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Abstract. Basically, the connection of two many-sorted theories is ob-
tained by taking their disjoint union, and then connecting the two parts
through connection functions that must behave like homomorphisms on
the shared signature. We determine conditions under which decidability
of the validity of universal formulae in the component theories trans-
fers to their connection. In addition, we consider variants of the basic
connection scheme.

1 Introduction

The combination of decision procedures for logical theories arises in many areas
of logic in computer science, such as constraint solving, automated deduction,
term rewriting, modal logics, and description logics. In general, one has two
first-order theories T1 and T2 over signatures Σ1 and Σ2, for which validity of a
certain type of formulae (e.g., universal, existential positive, etc.) is decidable.
These theories are then combined into a new theory T over a combination Σ of
the signatures Σ1 and Σ2. The question is whether decidability transfers from
T1, T2 to their combination T .

One way of combining the theories T1, T2 is to build their union T1 ∪ T2.
Both the Nelson-Oppen combination procedure [16, 15] and combination pro-
cedures for the word problem [19, 17, 5] address this type of combination, but
for different types of formulae to be decided. Whereas the original combina-
tion procedures were restricted to the case of theories over disjoint signatures,
there are now also solutions for the non-disjoint case [8, 22, 6, 9, 11, 3], but they
always require some additional restrictions since it is easy to see that in the
unrestricted case decidability does not transfer. Similar combination problems
have also been investigated in modal logic, where one asks whether decidability
of (relativized) validity transfers from two modal logics to their fusion [12, 20,
23, 4]. The approaches in [11, 3] actually generalize these results from equational
theories induced by modal logics to more general first-order theories satisfy-
ing certain model-theoretic restrictions: the theories T1, T2 must be compatible
with their shared theory T0, and this shared theory must be locally finite (i.e.,
its finitely generated models are finite). The theory Ti is compatible with the
shared theory T0 iff (i) T0 ⊆ Ti; (ii) T0 has a model completion T ∗0 ; and (iii) every
model of Ti embeds into a model of Ti ∪ T ∗0 .

In [13], a new combination scheme for modal logics, called E-connection, was
introduced, for which decidability transfer is much simpler to show than in the



case of the fusion. Intuitively, the difference between fusion and E-connection can
be explained as follows. A model of the fusion is obtained from two models of
the component logics by identifying their domains. In contrast, a model of the E-
connection consists of two separate models of the component logics together with
certain connecting relations between their domains. There are also differences in
the syntax of the combined logic. In the case of the fusion, the Boolean operators
are shared, and all operators can be applied to each other without restrictions. In
the case of the E-connection, there are two copies of the Boolean operators, and
operators of the different logics cannot be mixed; the only connection between
the two logics are new (diamond) modal operators that are induced by the
connecting relations.

If we want to adapt this approach to the more general setting of combining
first-order theories, then we must consider many-sorted theories since only the
sorts allow us to keep the domains separate and to restrict the way function
symbols can be applied to each other. Let T1, T2 be two many-sorted theories that
may share some sorts as well as function and relation symbols. We first build the
disjoint union T1]T2 of these two theories (by using disjoint copies of the shared
parts), and then connect them by introducing connection functions between the
shared sorts. These connection functions must behave like homomorphisms for
the shared function and predicate symbols, i.e., the axioms stating this are added
to T1 ] T2. This corresponds to the fact that the new diamond operators in the
E-connection approach distribute over disjunction and do not change the false
formula ⊥. We call the combined theory obtained this way the connection of T1

and T2.
This kind of connection between theories has already been considered in au-

tomated deduction (see, e.g., [1, 24]), but only in very restricted cases where both
T1 and T2 are fixed theories (e.g., the theory of sets and the theory of integers in
[24]) and the connection functions have a fixed meaning (like yielding the length
of a list). In categorical logic, this type of connection can be seen as an instance
of a general co-comma construction in bicategories associated with theories and
syntactic interpretations (see, e.g., [25]). However, in this general setting, com-
putational properties of the combined theories have not been considered yet.

