≤ k + n+ 1, of each flexible name is interpreted like
the original name in Ii−k−1.

It is easy to verify that J is a model of χS,ι and TS,ι.

For the other direction, let J be a model of χS,ι w.r.t. TS,ι. We obtain the
interpretations J1, . . . ,Jk, I0, . . . , In by the inverse construction to the one above:

• the domain of all these interpretations is the domain of J ;

• the rigid names are interpreted by these interpretations as in J ;

• every flexible name is interpreted in Ji, 1 ≤ i ≤ k, as its i-th copy is
interpreted in J ; and

• every flexible name is interpreted in Ii, 0 ≤ i ≤ n, as it k + i+ 1-st copy is
interpreted in J .
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Again, it is easy to verify that these interpretations satisfy the conditions in
Definition 3.7.

Unfortunately, the data complexity of this approach does not allow us to match
the lower bound of co-NP for the entailment problem we have from Corollary 3.4.
However, for the combined complexity we obtain containment in 2-ExpTime.

Theorem 3.16. If NRR 6= ∅, then the entailment problem is

• in 2-ExpTime w.r.t. combined complexity and

• in ExpTime w.r.t. data complexity.

Proof. We give a deterministic algorithm for the complement problem, i.e., one
that checks whether a TCQ φ has a model w.r.t. a TKB K. Since deterministic
complexity classes are closed under complementation, this is enough to obtain
the complexity results of the theorem. The algorithm works as follows. First, we
enumerate all possible sets S and mappings ι, which can be done in 2-ExpTime
w.r.t. combined complexity and in ExpTime w.r.t. data complexity since S is
constant in this case. For each of these double-exponentially many pairs (S, ι),
we then test the LTL-satisfiability required in Lemma 3.8 in exponential time (see
Lemma 3.13) and test S for r-consistency w.r.t. ι and K. Then φ has a model
w.r.t. I iff iff at least one pair passes both tests.

For the combined complexity of the r-consistency test, observe that the conjunction
of CQ-literals χS,ι is of exponential size in the size of φ and K. By Theorem 3.2,
the overall combined complexity of the r-consistency test is thus in 2-ExpTime,
which shows that the above satisfiability problem (and hence the entailment
problem) can be solved in 2-ExpTime.

For the data complexity of the r-consistency test, observe that χS,ι is of linear
size in the size of the input ABoxes. Unfortunately, by copying each of the types
χι(i) assigned to the ABoxes, we have introduced linearly many negated CQs,
which is why Theorem 3.2 only yields an ExpTime upper bound for the data
complexity.6

However, we can match the lower bound of co-NP for the data complexity in the
following special cases.

Lemma 3.17. If NRR 6= ∅, then the entailment problem is in co-NP w.r.t. data
complexity if any of the following conditions apply:

1. The number n of the input ABoxes is bounded by a constant.
6Linearly many non-negated CQs in χS,ι are not problematic, as they can be instantiated

and viewed as part of the ABox, as detailed in the proof of Theorem 3.2.
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2. The set of individual names allowed to occur in the ABoxes is fixed.

Proof. As in the proof of Theorem 3.14, we can guess the set S and the mapping ι
in NP and do the LTL-satisfiability test in P. Thus, it suffices to show that in
the above-mentioned special cases r-consistency of S can be tested in NP.

1. If n is bounded by a constant, then the number of negated CQs in χS,ι is
constant, and thus Theorem 3.2 yields the desired NP upper bound.

2. If the set of individual names is fixed, then the number of possible different
ABoxes is constant. We thus do not need to introduce n copies of formulae
χι(i) in χS,ι, but need at most one copy for each distinct combination of χι(i)
and Ai—clearly, consistency of each combination of an ABox with a type
needs to be checked only once. Since there are only constantly many such
combinations, the modified TCQ χ′S,ι again contains only constantly many
negated CQs. As in the previous case, Theorem 3.2 yields the result.

4 Data Complexity for the Case of Rigid Con-
cept Names

To obtain an upper bound for the data complexity of the non-entailment problem
in the case where NRC 6= ∅ and NRR = ∅, we consider the conditions of Lemma 3.8
in more detail. First, note that, since S ⊆ 2{p1,...,pm} is of constant size w.r.t. the
input ABoxes and ι : {0, . . . , n} → {1, . . . , k} is of size linear in n (the number
of ABoxes), guessing S and ι can be done in NP. Additionally, according to
Lemma 3.13, LTL-satisfiability can be tested in P.

We now show that the r-consistency of S w.r.t. ι and K can be checked in NP,
which yields the desired data complexity of co-NP for the entailment problem.

Similar to the previous sections, we construct conjunctions of CQ-literals of which
we want to check consistency. The approach is a mixture of those of Sections 3.2.2
and 3.2.3, as we combine several consistency tests required for r-consistency, but
do not go as far as compiling all of them into just one conjunction. More precisely,
we consider the conjunctions of CQ-literals γi ∧χS , 0 ≤ i ≤ n, w.r.t. the TBox TS ,
where

γi :=
∧
α∈Ai

α(ι(i)), χS :=
∧

1≤i≤k
χ

(i)
i , TS := {β(i) | β ∈ T and 1 ≤ i ≤ k}.

One can see from the proof of Theorem 3.2 that this problem can be decided in
NP in the size of the input ABoxes. The main reason is that the negated CQs do
not depend on the input ABoxes. In fact, negated CQs only occur in χS , which
only depends on the query φ.
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However, for r-consistency we have to make sure that rigid consequences of the
form A(a) for a rigid concept name A ∈ NRC and an individual name a ∈ NI are
shared between all of these conjunctions γi ∧ χS . Let RCon(T ) denote the rigid
concept names occurring in T . Similar to what was done in Lemma 6.3 of [BGL12],
we now guess a set D ⊆ 2RCon(T ) and a mapping τ : Ind(φ) ∪ Ind(K) → D. The
idea is that D fixes the combinations of rigid concept names that occur in the
models of γi ∧ χS and τ assigns to each individual name one such combination.
Note that D only depends on T and τ is of size linear in the size of the input
ABoxes, which is why we can guess D and τ in NP w.r.t. data complexity. We
now define

χτ :=
∧

a∈Ind(φ)∪Ind(K)

 ∧
A∈τ(a)

A(a) ∧
∧

A∈RCon(T )\τ(a)
A′(a)

 ,

where A′ is a rigid concept name that is equivalent to ¬A in T .7 Note that χτ is
of polynomial size w.r.t. the size of the input ABoxes.

We need one more notation to formulate the main lemma of this section. We say
that an interpretation I respects D if

D = {Y ⊆ RCon(T ) | there is a d ∈ ∆I such that d ∈ (CY )I},

where CY :=
d
A∈Y A u

d
A∈RCon(T )\Y ¬A.

Lemma 4.1. If NRC 6= ∅ and NRR = ∅, then S is r-consistent w.r.t. ι and K
iff there exist D ⊆ 2RCon(T ) and τ : Ind(φ) ∪ Ind(K) → D such that each of the
conjunctions γi ∧ χS ∧ χτ , 0 ≤ i ≤ n, has a model w.r.t. TS that respects D.