This paper is a first step towards providing general results on the transfer of
decidability from component theories to their connection. We start by consider-
ing the simplest case where there is just one connection function, and show that
decidability transfers whenever certain model-theoretic conditions are satisfied.
These conditions are weaker than the ones required in [3] for the case of the
union of theories.1 In addition, both the combination procedure and its proof of
correctness are much simpler than the ones in [11, 3]. The approach easily ex-
tends to the case of several connection functions. We will also consider variants
of the general combination scheme where the connection function must satisfy
additional properties (like being surjective, an embedding, or an isomorphism),
or where a theory is connected with itself. The first variant is, for example, in-

1 Our conditions are in general not weaker than the ones in [11], although this is the
case for all the theories we have considered until now.



teresting since the combination result for the union of theories shown in [11]
can be obtained from the variant where one has an isomorphism as connection
function. The second case is interesting since it can be used to reduce the global
consequence problem in the modal logic K to propositional satisfiability, which
is a surprising result.

2 Notation and definitions

In this section, we fix the notation and give some important definitions, in par-
ticular a formal definition of the connection of two theories.

We use standard many-sorted first-order logic (see, e.g., [10]), but try to avoid
the notational overhead caused by the presence of sorts as much as possible.
Thus, a signature Ω consists of a non-empty set of sorts S together with a set of
function symbols F and a set of predicate symbols P. The function and predicate
symbols are equipped with arities from S∗ in the usual way. For example, if the
arity of f ∈ F is S1S2S3, then this means that the function f takes tuples
consisting of an element of sort S1 and an element of sort S2 as input, and
produces an element of sort S3. We consider logic with equality, i.e., the set of
predicate symbols contains a symbol ≈S for equality in every sort S. Usually, we
will just use ≈ without explicitly specifying the sort. In this paper we usually
assume that signatures are at most countable.

Terms and first-order formulae over Ω are defined in the usual way, i.e., they
must respect the arities of function and predicate symbols, and the variables
occurring in them are also equipped with sorts. An Ω-atom is a predicate symbol
applied to (sort-conforming) terms, and an Ω-literal is an atom or a negated
atom. A ground literal is a literal that does not contain variables. We use the
notation φ(x) to express that φ is a formula whose free variables are among the
ones in the tuple of variables x. An Ω-sentence is a formula over Ω without free
variables. An Ω-theory T is a set of Ω-sentences (called the axioms of T ). If T, T ′

are Ω-theories, then we write (by a slight abuse of notation) T ⊆ T ′ to express
that all the axioms of T are logical consequences of the axioms of T ′.

From the semantic side, we have the standard notion of an Ω-structure A,
which consists of non-empty and pairwise disjoint domains AS for every sort
S, and interprets function symbols f and predicate symbols P by functions fA

and predicates PA according to their arities. By A we denote the union of all
domains AS . Validity of a formula φ in an Ω-structure A (A |= φ), satisfiability,
and logical consequence are defined in the usual way. The Ω-structure A is a
model of the Ω-theory T iff all axioms of T are valid in A. If φ(x) is a formula
with free variables x = x1, . . . , xn and a = a1, . . . , an is a (sort-conforming)
tuple of elements of A, then we write A |= φ(a) to express that φ(x) is valid in
A under the assignment {x1 7→ a1, . . . , xn 7→ an}. Note that φ(x) is valid in A
iff it is valid under all assignments iff its universal closure is valid in A.

An Ω-homomorphism between two Ω-structures A and B is a mapping µ :
A → B that is sort-conforming (i.e., maps elements of sort S in A to elements



of sort S in B), and satisfies the condition

(∗) A |= α(a1, . . . , an) implies B |= α(µ(a1), . . . , µ(an))

for all Ω-atoms α(x1, . . . , xn) and (sort-conforming) elements a1, . . . , an of A.
In case the converse of (∗) holds too, µ is called an Ω-embedding. Note that
an embedding is something more than just an injective homomorphism since
the stronger condition must hold not only for the equality predicate, but for all
predicate symbols. If the embedding µ is the identity on A, then we say that A
is a Ω-substructure of B.

We say that Σ is a subsignature of Ω (written Σ ⊆ Ω) iff Σ is a signature
that can be obtained from Ω by removing some of its sorts and function and
predicate symbols. If Σ ⊆ Ω and A is an Ω-structure, then the Σ-reduct of A is
the Σ-structure A|Σ obtained from A by forgetting the interpretations of sorts,
function and predicate symbols from Ω that do not belong to Σ. Conversely, A
is called an expansion of the Σ-structure A|Σ to the larger signature Ω. If µ :
A → B is an Ω-homomorphism, then the Σ-reduct of µ is the Σ-homomorphism
µ|Σ : A|Σ → B|Σ obtained by restricting µ to the sorts that belong to Σ, i.e., by
restricting the mapping to the domain of A|Σ .

Given a set X of constant symbols not belonging to the signature Ω, but
each equipped with a sort from Ω, we denote by ΩX the extension of Ω by these
new constants. If A is an Ω-structure, then we can view the elements of A as a
set of new constants, where a ∈ AS has sort S. By interpreting each a ∈ A by
itself, A can also be viewed as an ΩA-structure. The positive diagram ∆+

Ω(A)
of A is the set of all ground ΩA-atoms that are true in A, and the diagram
∆Ω(A) of A is the set of all ground ΩA-literals that are true in A. Robinson’s
diagram theorems [7] say that there is a homomorphism (embedding) between
the Ω-structures A and B iff it is possible to expand B to an ΩA-structure in
such a way that it becomes a model of the positive diagram (diagram) of A.

Basic Connections

In the remainder of this section, we introduce our basic scheme for connecting
many-sorted theories, and illustrate it with the example of E-connections of
modal logics. Let T1, T2 be theories over the respective signatures Ω1, Ω2, and
let Ω0 be a common subsignature of Ω1 and Ω2. We call Ω0 the connecting
signature. In addition, let T0 be an Ω0-theory2 that is contained in both T1 and
T2. We define the new theory T1>T0 T2 (called the connection of T1 and T2 over
T0) as follows.

The signature Ω of T1>T0 T2 contains the disjoint union Ω1]Ω2 of the signa-
tures Ω1 and Ω2, where the shared sorts and the shared function and predicate
symbols are appropriately renamed, e.g., by attaching labels 1 and 2. Thus, if
S (f , P ) is a sort (function symbol, predicate symbol) contained in both Ω1

2 When defining the connection of T1, T2, the theory T0 is actually irrelevant; all we
need is its signature Ω0. However, for our decidability transfer results to hold, T0

and the Ti must satisfy certain model-theoretic properties.



and Ω2, then Si (f i, P i) for i = 1, 2 are its renamed variants in the disjoint
union, where the arities are accordingly renamed. In addition, Ω contains a new
function symbol hS of arity S1S2 for every sort S of Ω0.

The axioms of T1>T0 T2 are obtained as follows. Given an Ωi-formula φ, its
renamed variant φi is obtained by replacing all shared symbols by their renamed
variants with label i. The axioms of T1>T0 T2 consist of

{φ1 | φ ∈ T1} ∪ {φ2 | φ ∈ T2},

together with the universal closures of the formulae

hS(f1(x1, . . . , xn)) ≈ f2(hS1(x1), . . . , hSn(xn)),
P 1(x1, . . . , xn)→ P 2(hS1(x1), . . . , hSn(xn)),

for every function (predicate) symbol f (P ) in Ω0 of arity S1 . . . SnS (S1 . . . Sn).
Since the signatures Ω1 and Ω2 have been made disjoint, and since the

additional axioms state that the family of mappings hS behaves like an Ω0-
homomorphism, it is easy to see that the models of T1 >T0 T2 are formed by
triples of the form (M1,M2, hM), where M1 is a model of T1, M2 is a model
of T2, and hM is an Ω0-homomorphism hM : M1

|Ω0
→ M2

|Ω0
between the re-

spective Ω0-reducts.