Proof. For the “if” direction, assume that Ii are the required models for γi∧χS∧χτ ,
for 0 ≤ i ≤ n. Similar to the proof of Lemma 6.3 in [BGL12], we can assume
w.l.o.g. that their domains ∆i are countably infinite and for each Y ∈ D there
are countably infinitely many elements d ∈ (CY )Ii . This is a consequence of
the Löwenheim-Skolem theorem and the fact that the countably infinite disjoint
union of Ii with itself is again a model of γi ∧ χS ∧ χτ . The latter follows
from the observation that for any CQ there is a homomorphism into Ii iff there
is a homomorphism into the disjoint union of Ii with itself. One direction is
trivial, while whenever there is a homomorphism into the disjoint union, we can
construct a homomorphism into Ii by renaming the elements in the image of this
homomorphism to the corresponding elements of ∆i. It is easy to see that the
resulting homomorphism still satisfies all atoms of the CQ.

Consequently, we can partition the domains ∆i into the countably infinite sets
∆i(Y ) := {d ∈ ∆i | d ∈ (CY )Ii} for Y ∈ D. By the assumptions above and the

7We can assume w.l.o.g. that for each rigid concept name in T , there is a rigid concept name
equivalent to its negation in T . We can introduce them if needed while multiplying the size of
the TBox by at most 2. We cannot include ¬A(a) in χτ since this could result in polynomially
many negated CQs in the size of the ABoxes.
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fact that all Ii satisfy χτ , there are bijections πi : ∆0 → ∆i, 1 ≤ i, j ≤ n, such
that

• πi(∆0(Y )) = ∆i(Y ) for all Y ∈ D and

• πi(aI0) = aIi for all a ∈ Ind(φ) ∪ Ind(K).

We can now construct the models required by Definition 3.7 from the models
Ii by appropriately relating the flexible names and their copies. For example,
interpreting the rigid concept names as in Ii and the flexible names as their ι(i)-th
copies in Ii yields a model of χι(i) w.r.t. 〈Ai, T 〉, and similarly for the models of
χj and T for 1 ≤ j ≤ k. These models share the same domain and respect the
rigid names in RCon(T ) and Ind(φ) ∪ Ind(K). Note that the interpretation of the
names in NRC \ RCon(T ) and NI \ (Ind(φ)∪ Ind(K)) is irrelevant and can be fixed
arbitrarily, as long as the UNA is satisfied.

For the “only if” direction, it is easy to see that one can combine the interpretations
Ii, J1, . . . , Jk from Definition 3.7 to a model I ′i of γi∧χS w.r.t. TS by interpreting
the j-th copy of a flexible name as the original name in Jj . For a ∈ Ind(φ)∪ Ind(K),
we define τ(a) := Y ⊆ RCon(T ) iff a ∈ (CY )I0 . Furthermore, we let D contain all
those sets Y ⊆ RCon(T ) such that there is a d ∈ (CY )I′

i for some 0 ≤ i ≤ n. To
obtain models of γi ∧χS ∧χτ w.r.t. TS that respect D, we still need to ensure that
all Y ∈ D are represented in each of the models I ′i. To do this, we construct the
disjoint union I ′′i of I ′i with all other I ′j for 0 ≤ j ≤ n, i 6= j. It remains to show
that this interpretation is still a model of TS and the conjunction γi∧χS∧χτ . This
can be seen as follows. For the non-negated CQs in this conjunction, clearly there
is a homomorphism into I ′′i if there is one into I ′i. For the negated CQs, which
only occur in the shared conjunction χS , it is essential that they are connected (see
Definition 2.7). Given this assumption, the non-existence of a homomorphism into
any of the components of I ′′i clearly implies the non-existence of a homomorphism
into their disjoint union I ′′i .8

It remains to show that we can check the existence of a model of γi ∧ χS ∧ χτ
w.r.t. TS that respects D in nondeterministic polynomial time. For this, observe
that the restriction imposed by D can equivalently be expressed as

χD := (¬∃x.AD(x)) ∧
∧
Y ∈D
∃x.AY (x),

where AY and AD are fresh concept names that are restricted by adding the GCIs
AY v CY , CY v AY for each Y ∈ D, and AD v

d
Y ∈D ¬AY ,

d
Y ∈D ¬AY v AD to

8With unconnected negated CQs, the problem is that two interpretations I ′i, I ′j , i 6= j, might
each satisfy only a part of the CQ such that the disjoint union of both satisfies the whole
CQ. With connected CQs, this problem does not appear since the elements of the two disjoint
domains are not connected by roles.
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TS . We call the resulting TBox T ′S . Since χD and T ′S do not depend on the input
ABoxes, by Theorem 3.2 we can check the consistency of γi ∧ χS ∧ χτ ∧ χD w.r.t.
T ′S in NP w.r.t. data complexity, which yields the desired complexity result for
the entailment problem.

Theorem 4.2. If NRC 6= ∅ and NRR = ∅, then the entailment problem is in
co-NP w.r.t. data complexity.

5 Combined Complexity for the Case of Rigid
Concept Names

Unfortunately, the approach used in the previous section does not yield a combined
complexity of co-NExpTime. The reason is that the conjunctions χS and χD are
of exponential size in the size of φ, and thus Theorem 3.2 only yields an upper
bound of 2-ExpTime. In this section, we describe a different approach with a
combined complexity of co-NExpTime.

As a first step, we rewrite the Boolean TCQ φ into a Boolean TCQ ψ of linear
size in the size of φ and K such that answering φ at time point n is equivalent
to answering ψ at time point 0 w.r.t. a trivial sequence of ABoxes. This is done
by compiling the ABoxes into the query and postponing the query φ using the
#-operator.

Lemma 5.1. Let φ be a Boolean TCQ and K = 〈(Ai)0≤i≤n, T 〉 be a temporal
knowledge base. Then there is a Boolean TCQ ψ such that K |= φ iff 〈∅, T 〉 |= ψ
and the size of ψ is linear in the size of φ and K.

Proof. We define the Boolean TCQ

ψ := (A0 ∧#A1 ∧ . . . ∧#nAn)→ #nφ,

where #j means # . . .# (j-times). Obviously, the size of ψ is linear in the size of
φ and K. We further define K′ := 〈∅, T 〉.

It is left to prove that K |= φ iff K′ |= ψ. We have:

K |= φ

iff 〈(Ai)0≤i≤n, T 〉 |= φ

iff I, n |= φ for all I |= 〈(Ai)0≤i≤n, T 〉

iff I, n |= φ for all I |= 〈∅, T 〉 with I, 0 |= A0; I, 1 |= A1; . . . ; I, n |= An

iff I, 0 |= #nφ for all I |= K′ with I, 0 |= A0; I, 0 |= #A1; . . . ; I, 0 |= #nAn
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iff I, 0 |= ψ for all I |= K′

iff K′ |= ψ.

We can thus focus on deciding whether a Boolean TCQ φ has a model w.r.t. a
TKB K = 〈∅, T 〉 that has only one empty ABox in the sequence. Note that this
compilation approach does not allow us to obtain a low data complexity for the
entailment problem since after encoding the ABoxes into φ the size of χS as well
as that of the generalized Büchi automaton G are exponential in the size of the
ABoxes (cf. Sections 3.2.1 and 4).