Example 1. The most basic variant of the E-connection scheme introduced in [13]
is an instance of our approach if one translates it into the algebraic setting. The
abstract description systems considered in [13], which cover all the usual modal
and description logics, are closely related to to Boolean-based equational theories
(see [2] for details). The theory E is called Boolean-based equational theory [3]
iff its signature Σ has just one sort, equality is the only predicate symbol, the
set of function symbols contains the Boolean operators u,t,¬,>,⊥, and its set
of axioms consists of identities (i.e., the universal closures of atoms s ≈ t) and
contains the Boolean algebra axioms.

For example, consider the basic modal logic K, where we use only the modal
operator ♦ (since � can then be defined). The Boolean-based equational theory
EK corresponding to K is obtained from the theory of Boolean algebras by
adding the identities ♦(x t y) ≈ ♦(x) t ♦(y) and ♦(⊥) ≈ ⊥.

Let us illustrate the notion of an E-connection also on this simple example.
To build the E-connection of K with itself, one takes two disjoint copies of
K, obtained by renaming the Boolean operators and the diamonds, e.g., into
ui,ti,¬i,>i,⊥i,♦i for i = 1, 2. The signature of the E-connection contains all
these renamed symbols together with a new symbol ♦. However, it is now a
two-sorted signature, where symbols with index i are applied to elements of sort
Si and yield as results an element of this sort. The new symbol has arity S1S2.3

The semantics of this E-connection can be given in terms of Kripke structures.

3 In the E-connection scheme introduced in [13], there is also an inverse diamond
operator ♦− with arity S2S1, but the algebraic approach introduced in the present
paper cannot treat this case (see the conclusion for a discussion).



A Kripke structure for the E-connection consists of two Kripke structures K1,K2

for K over disjoint domains W1 and W2, together with an additional connecting
relation E ⊆ W2 × W1. The symbols with index i are interpreted in Ki, and
the new symbol ♦ is interpreted as the diamond operator induced by E, i.e., for
every X ⊆W1 we have

♦(X) := {x ∈W2 | ∃y ∈W1. (x, y) ∈ E ∧ y ∈ X}.

This interpretation of the new operator implies that it satisfies the usual iden-
tities of a diamond operator, i.e., ♦(x t1 y) ≈ ♦(x) t2 ♦(y) and ♦(⊥1) ≈ ⊥2,
and that these identities are sufficient to characterize its semantics. Thus, the
equational theory corresponding to the E-connection of K with itself consists of
these two axioms, together with the axioms of EK1 and EK2 .

Obviously, this theory is also obtained as the connection of the theory EK

with itself, if the connecting signature Ω0 consists of the single sort of EK,
the predicate symbol ≈, and the function symbols t,⊥. As theory T0 we can
take the theory of semilattices, i.e., the axioms that say that t is associative,
commutative, and idempotent, and that ⊥ is a unit for t.

Example 2. The previous example can be varied by including u in the connecting
signature, and taking as theory T0 the theory of distributive lattices with a least
element ⊥. It is easy to see that this corresponds to the case of an E-connection
where the connecting relation E is required to be a partial function.

3 Positive algebraic completions and compatibility

In order to transfer decidability results from the component theories T1, T2 to
their connection T1 >T0 T2 over T0, the theories T0, T1, T2 must satisfy certain
model-theoretic conditions, which we introduce below. The most important one
is that T0 has a positive algebraic completion. Before we can define this concept,
we must introduce some notions from model theory [7].

The formula φ is called open iff it does not contain quantifiers; it is called
universal iff it is obtained from an open formula by adding a prefix of universal
quantifiers; and it is called geometric iff it is built from atoms by using conjunc-
tion, disjunction, true, false, and existential quantifiers.4

The main property of geometric formulae is that they are preserved un-
der homomorphisms in the following sense: if µ : A → B is a homomorphism
between Ω-structures and φ(x1, . . . , xn) is a geometric formula over Ω, then
A |= φ(a1, . . . , an) implies B |= φ(µ(a1), . . . , µ(an)) for all (sort-conforming)
a1, . . . , an ∈ A. Open formulae are related to embeddings in various ways. First,
they are preserved under building sub- and superstructures, i.e., if A is a sub-
structure of B, φ(x1, . . . , xn) is an open formula, and a1, . . . , an ∈ A are sort-
conforming, then A |= φ(a1, . . . , an) iff B |= φ(a1, . . . , an). Moreover, two Ω-
theories T, T ′ entail the same set of open formulae iff every model of T can be
embedded into a model of T ′ and vice versa (see [7] for these and related results).
4 The latter formulae are called “geometric” in categorical logic [14] since they are

preserved under inverse image geometric morphisms.