We now again analyze how to check the two conditions in Lemma 3.8, this time
with the goal of obtaining a combined complexity of NExpTime. First, observe
that guessing S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} can be done in nondeterministic ex-
ponential time in the size of φ. Furthermore, by Lemma 3.13, the LTL-satisfiability
test required by the second condition can be realized in ExpTime. It remains to
determine the complexity of testing r-consistency of S w.r.t. K = 〈∅, T 〉. Simi-
larly to the approach used in the previous section and to the proof of Lemma 6.3
in [BGL12], we start by guessing a set D ⊆ 2RCon(T ) and a mapping τ : Ind(φ)→ D.
Since D is of size exponential in T and τ is of size polynomial in the size of φ
and T , guessing D and τ can also be done in NExpTime. By Lemma 4.1, it
suffices to test whether χS ∧ χτ has a model w.r.t. TS that respects D. Instead of
applying Theorem 3.2 directly to this problem, which would yield a complexity of
2-ExpTime, we split the problem into separate sub-problems for each component
χi of χS . The correctness of this approach is stated in the next lemma. For the
special case of ALC-LTL, this was shown in Lemma 6.3 in [BGL12]. The proof
for the general case is very similar to the proof of Lemma 4.1 above.

Lemma 5.2. If NRC 6= ∅ and NRR = ∅, then S is r-consistent w.r.t. K = 〈∅, T 〉
iff there exist D ⊆ 2RCon(T ) and τ : Ind(φ)→ D such that each of the conjunctions
χ̂i := χi ∧ χτ , 1 ≤ i ≤ k, has a model w.r.t. K that respects D.

Note that the size of each χ̂i is polynomial in the size of φ and T and the number
k of these conjunctions is exponential in the size of φ. Thus, it is enough to show
that the existence of a model of χ̂i w.r.t. K that respects D can be checked in
exponential time in the size of φ and T . Similar to the proof of Theorem 3.2, we
can reduce this problem to a non-entailment problem for a union of Boolean CQs:
there is an interpretation that is a model of χ̂i and T and respects D iff there is
a model of 〈A, T 〉 that respects D and is not a model of ρ (written 〈A, T 〉 6|= ρ
w.r.t. D), where A is an ABox obtained by instantiating the non-negated CQs
of χ̂i with fresh individual names and ρ is a union of CQs constructed from the
negated CQs of χ̂i.

It thus suffices to show that we can decide query non-entailment 〈A, T 〉 6|= ρ w.r.t.
D in time exponential in the size of A, T , and ρ.
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It is known that 〈A, T 〉 6|= ρ iff there is a forest model I of A and T such that
I 6|= ρ (see [GHLS08, Lut08a] where this result is shown for SHIQ- and SHQ-
knowledge bases). We present here a slightly different definition of forest models
that is subsumed by the definition of forest models in [GHLS08, Lut08a]. We also
define forest models for the more general case of Boolean ALC∩-knowledge bases
since this will be needed in the proof of Lemma 5.6.

Definition 5.3. A tree is a non-empty prefix-closed subset of N∗, where N∗
denotes the set of all finite words over the non-negative integers.

A model I = (∆I , ·I) of a Boolean ALC∩-knowledge base B is called a forest
model if

• ∆I ⊆ Ind(B)×N∗ such that for all a ∈ Ind(B), we have that {u | (a, u) ∈ ∆I}
is a tree;

• if ((a, u), (b, v)) ∈ rI, then either u = v = ε, or a = b and v = u · c for some
c ∈ N, where · denotes concatenation;

• for every a ∈ Ind(B), we have aI = (a, ε); and

• for every a ∈ Ind(B), there is an element (a, u) ∈ ∆I with u 6= ε such that
for every ALC∩-concept description C, we have aI ∈ CI iff (a, u) ∈ CI.

The last condition is required for technical purposes in the proof of Lemma 5.6.
We now show that the restriction to forest models in the consistency of a Boolean
ALC∩-knowledge base is without loss of generality.

Lemma 5.4. Let B be a Boolean ALC∩-knowledge base, let A1, . . . , Ak be concept
names occurring in B, and let D ⊆ 2{A1,...,Ak}. B has a model that respects D iff
it has a forest model that respects D.

Proof. The “if” direction is trivial. For the “only if” direction, assume that
I = (∆I , ·I) is a model of B that respects D. Moreover, we assume that ∆I is
countable, which is w.l.o.g. due to the downward Löwenheim-Skolem theorem. We
can thus assume w.l.o.g. that ∆I ⊆ N.

We define now a forest model J = (∆J , ·J ) with domain

∆J :=
{

(a, d1 . . . dm) | a ∈ NI, m ≥ 0, d1, . . . , dm ∈ ∆I
}

as follows:

• aJ := (a, ε);

• AJ := {(a, ε) | aI ∈ AI} ∪ {(a, d0 . . . dm) | dm ∈ AI}; and
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• rJ := {((a, ε), (b, ε)) | a, b ∈ Ind(B), (aI , bI) ∈ rI}∪
{((a, ε), (a, d)) | a ∈ Ind(B), (aI , d) ∈ rI}∪
{((a, d1 . . . dm), (a, d1 . . . dmdm+1)) | a ∈ Ind(B), m > 0, (dm, dm+1) ∈ rI}.

Obviously, the conditions for forest models are satisfied. In particular, we have
that aJ satisfies exactly the same ALC∩-concept descriptions as (a, aI). Thus,
it is only left to be shown that J is indeed a model of B that respects D. We
first show by structural induction that (a, d1 . . . dm) ∈ CJ iff either m = 0 and
aI ∈ CI , or dm ∈ CI . We assume w.l.o.g. that C is built using only ∃, u, and ¬.

For the base case, C being a concept name, the claim is directly implied by the
definition.

For the case where C is of the form ¬D, we have

(a, d1 . . . dm) ∈ (¬D)J

iff (a, d1 . . . dm) /∈ DJ

iff either m = 0 and aI /∈ DI , or dm /∈ DI

iff either m = 0 and aI ∈ (¬D)I , or dm ∈ (¬D)I .

For the case where C is of the form D u E, we have

(a, d1 . . . dm) ∈ (D u E)J

iff (a, d1 . . . dm) ∈ DJ and (a, d1 . . . dm) ∈ EJ

iff either m = 0 and aI ∈ DI and aI ∈ EI , or dm ∈ DI and dm ∈ EI

iff either m = 0 and aI ∈ (D u E)I , or dm ∈ (D u E)I .