The theory T is a universal theory iff its axioms are universal sentences; it is a
geometric theory iff it can be axiomatized by using universal closures of geometric
sequents, where a geometric sequent is an implication between two geometric
formulae. Note that any universal theory is geometric since open formulae are
conjunctions of clauses and clauses can be rewritten as geometric sequents.

Definition 1. Let T be a universal and T ∗ a geometric theory over Ω. We say
that T ∗ is a positive algebraic completion of T iff the following properties hold:

1. T ⊆ T ∗;
2. every model of T embeds into a model of T ∗;5

3. for every geometric formula φ(x) there is an open geometric formula φ∗(x)
such that T ∗ |= φ↔ φ∗.

It can be shown that the models of T ∗ are exactly the algebraically closed models
of T (see [2]). In particular, this means that the positive algebraic completion of
T is unique, provided that it exists.

When trying to show that Property 3 of Definition 1 holds for given theories
T, T ∗, it is sufficient to consider simple existential formulae φ(x), i.e., formulae
that are obtained from conjunctions of atoms by adding an existential quantifier
prefix. In fact, any geometric formula φ can be normalized to a disjunction
φ1∨. . .∨φn of simple existential formulae φi by using distributivity of conjunction
and existential quantification over disjunction. In addition, if T ∗ |= φi ↔ φ∗i for
geometric open formulae φ∗i (i = 1, . . . , n), then φ∗1 ∨ . . .∨φ∗n is also a geometric
open formula and T ∗ |= (φ1 ∨ . . . ∨ φn)↔ (φ∗1 ∨ . . . ∨ φ∗n).

The following lemma will turn out to be useful later on.

Lemma 1. Assume that T, T ∗ satisfy Property 2 of Definition 1. If φ(x) is a
simple existential formula and φ∗(x) is an open formula, then T ∗ |= φ → φ∗

implies T |= φ→ φ∗.

This is an immediate consequence of the facts that φ→ φ∗ is then equivalent to
an open formula, and open formulae are preserved under building substructures.

The first ingredient of our combinability condition is the following notion
of compatibility, which is a variant of analogous compatibility conditions intro-
duced in [11, 3] for the case of the union of theories.

Definition 2. Let T0 ⊆ T be theories over the respective signatures Ω0 ⊆ Ω1.
We say that T is T0-algebraically compatible iff T0 is universal, has a positive
algebraic completion T ∗0 , and every model of T embeds into a model of T ∪ T ∗0 .

The second ingredient is that T0 must be locally finite, i.e., all finitely gener-
ated models of T0 are finite. To be more precise, we need the following effective
variant of local finiteness defined in [11, 3]. Let T0 be a universal theory over the
finite signature Ω0. Then T0 is called effectively locally finite iff for every tuple
of variables x, one can effectively determine terms t1(x), . . . , tk(x) such that, for
every further term u(x), we have that T0 |= u ≈ ti for some i = 1, . . . , k.
5 Equivalently, T and T ∗ entail the same universal sentences.



4 The main combination result

We are interested in deciding the universal fragments of our theories, i.e., validity
of universal formulae (or, equivalently open formulae) in a theory T . This is the
decision problem also treated by the Nelson-Oppen combination method (albeit
for the union of theories). It is well known that this problem is equivalent to the
problem of deciding whether a set of literals is satisfiable in some model of T .
We call such a set of literals a constraint.

By introducing new free constants (i.e., constants not occurring in the axioms
of the theory), we can assume without loss of generality that such constraints
contain no variables. In addition, we can transform any ground constraint into
an equisatisfiable set of ground flat literals, i.e., literals of the form

a ≈ f(a1, . . . , an), P (a1, . . . , an), or ¬P (a1, . . . , an),

where a, a1, . . . , an are (sort-conforming) free constants, f is a function symbol,
and P is a predicate symbol (possibly also equality).