Finally, for the case where C is of the form ∃(r1 ∩ · · · ∩ r`).D, we have

(a, d1 . . . dm) ∈ (∃(r1 ∩ · · · ∩ r`).D)J

iff either m = 0 and

– there is a (b, ε) ∈ ∆J with ((a, ε), (b, ε)) ∈ rJ1 ∩· · ·∩rJ` and (b, ε) ∈ DJ ,
or

– there is a (a, d) ∈ ∆J with ((a, ε), (a, d)) ∈ rJ1 ∩· · ·∩rJ` and (a, d) ∈ DJ ;

or there is a domain element (a, d1 . . . dmdm+1) ∈ ∆J such that the pair
((a, d1 . . . dm), (a, d1 . . . dmdm+1)) is in (rJ1 ∩ · · · ∩ rJ` ) and we have that
(a, d1 . . . dmdm+1) ∈ DJ
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iff either m = 0 and there is a d ∈ ∆I such that (aI , d) ∈ rI1 ∩ · · · ∩ rI` and
d ∈ DI , or there is a d ∈ ∆I such that (dm, d) ∈ rI1 ∩ · · · ∩ rI` and d ∈ DI

iff either m = 0 and aI ∈ (∃(r1 ∩ · · · ∩ r`).D)I , or dm ∈ (∃(r1 ∩ · · · ∩ r`).D)I .

This finishes the proof of the above claim. We show now for all subformulae B′ of
B that J is a model of B′ iff I is a model of B′ by an induction on the structure
of B′. Again, we can assume w.l.o.g. that B′ contains just ∧ and ¬.

For the first base case, assume that B′ is of the form C(a) for some ALC∩-concept
description C and some a ∈ NI. We have aI ∈ CI iff aJ = (a, ε) ∈ CJ by the
above claim, which finishes this case.

For the second base case, assume that B′ is of the form r(a, b) for a, b ∈ NI and
r ∈ NR. We have (aI , bI) ∈ rI iff (aJ , bJ ) = ((a, ε), (b, ε)) ∈ rJ by the definition
of rJ , which finishes this case.

For the third base case, assume that B′ is of the form C v D. For the “if”
direction, assume that CI ⊆ DI . Thus, there is no d ∈ CI with d /∈ DI . Suppose
that there is a (a, d1 . . . dm) ∈ CJ with (a, d1 . . . dm) /∈ DJ . Then, by the above
claim, either m = 0 and we have aI ∈ CI and aI /∈ DI , or dm ∈ CI and dm /∈ DI ,
which yields a contradiction. For the “only if” direction, assume that CJ ⊆ DJ .
Thus, there is no (a, d1 . . . dm) ∈ CJ with (a, d1 . . . dm) /∈ DJ . Suppose that there
is a d ∈ CI with d /∈ DI . By the definition of ∆J , we have (a, d) ∈ ∆J for any
a ∈ NI. By the above claim, we have that (a, d) ∈ CJ and (a, d) /∈ DJ , which
yields again a contradiction.

For the induction step, assume first that B′ is of the form ¬B′′. We have that
I |= B′ iff I 6|= B′′ iff J 6|= B′′ iff J |= B′. Assume now that B′ is of the form
B1 ∧ B2. We have that I |= B′ iff I |= B1 and I |= B2 iff J |= B1 and J |= B2 iff
J |= B′.

This finishes the proof that J is a model of B. Moreover, J respects D due to
the following reasons. We have that

D = {Y ⊆ {A1, . . . , Ak} | there is a d ∈ ∆I with d ∈ (CY )I}.

Define

D′ = {Y ⊆ {A1, . . . , Ak} | there is a (a, d1 . . . dm) ∈ ∆J with
(a, d1 . . . dm) ∈ (CY )J , where a ∈ NI, m ≥ 0, and d1, . . . , dm ∈ ∆I}.

We show now D = D′. For the direction (⊆), assume that Y ∈ D. For every
d ∈ ∆I , there is a (a, d) ∈ ∆J by the definition of ∆J . We have also that
d ∈ (CY )I iff (a, d) ∈ (CY )J . Hence, Y ∈ D′. For the direction (⊇), assume that
Y ∈ D′. By construction, for every (a, d1 . . . dm) ∈ ∆J , there is a d ∈ ∆I , where
for m = 0, we have d = aI , and for m > 0, we have d = dm. We have also that
d ∈ (CY )I iff (a, d1 . . . dm) ∈ (CY )J . Hence, Y ∈ D. Since I respects D, this
implies that J respects D.
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We can now extend the mentioned result about non-entailment of unions of
Boolean CQs from [GHLS08, Lut08a] to our setting.

Lemma 5.5. There is a model I of 〈A, T 〉 that respects D such that I 6|= ρ iff
there is a forest model J of A and T that respects D such that J 6|= ρ.

Proof. The “if” direction is trivial. For the “only if” direction, assume that there
is a model I = (∆I , ·I) of 〈A, T 〉 that respects D such that I 6|= ρ. As shown in
the proof of Lemma 5.4, I can be transformed into a forest model J = (∆J , ·J )
that respects D by unravelling. It is left to show that then J 6|= ρ. Assume
to the contrary that J |= ρ. Then there is a Boolean CQ ρi in the union of
Boolean CQs ρ such that there is a homomorphism π from ρi into J . We define a
homomorphism π′ from ρi into I as follows: π′(a) := aI for all individual names a
occurring in the input; and for all v ∈ Var(ρi), we define π′(v) := aI if π(v) = (a, ε)
for a ∈ NI, and π′(v) = dm if π(v) = (a, d1 . . . dm) with m > 0. It is not hard to
verify that π′ is indeed a homomorphism from ρi into I. Hence, I |= ρi, and thus
I |= ρ, which is a contradiction.

Recall that we want to decide the existence of such a forest model in time
exponential in the size of A, T , and ρ. To this purpose, we further reduce
this problem following an idea from [Lut08a]. There, the notion of a spoiler is
introduced. A spoiler is an ALC∩-knowledge base that states properties that must
be satisfied such that a query is not entailed by a knowledge base.

It is shown that 〈A, T 〉 6|= ρ iff there is a spoiler 〈A′, T ′〉 for 〈A, T 〉 such that
〈A ∪ A′, T ∪ T ′〉 is consistent. Additionally, all spoilers can be computed in time
exponential in the size of 〈A, T 〉 and ρ, and each spoiler is of polynomial size.
In the proof of these results, one only has to deal with forest models, which
furthermore do not need to be modified. More formally, for any forest model9 I
of 〈A, T 〉 that does not satisfy ρ there is a spoiler 〈A′, T ′〉 that also has I as a
model and, conversely, every forest model of the knowledge base 〈A, T 〉 that also
satisfies a spoiler 〈A′, T ′〉 does not satisfy ρ (see Lemma 3 in [Lut08b]).

Thus, it is clear that we have 〈A, T 〉 6|= ρ w.r.t. D iff there is a spoiler 〈A′, T ′〉
for 〈A, T 〉 such that there is a model of 〈A ∪ A′, T ∪ T ′〉 that respects D. It now
remains to show that the existence of such a model can be checked in exponential
time in the size of 〈A ∪ A′, T ∪ T ′〉, and therefore in exponential time in the size
of φ and T .

Note that 〈A ∪ A′, T ∪ T ′〉 can be seen as a special form of a Boolean ALC∩-
knowledge base that contains only conjunctions of axioms, and thus it suffices to
show the result for arbitrary Boolean ALC∩-knowledge bases B. Furthermore, a
Boolean ALC∩-knowledge base B has a model that respects such a set D iff the

9Recall that such a forest model is also a forest model as defined in [Lut08a] since our
definition is more restrictive than the one used there.
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Boolean ALC∩-knowledge base B ∧ >(a) has a model that respects D, where a is
a fresh individual name not occurring in B. We thus assume w.l.o.g. from now on
that B contains at least one individual name.