Theorem 1. Let T0, T1, T2 be theories over the respective signatures Ω0, Ω1, Ω2,
where Ω0 is a common subsignature of Ω1 and Ω2. Assume that T0 ⊆ T1 and
T0 ⊆ T2, that T0 is universal and effectively locally finite, and that T2 is T0-
algebraically compatible. Then the decidability of the universal fragments of T1

and T2 entails the decidability of the universal fragment of T1>T0 T2.

To prove the theorem, we consider a finite set Γ of ground flat literals over the
signature Ω of T1>T0 T2 (with additional free constants), and show how it can
be tested for satisfiability in T1 >T0 T2. Since all literals in Γ are flat, we can
divide Γ into three disjoint sets Γ = Γ0 ∪ Γ1 ∪ Γ2, where Γi (i = 1, 2) is a set
of literals in the signature Ωi (expanded with free constants), and Γ0 is of the
form

Γ0 = {h(a1) ≈ b1, . . . , h(an) ≈ bn}

for free constants a1, b1, . . . , an, bn. Here and in the following we omit the sort
index when writing the connection functions hS .

Proposition 1. The constraint Γ = Γ0 ∪ Γ1 ∪ Γ2 is satisfiable in T1>T0 T2 iff
there exists a triple (A,B, ν) such that

1. A is an Ω0-model of T0, which is generated by {aA1 , . . . , aAn };
2. B is an Ω0-model of T0, which is generated by {bB1 , . . . , bBn};
3. ν : A → B is an Ω0-homomorphism such that ν(aAj ) = bBj for j = 1, . . . , n;
4. Γ1 ∪∆Ω0(A) is satisfiable in T1;
5. Γ2 ∪∆Ω0(B) is satisfiable in T2.

Proof. The only-if direction is simple. In fact, as noted in Section 2, a modelM
of T1>T0 T2 is given by a triple (M1,M2, hM), whereM1 is a model of T1,M2

is a model of T2, and hM :M1
|Ω0
→M2

|Ω0
is an Ω0-homomorphism between the

respective Ω0-reducts. Assume that this modelM satisfies Γ . We can take as A



the substructure of M1
|Ω0

generated by (the interpretations of) a1, . . . , an, as B
the substructure of M2

|Ω0
generated by (the interpretations of) b1, . . . , bn, and

as homomorphism ν the restriction of hM to A. It is easy to see that the triple
(A,B, ν) obtained this way satisfies 1.–5. of the proposition.

Conversely, assume that (A,B, ν) is a triple satisfying 1.–5. of the proposition.
Because of 4. and 5., there is an Ω1-modelN ′ of T1 satisfying Γ1∪∆Ω0(A) and an
Ω2-model N ′′ of T2 satisfying Γ2∪∆Ω0(B). By Robinson’s diagram theorem, N ′
has A as an Ω0-substructure and N ′′ has B as an Ω0-substructure. We assume
without loss of generality that N ′ is at most countable and that N ′′ is a model
of T2∪T ∗0 . The latter assumption is by T0-algebraic compatibility of T2, and the
former assumption is by the Löwenheim-Skolem theorem since our signatures
are at most countable. Let us enumerate the elements of N ′ as

c1, c2, . . . , cn, cn+1, . . . ,

where we assume that ci = aAi (i = 1, . . . , n), i.e., c1, . . . , cn are generators of A.
We define an increasing sequence of sort-conforming functions νk : {c1, . . . ck} →
N ′′ (for k ≥ n) such that, for every ground Ω

{c1,...,ck}
0 -atom α we have

N ′|Ω0
|= α(c1, . . . , ck) implies N ′′|Ω0

|= α(νk(c1), . . . , νk(ck)).

We first take νn to be ν. To define νk+1 (for k ≥ n), let us consider the con-
junction ψ(c1, . . . , ck, ck+1) of the Ω{c1,...,ck+1}

0 -atoms that are true in N ′|Ω0
: this

conjunction is finite (modulo taking representative terms, thanks to local finite-
ness of T0). Let φ(x1, . . . , xk) be ∃xk+1.ψ(x1, . . . , xk, xk+1) and let φ∗(x1, . . . , xk)
be a geometric open formula such that T ∗0 |= φ↔ φ∗.