For classical ALC∩-knowledge bases, the consistency problem (without D) is
ExpTime-complete [Tob01]. We now show that the complexity does not increase
for checking the existence of a model of a Boolean ALC∩-knowledge base that
respects D.

Lemma 5.6. Let B be a Boolean ALC∩-knowledge base of size n, A1, . . . , Ak be
concept names occurring in B, and D ⊆ 2{A1,...,Ak}. Then the existence of a model
of B that respects D can be decided in time exponential in n.

Proof. The proof is an adaptation of the proof of Lemma 6.4 in [BGL12], which
is again an adaptation of the proof of Theorem 2.27 in [GKWZ03], which shows
that consistency of Boolean ALC-knowledge bases can be decided in exponential
time. We use some of the notation introduced in [BGL12].

As in the original proof, we assume w.l.o.g. that all ALC∩-concept descriptions
in B are built using only u, ¬, and ∃; that all GCIs in B are of the form > v C;
and that GCIs and assertions in B are combined using only ∧ and ¬.

For the subsequent construction, we extend the notion of a quasimodel in [BGL12]
to deal with role conjunctions. For that we introduce additional concept names
that function as so-called pebbles that mark elements that have specific role
predecessors, an idea borrowed from [Dan84, DM00, Mas01].

Let Sub(B) denote the closure under negation of the set of all subformulae of B
(where r(a, b) is considered a subformula of (r ∩ s)(a, b)), and define

Peb(B) := {A∗,r1,E, . . . , A∗,r`,E |
E = ∃(r1 ∩ · · · ∩ r`).C occurs in B and ∗ ∈ Ind(B) ∪ {◦}}.

Moreover, we define

PebCond(B) := {> v ¬(A∗,r1,E u · · · u A∗,r`,E u C) |
E = ∃(r1 ∩ · · · ∩ r`).C occurs in B and ∗ ∈ Ind(B) ∪ {◦}}.

Intuitively, the pebbles Peb(B) serve as markers and are used to deal with concepts
of the form E = ∀(r1 ∩ · · · ∩ r`).¬C. If a named (or unnamed) individual satisfies
such a concept, then a pebble is propagated to each r1-, . . . , r`-successor. The
pebble remembers the name of the individual (or ◦ if unnamed), E, and the
respective role name. If an individual satisfies all such pebbles, i.e., it is a r1-, . . . ,
and r`-successor, then PebCond(B) ensures that this individual also satisfies ¬C,
as required by E.
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Let furthermore Con(B) be defined as the closure under negation of the set Con′(B),
where Con′(B) is defined as follows:

Con′(B) := {C | C occurs in B} ∪ Peb(B)
∪ {∃ri.A∗,ri,E | A∗,ri,E ∈ Peb(B)} ∪ {C | > v C ∈ PebCond(B)}.

We identify ¬¬ψ with ψ for all concept descriptions and Boolean ALC∩-knowledge
bases ψ. Thus, all the above introduced sets are linear in the size of B.

A concept type for B is a set c ⊆ Con(B) ∪ Ind(B) with the following properties:

• C uD ∈ c iff C,D ∈ c for all C uD ∈ Con(B);

• ¬C ∈ c iff C /∈ c for all C ∈ Con(B);

• a ∈ c for a ∈ Ind(B) implies b /∈ c for all b ∈ Ind(B) with b 6= a; and

• ∃(r1 ∩ · · · ∩ r`).C ∈ c implies {∃r1.C, . . . , ∃r`.C} ⊆ c.

A formula type for B is a set f ⊆ Sub(B) ∪ PebCond(B) with the following
properties:

• PebCond(B) ⊆ f ;

• (r1∩ · · ·∩ r`)(a, b) ∈ f iff {r1(a, b), . . . , r`(a, b)} ⊆ f for all (r1∩ · · ·∩ r`)(a, b)
occurring in B;

• ψ1 ∧ ψ2 ∈ f iff ψ1, ψ2 ∈ f for all ψ1 ∧ ψ2 ∈ Sub(B); and

• ¬ψ ∈ f iff ψ /∈ f for all ψ ∈ Sub(B).

Obviously, the number of concept and formula types is exponential in n.

A model candidate for B is a triple (S, ι, f) such that S is a set of concept types
for B such that for any c, c′ ∈ S with c 6= c′, we have c ∩ c′ ∩ Ind(B) = ∅,
ι : Ind(B) → S is a function with a ∈ ι(a) for all a ∈ Ind(B), and f is a formula
type for B with the following properties:

(a) B ∈ f ;

(b) C(a) ∈ f iff C ∈ ι(a); and

(c) (r1 ∩ · · · ∩ r`)(a, b) ∈ f implies {¬C | ¬(∃(r1 ∩ · · · ∩ r`).C) ∈ ι(a)} ⊆ ι(b).

The model candidate (S, ι, f) for B is called a quasimodel for B if it additionally
satisfies the following properties:
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(d) S is not empty;

(e) for every c ∈ S and every ∃(r1 ∩ · · · ∩ r`).C ∈ c, there is a d ∈ S with
d ∩ Ind(B) = ∅ such that {¬D | ¬(∃(r1 ∩ · · · ∩ r`).D) ∈ c} ∪ {C} ⊆ d;

(f) for every E = ∃(r1 ∩ · · · ∩ r`).C, we have that {a,¬E} ⊆ c implies
{¬(∃r1.¬Aa,r1,E), . . . ,¬(∃r`.¬Aa,r`,E)} ⊆ c;

(g) for every E = ∃(r1 ∩ · · · ∩ r`).C, we have that ¬E ∈ c and c ∩ Ind(B) = ∅
implies {¬(∃r1.¬A◦,r1,E), . . . ,¬(∃r`.¬A◦,r`,E)} ⊆ c.

(h) for every c ∈ S and every > v C ∈ Sub(B) ∪ PebCond(B), if > v C ∈ f ,
then C ∈ c;

(k) for every > v C ∈ Sub(B) ∪ PebCond(B), if ¬(> v C) ∈ f , then there is a
c ∈ S such that C /∈ c; and

The quasimodel (S, ι, f) for B respects D if it additionally satisfies

(l) for every c ∈ S, there is a set Y ∈ D such that Y = c ∩ {A1, . . . , Ak}; and

(m) for every Y ∈ D, there is a c ∈ S such that Y = c ∩ {A1, . . . , Ak}.

Claim. The Boolean ALC∩-knowledge base B has a model that respects D iff
there is a quasimodel for B that respects D.

For the “if” direction, suppose that (S, ι, f) is a quasimodel for B that respects D.
We define a model I = (∆I , ·I) as follows:

• ∆I := S;

• aI := ι(a) for all a ∈ Ind(B);

• AI := {c ∈ S | A ∈ c} for all concept names A of B; and

• for all role names r of B,

rI := {(c, c′) | c, c′ ∈ S, {¬C | ¬(∃r.C) ∈ c} ⊆ c′, and
a ∈ c ∩ Ind(B), b ∈ c′ ∩ Ind(B) implies r(a, b) ∈ f}.