By Lemma 1, T0 |= φ → φ∗, and thus we have N ′|Ω0
|= φ∗(c1, . . . , ck) and

also N ′′|Ω0
|= φ∗(νk(c1), . . . , νk(ck)) by the induction hypothesis. Since N ′′|Ω0

is a
model of T ∗0 , there is a b such that N ′′|Ω0

|= ψ(νk(c1), . . . , νk(ck), b) for some b. We
now obtain the desired extension νk+1 of νk by setting νk+1(ck+1) := b. Taking
ν∞ =

⋃
k≥n νk, we finally obtain a homomorphism ν∞ : N ′|Ω0

→ N ′′|Ω0
such that

the triple (N ′,N ′′, ν∞) is a model of T1>T0 T2 that satisfies Γ0 ∪ Γ1 ∪ Γ2. ut

The above proof uses the assumption that T0 is locally finite. By using heavier
model-theoretic machinery, one can also prove the proposition without using
local finiteness of T0 (see [2]). However, since the proof of Theorem 1 needs this
assumption anyway (see below), we gave the above proof since it is simpler.

To conclude the proof of Theorem 1, we describe a non-deterministic decision
procedure that effectively guesses an appropriate triple (A,B, ν) and then checks
whether it satisfies 1.–5. of Proposition 1. To guess an Ω0-model of T0 that is
generated by a finite set X, one uses effective local finiteness of T0 to obtain an
effective bound on the size of such a model, and then guesses an Ω0-structure
that satisfies this size bound. Once the structures A,B are given, one can build
their diagrams, and use the decision procedures for T1 and T2 to check whether
4. and 5. of Proposition 1 are satisfied. If the answer is yes, then A,B are also
models of T0: in fact, if for instance Γ1 ∪∆Ω0(A) is satisfiable in the model M



of T1, then M has A as a substructure, and this implies A |= T0 because T0 is
universal and T0 ⊆ T1. Finally, one can guess a mapping ν : A→ B that satisfies
ν(aAj ) = bBj , and then use the diagrams of A,B to check whether ν satisfies the
homomorphism condition (∗).

The proof of Proposition 1 shows that our decidability transfer result can eas-
ily be extended to the case of several connection functions, possibly going in both
directions. In fact, one simply considers several Ω0-homomorphisms between A
and B in 3. of the proposition, and extends them separately to homomorphisms
between N ′ and N ′′ (see [2] for more details). If there are also connection func-
tions in the other direction (and thus homomorphisms from B to A), then T1

must also be T0-algebraically compatible.

Examples

When trying to axiomatize the positive algebraic completion T ∗0 of a given uni-
versal theory T0, it is sufficient to produce for every simple existential formula
φ(x) an appropriate geometric and open formula φ∗(x). Take as theory T ∗0 the
one axiomatized by T0 together with the formulae φ↔ φ∗ for every simple exis-
tential formula φ. In order to complete the job, it is sufficient to show that every
model of T0 embeds into a model of T ∗0 . It should also be noted that one can
without loss of generality restrict the attention to simple existential formulae
with just one existential quantifier since more than one quantifier can then be
treated by iterated elimination of single quantifiers.

In the next example we encounter a special case where the formulae φ↔ φ∗

are already valid in T0. In this case, we have T0 = T ∗0 , and thus the model-
embedding condition is trivially satisfied. In addition, any theory T with T0 ⊆ T
is T0-algebraically compatible.

Example 3. Recall from [3] the definition of a Gaussian theory. Let us call a
conjunction of atoms an e-formula. The universal theory T0 is Gaussian iff for
every e-formula φ(x, y) it is possible to compute an e-formula ψ(x) and a term
s(x, z) with fresh variables z such that

T0 |= φ(x, y)↔ (ψ(x) ∧ ∃z.(y ≈ s(x, z))). (1)

Any Gaussian theory T0 is its own positive algebraic completion. In fact, it is
easy to see that (1) implies T0 |= (∃y.φ(x, y)) ↔ ψ(x), and thus the comment
given above this example applies.