We prove now by structural induction that for all concept descriptions C ∈ Con(B),
we have:

CI = {c ∈ S | C ∈ c}

For the base case, C being a concept name, the definition of I immediately implies
the claim. For the case that C is of the form ¬D, we have by the semantics of
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ALC∩, the induction hypothesis, the definition of I, and the definition of concept
types the following:

(¬D)I = ∆I \DI = S \ {c ∈ S | D ∈ c} = {c ∈ S | ¬D ∈ c}.

For the case that C is of the form D uE, we have by the semantics of ALC∩, the
induction hypothesis, the definition of I, and the definition of concept types the
following:

(DuE)I = DI ∩EI = {c ∈ S | D ∈ c}∩{c ∈ S | E ∈ c} = {c ∈ S | DuE ∈ c}.

For the case that C is of the form ∃(r1 ∩ · · · ∩ r`).D, we have that the semantics
of ALC∩, the induction hypothesis, the definition of I, and the properties of
quasimodels imply the following:

(∃(r1 ∩ · · · ∩ r`).D)I

= {d ∈ ∆I | there is a e ∈ ∆I with (d, e) ∈ rI1 ∩ · · · ∩ rI` and e ∈ DI}
= {c ∈ S | there is a c′ ∈ S with (c, c′) ∈ rI1 ∩ · · · ∩ rI` and c′ ∈ DI}
= {c ∈ S | there is a c′ ∈ S with (c, c′) ∈ rI1 ∩ · · · ∩ rI` and D ∈ c′}
∗= {c ∈ S | ∃(r1 ∩ · · · ∩ r`).D ∈ c}.

The starred equality ∗= holds due to the following arguments. Assume, for the
direction (⊇), that c ∈ S and ∃(r1 ∩ · · · ∩ r`).D ∈ c. It follows by (e) of the
definition of a quasimodel that there is a c′ ∈ S with c′ ∩ Ind(B) = ∅ such that
{¬E | ¬(∃(r1 ∩ · · · ∩ r`).E) ∈ c} ∪ {D} ⊆ c′. Thus, D ∈ c′, and we have also⋃

1≤i≤`
{¬E | ¬(∃ri.E) ∈ c} ⊆ {¬E | ¬(∃(r1 ∩ · · · ∩ r`).E) ∈ c} ⊆ c′.

The latter holds due to c being a concept type. In fact, assume to the contrary
that there is some i, 1 ≤ i ≤ `, such that {¬E | ¬(∃ri.E) ∈ c} 6⊆ {¬E |
¬(∃(r1 ∩ · · · ∩ r`).E) ∈ c}. This implies that there is some E with ¬(∃ri.E) ∈ c
and ¬(∃(r1∩· · ·∩r`).E) /∈ c, and hence ∃ri.E /∈ c and ∃(r1∩· · ·∩r`).E ∈ c, which
is a contradiction since c is a concept type. By the definition of rIi , for 1 ≤ i ≤ `,
we have (c, c′) ∈ rIi . The semantics of ALC∩ yields (c, c′) ∈ rI1 ∩ · · · ∩ rI` .

For the other direction (⊆), assume that c ∈ S, and that there is a c′ ∈ S with
(c, c′) ∈ rI1 ∩ · · · ∩ rI` and D ∈ c′. We show now that E = ∃(r1 ∩ · · · ∩ r`).D ∈ c.
Assume to the contrary that E /∈ c. Then, ¬E ∈ c. By the conditions (f)
and (g) of a quasimodel, this implies that {¬(∃r1.¬A∗,r1,E), . . . ,¬(∃r`.¬A∗,r`,E)} ⊆
c for some ∗ ∈ Ind(B) ∪ {◦}. By the definition of rI1 , . . . , rI` , we have that
{A∗,r1,E, . . . , A∗,r`,E} ⊆ c′. We have also by the definition of PebCond(B) and of
formula type that

> v ¬(A∗,r1,E u · · · u A∗,r`,E uD) ∈ PebCond(B) ⊆ f .
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By condition (h) of a quasimodel, we have ¬(A∗,r1,E u · · · uA∗,r`,E uD) ∈ c′, and
thus A∗,r1,E u · · · u A∗,r`,E u D /∈ c′, which implies {A∗,r1,E, . . . , A∗,r`,E, D} 6⊆ c′
since c′ is a concept type. Since {A∗,r1,E, . . . , A∗,r`,E} ⊆ c′ as argued above, it
follows that D /∈ c′, which contradicts our assumption.

This finishes the proof by structural induction.

It is left to be shown that I is a model of all B′ ∈ f , and that I respects D. This
indeed finishes the proof of this direction, because it follows that I is a model of
B, since by (a) of the definition of a model candidate, we have that B ∈ f .

We prove the claim that I is a model of all B′ ∈ f again by structural induction.
We show that for all B′ ∈ Sub(B) ∪ PebCond(B), we have B′ ∈ f iff I |= B′.

For the first base case, assume B′ is of the form > v C. If > v C ∈ f , then for
every c ∈ S, we have that C ∈ c by (h) of the definition of a quasimodel. Thus,
CI = S = ∆I . For the converse direction, if > v C /∈ f , then by the definition of
a formula type, ¬(> v C) ∈ f . Then, by (k) of the definition of a quasimodel,
there is a c ∈ S such that C /∈ c, which implies c /∈ CI . Hence, CI 6= S = ∆I .

For the second base case, assume B′ is of the form C(a). We have C(a) ∈ f
iff C ∈ ι(a) by (b) of the definition of a model candidate. Thus, C(a) ∈ f iff
ι(a) = aI ∈ CI .

For the third base case, assume B′ is of the form (r1 ∩ · · · ∩ r`)(a, b). If we have
that (r1 ∩ · · · ∩ r`)(a, b) ∈ f , then we have also that⋃

1≤i≤`
{¬D | ¬(∃ri.D) ∈ ι(a)} ⊆ {¬D | ¬(∃(r1 ∩ · · · ∩ r`).D) ∈ ι(a)} ⊆ ι(b).

The first ⊆ holds because of the fact that ι(a) is a concept type as argued above.
The second ⊆ holds because of condition (c) of a model candidate. Since f is
a formula type, we have also {r1(a, b), . . . , r`(a, b)} ⊆ f . By the definition of
rIi for i, 1 ≤ i ≤ `, we have (ι(a), ι(b)) ∈ rIi for i, 1 ≤ i ≤ `, and thus also
(aI , bI) ∈ rI1 ∩ · · · ∩ rI` . For the converse direction, suppose (r1 ∩ · · · ∩ r`)(a, b) /∈ f .
Since f is a formula type, we have {r1(a, b), . . . , r`(a, b)} 6⊆ f , and thus there is
some i, 1 ≤ i ≤ `, with ri(a, b) /∈ f . By the definition of rIi this implies that
(ι(a), ι(b)) /∈ rIi . In particular, this means that (aI , bI) = (ι(a), ι(b)) /∈ rI1 ∩· · ·∩rI` .

For the induction step, assume first that B′ is of the form ¬B̂. We have B′ ∈ f iff
B̂ /∈ f (by the definition of a formula type) iff I 6|= B̂ (by the induction hypothesis)
iff I |= ¬B̂.

Assume now that B′ is of the form B̂1 ∧ B̂2. We have B′ ∈ f iff {B̂1, B̂2} ⊆ f
(by the definition of a formula type) iff I |= B̂1 and I |= B̂2 (by the induction
hypothesis) iff I |= B̂1 ∧ B̂2.

It is left to be shown that I indeed respects D. By condition (l), the definition of
I, and the arguments above, we have that for every d ∈ ∆I , there is a set Y ∈ D
such that d ∈ (CY )I . By condition (m), the definition of I, and the arguments
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above, we have also that for every Y ∈ D, there is a d ∈ ∆I such that d ∈ (CY )I .
Hence, we have that

D = {Y ⊆ {A1, . . . , Ak} | there is a d ∈ ∆I such that d ∈ (CY )I},

and thus that I respects D.

This finishes the proof of the “if” direction of the claim. For the “only if” direction,
assume that there is a model J = (∆J , ·J ) of B that respects D. Due to
Lemma 5.4, we can assume w.l.o.g. that J is a forest model. We extend J to
I = (∆I , ·I) by also interpreting the elements of Peb(B). More precisely, I is
defined as J plus:

• AIa,r,E :=
{
d | (aJ , d) ∈ rJ and aJ ∈ (¬E)J

}
and

• AI◦,r,E :=
{
d | there is a d′ ∈ (¬E)J such that (d′, d) ∈ rJ and d′ 6= aJ

for all a ∈ Ind(B)
}

for all E = ∃(r1 ∩ · · · ∩ r ∩ . . . r`).C ∈ Sub(B). Since the elements of Peb(B) do
not occur in B or D, I is a model of B that respects D.

We now construct a quasimodel for B. Let τ(e) := {C ∈ Con(B) | e ∈ CI} for
e ∈ ∆I . We define (S, ι, f) as follows:

• S := {τ(d) | d ∈ ∆I , d 6= aI for all a ∈ Ind(B)}∪ {τ(aI)∪{a} | a ∈ Ind(B)};

• ι(a) := τ(aI) ∪ {a} for a ∈ Ind(B); and

• f := {B′ ∈ Sub(B) | I |= B′} ∪ PebCond(B).

Obviously, S is a set of concept types for B, and f is a formula type for B. We
show now that (S, ι, f) is a quasimodel for B.

For condition (a), it is easy to see that B ∈ f , because I |= B.

For condition (b), we have C(a) ∈ f iff I |= C(a) iff aI ∈ CI iff C ∈ τ(aI) ⊆ ι(a).

For condition (c), assume that (r1∩· · ·∩r`)(a, b) ∈ f . Then, I |= (r1∩· · ·∩r`)(a, b),
and thus (aI , bI) ∈ rI1 ∩· · ·∩rI` . Obviously, {¬C | I |= ¬(∃(r1∩· · ·∩r`).C)(a)} ⊆
τ(bI). Hence, {¬C | aI ∈ (¬(∃(r1 ∩ · · · ∩ r`).C))I} ⊆ ι(b), and thus {¬C |
¬(∃(r1 ∩ · · · ∩ r`).C) ∈ τ(aI)} ⊆ ι(b), which implies {¬C | ¬(∃(r1 ∩ · · · ∩ r`).C) ∈
ι(a)} ⊆ ι(b).

Condition (d) is easily verified, because ∆I 6= ∅ by definition.

For condition (e), take c ∈ S and ∃(r1 ∩ · · · ∩ r`).C ∈ c. Then, we have that there
is a d ∈ ∆I with d ∈ (∃(r1 ∩ · · · ∩ r`).C)I and τ(d) = c \ Ind(B). By the semantics
of ALC∩, there is an e ∈ ∆I such that (d, e) ∈ rI1 ∩ · · · ∩ rI` , e ∈ CI , and for

40



each D with d ∈ (¬(∃(r1 ∩ · · · ∩ r`).D))I , we have that e ∈ (¬D)I . Since I is a
forest model, we have τ(e) ∈ S. Indeed, if there is an a ∈ NI with aI = e, then
there is an e′ ∈ ∆I with e′ 6= bI for any b ∈ NI such that τ(e) = τ(e′). Hence,
{¬D | d ∈ (¬(∃(r1 ∩ · · · ∩ r`).D))I}∪ {C} ⊆ τ(e). Thus, there is a d ∈ S, namely
d := τ(e), with d ∩ Ind(B) = ∅ and {¬D | ¬(∃(r1 ∩ · · · ∩ r`).D) ∈ c} ∪ {C} ⊆ d.

For condition (f), take c ∈ S and E = ∃(r1 ∩ · · · ∩ r`).C with {a,¬E} ⊆ c. By
the definition of S, we have that c = τ(aI) ∪ {a}. Thus, aI ∈ (¬E)I . It is
enough to show that {¬(∃r1.¬Aa,r1,E), . . . ,¬(∃r`.¬Aa,r`,E)} ⊆ τ(aI). Assume to
the contrary that there is an i, 1 ≤ i ≤ `, such that ¬(∃ri.¬Aa,ri,E) /∈ τ(aI).
Hence, aI /∈ (¬(∃ri.¬Aa,ri,E))I , and thus aI ∈ (∃ri.¬Aa,ri,E)I . Then, there is a
d ∈ ∆I such that (aI , d) ∈ rIi and d ∈ (¬Aa,ri,E)I , and thus d /∈ AIa,ri,E. By the
definition of AIa,ri,E, we have aI /∈ (¬E)I , which is a contradiction.

For condition (g), take c ∈ S and E = (∃(r1 ∩ · · · ∩ r`).C) with ¬E ∈ c
and c ∩ Ind(B) = ∅. Thus, there is a d′ ∈ ∆I with τ(d′) = c and d′ 6= aI

for all a ∈ Ind(B). This yields (d′)I ∈ (¬E)I . It is enough to show that
{¬(∃r1.¬A◦,r1,E), . . . ,¬(∃r`.¬A◦,r`,E)} ⊆ τ(d′). Assume to the contrary that
there is an i, 1 ≤ i ≤ `, such that ¬(∃ri.¬A◦,ri,E) /∈ τ(d′). Hence, (d′)I /∈
(¬(∃ri.¬A◦,ri,E))I , and thus (d′)I ∈ (∃ri.¬A◦,ri,E)I . Then, there is a d ∈ ∆I such
that (d′, d) ∈ rIi and d ∈ (¬A◦,ri,E)I , and thus d /∈ AI◦,ri,E. By the definition of
AI◦,ri,E, we have (d′)I /∈ (¬E)I , which is a contradiction.

For condition (h), take c ∈ S and > v C ∈ Sub(B)∪PebCond(B) with > v C ∈ f .
We prove C ∈ c with a case distinction. Either > v C ∈ Sub(B) or > v C ∈
PebCond(B). For the first case, we have I |= > v C, and thus CI = ∆I . Hence,
C ∈ τ(d) for any d ∈ ∆I , which yields by the definition of S that C ∈ c. For
the second case, C must be of the form ¬(A∗,r1,E u · · · u A∗,r`,E u D) for some
E = ∃(r1 ∩ · · · ∩ r`).D ∈ Sub(B) and ∗ ∈ Ind(B) ∪ {◦}. It is enough to show that
{A∗,r1,E, . . . , A∗,r`,E, D} 6⊆ c, which implies C ∈ c since c is a concept type. We
need another case distinction: either a ∈ c for some a ∈ Ind(B) or c ∩ Ind(B) = ∅.

In the first case, we have c = τ(aI) ∪ {a}. Assume to the contrary that we have
{A∗,r1,E, . . . , A∗,r`,E, D} ⊆ τ(aI) ⊆ c. We have ∗ 6= ◦ since otherwise by definition
of AI◦,ri,E there must be at least one d ∈ ∆I with (d, aI) ∈ rIi for some i, 1 ≤ i ≤ `.
This contradicts the fact that I is a forest model. Thus, ∗ = b for b ∈ NI. By
the definition of τ(aI), we have aI ∈ AIb,r1,E, . . . , a

I ∈ AIb,r`,E, and a
I ∈ DI . The

definition of Ab,ri,E, 1 ≤ i ≤ `, yields that (bI , aI) ∈ rI1 ∩ · · · ∩ rI` and bI ∈ (¬E)I .
The semantics of ALC∩ yields aI /∈ DI , which is a contradiction.

In the second case, we have c ∩ Ind(B) = ∅. By the definition of S, we have
c = τ(d) for some d ∈ ∆I with d 6= aI for any a ∈ NI. Assume to the contrary that
we have {A∗,r1,E, . . . , A∗,r`,E, D} ⊆ τ(d) = c. By the definition of τ(d), we have
d ∈ AI∗,r1,E, . . . , d ∈ A

I
∗,r`,E, and d ∈ D

I . By the definition of AI∗,ri,E, 1 ≤ i ≤ `,
we have that there are d1, . . . , d` ∈ ∆I such that (di, d) ∈ rIi , and di ∈ (¬E)I .
Since I is a forest model, and d 6= aI for any a ∈ NI, we have that d is of the form
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(b, d′1 . . . d′m) for m > 0, and d1 = · · · = d` = (b, d′1 . . . d′m−1) for some b ∈ NI. This
implies that (d1, d) ∈ rI1 ∩ · · · ∩ rI` . The semantics of ALC∩ yields that d /∈ DI ,
which is a contradiction.

For condition (k), take ¬(> v C) ∈ f . By the definition of f , > v C /∈
PebCond(B), and thus > v C ∈ Sub(B). Again by the definition of f , this implies
I 6|= > v C. By the semantics of ALC∩, there is a d ∈ ∆I with d /∈ CI . Thus,
for τ(d) ∈ S, we have C /∈ τ(d).

For condition (l), let c ∈ S. Then there must be a d ∈ ∆I with τ(d) ⊆ c. Since
I respects D, there must be a set Y ∈ D such that d ∈ AI for all A ∈ Y , and
d /∈ BI for all B /∈ Y . Hence, by definition of τ(d), we have Y = c∩{A1, . . . , Ak}.

For condition (m), let Y ∈ D. Since I respects D, there must be a d ∈ ∆I such
that d ∈ AI for all A ∈ Y , and d /∈ BI for all B /∈ Y . Hence, by definition of
τ(d), we have Y = τ(d) ∩ {A1, . . . , Ak}.

This finishes the proof of the claim that B has a model that respects D iff there is
a quasimodel for B that respects D.

It remains to show that one can check the existence of a quasimodel for B that
respects D in time exponential in n. This can be achieved by a simple adaptation
of the proof of Lemma 6.4 in [BGL12], which shows the claim for ALC-knowledge
bases.

The algorithm works as follows. Given B and D, it enumerates all model candidates
(S ∪ Sι, ι, f) for B where

• S is the set of all concept types for B that are subsets of Con(B) and

• Sι := {ι(a) | a ∈ Ind(B), ι(a) \ {a} ∈ S}

We denote these candidates by C1, . . . ,CN . Note that each of these candidates is
of size exponential in n. It should be clear that

N ≤ 2|Con(B)|·|Ind(B)| · 2|Sub(B)∪PebCond(B)|,

and thus the enumeration of all C1, . . . ,CN can be done in time exponential in n
since PebCond(B) and Con(B) are of size polynomial in n.

Now, set i = 1 and consider Ci = (S, ι, f).

Step 1. Check each concept type in S. We call a concept type c ∈ S defective
if one of the following conditions holds:

• (e) is violated for some ∃(r1 ∩ · · · ∩ r`).C ∈ c;

• (f) is violated for some ¬(∃(r1 ∩ · · · ∩ r`).C) ∈ c if c ∩ Ind(B) = {a};
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• (g) is violated for some ¬(∃(r1 ∩ · · · ∩ r`).C) ∈ c if c ∩ Ind(B) = ∅;

• (h) is violated for some > v C ∈ f ; or

• (l) is violated.

If we have found a defective concept type c with c ∩ Ind(B) = ∅, then set
S := S \ {c} and continue with Step 1. If we have found a defective concept type
c with c∩ Ind(B) 6= ∅, then stop considering Ci and go to Step 3. If we have found
no defective concept types in S, continue with Step 2.

Step 2. Check whether the model candidate (S ′, ι, f) obtained from Step 1
satisfies (d), (k), and (m). If it does, stop with output “quasimodel that respects
D found.” Otherwise, continue with Step 3.

Step 3. Set i := i + 1. If i ≤ N , continue with Step 1. Otherwise, stop with
output “no quasimodel that respects D exists.”

It is easy to see that the algorithm is sound and complete. It is also not hard to
see that it runs in time exponential in n.

We get the following consequence as corollary; see [BGL12].

Corollary 5.7. The satisfiability problem of the temporal DL ALC∩-LTL w.r.t.
rigid concepts is NExpTime-complete.

Combining the reductions of this section, we get the desired complexity result.

Theorem 5.8. If NRC 6= ∅ and NRR = ∅, then the entailment problem is in
co-NExpTime w.r.t. combined complexity.

6 Conclusions

We have introduced a new temporal query language that extends the temporal
DL ALC-LTL to using conjunctive queries as atoms. Our complexity results
on the entailment problem for such queries w.r.t. temporal knowledge bases are
summarized in Table 3.3. Without any rigid names, we observed that entailment
of TCQs is as hard as entailment of CQs w.r.t. atemporal ALC-knowledge bases,
i.e., in this case adding temporal operators to the query language does not increase
the complexity. However, if we allow for rigid concept names (but no rigid role
names), the picture changes. While the data complexity remains the same as
in the atemporal case, the combined complexity of query entailment increases
to co-NExpTime, i.e., the non-entailment problem is as hard as satisfiability
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in ALC-LTL. If we further add rigid role names, the combined complexity (of
non-entailment) again increases in accordance with the complexity of satisfiability
in ALC-LTL. For data complexity, it is still unclear whether adding rigid role
names results in an increase. We have shown an upper bound of ExpTime (which
is one exponential better than the combined complexity), but the only lower
bound we have is the trivial one of co-NP.

Further work will include trying to close this gap. Moreover, it would be interesting
to consider temporal queries based on inexpressive DLs such as DL-Lite [CDL+09],
and check under what conditions query answering can be realized using classical
(temporal or atemporal) database techniques.
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