As a consequence, our combination result applies to all the examples of effec-
tively locally finite Gaussian theories given in [3] (e.g., Boolean algebras, vector
spaces over a finite field, empty theory over a signature whose sets of predicates
consists of ≈ and whose set of function symbols is empty): if the universal theory
T0 is effectively locally finite and Gaussian, and T1, T2 are arbitrary theories con-
taining T0 and with decidable universal fragment, then the universal fragment
of T1>T0 T2 is also decidable.



Example 4. Let T0 be the theory of semilattices (see Example 1). This theory is
obviously effectively locally finite. In the following, we use the disequation s v t
as an abbreviation for the equation s t t ≈ t. Obviously, any equation s ≈ t can
be expressed by the disequations s v t ∧ t v s.

The theory T0 has a positive algebraic completion, which can be axiomatized
as follows. Let φ(x) be a simple existential formula with just one existential
quantifier. Using the fact that z1t. . .tzn v z is equivalent to z1 v z∧. . .∧zn v z,
it is easy to see that φ(x) is T0-equivalent to a formula of the form

ψ(x) ∧ ∃y.((y v t1) ∧ · · · ∧ (y v tn) ∧ (u1 v s1 t y) ∧ · · · ∧ (um v sm t y)), (2)

where ψ(x), ti, sj , uk do not contain y. Let φ∗(x) be the formula

ψ(x) ∧
n∧
i=1

m∧
j=1

(uj v sj t ti), (3)

and let T ∗0 be obtained from T0 by adding to it the universal closures of all
formulae φ↔ φ∗.

We prove that T ∗0 is contained in the theory of Boolean algebras. In fact, the
system of disequations (2) is equivalent, in the theory of Boolean algebras, to

ψ(x)∧∃y.((y v t1)∧ · · · ∧ (y v tn)∧ (u1 u¬s1 v y)∧ · · · ∧ (um u¬sm v y), (4)

and hence to

ψ(x) ∧ (u1 u ¬s1 v t1 u . . . u tn) ∧ · · · ∧ (um u ¬sm v t1 u . . . u tn). (5)

Finally, it is easy to see that (5) and (3) are equivalent.
Since every semilattice embeds into a Boolean algebra [2], this shows that

T ∗0 is the positive algebraic completion of T0. In addition, this implies that any
Boolean-based equational theory T is T0-algebraically compatible since T ∗0 is
contained in T . Consequently, Theorem 1 covers the case of a basic E-connection
(see Example 1) for arbitrary classical modal logics as components.

In [2] we show a similar result for the case where the theory T0 is the theory
of distributive lattices with ⊥. Thus, our result also covers the case of connecting
relations that are partial functions (see Example 2).

Complexity considerations

The complexity of the combined decision procedure described in the proof of
Theorem 1 is usually higher than the complexity of the decision procedures for
the components. There are two main reasons for this complexity increase. First,
one must guess the Ω0-structures A,B as the well as the mapping ν : A → B.
This can be done by a non-deterministic procedure whose complexity depends
on the bound on the size of Ω0-models of T0 with n generators given by the
effective local finiteness of T0. Second, the decision procedures for T1 and T2 are



respectively applied to Γ1 ∪∆Ω0(A) and Γ2 ∪∆Ω0(B). The size of the diagrams
again depends on the bound on the size of finitely generated Ω0-models of T0.

Let us consider the case where T0 is the theory of semilattices (see Examples 1
and 4) in more detail. Given generators a1, . . . , an, there are 2n representative
terms, namely all terms of the form ai1 t · · · t aik for {i1, . . . , ik} ⊆ {1, . . . , n}
(where the empty disjunction corresponds to ⊥). Atoms are of the form t1 ≈ t2
where t1, t2 are such representative terms, and thus there are 2n · 2n = 22n

atoms. One can now guess a possible diagram of an Ω0-structure by guessing (in
non-deterministic exponential time) a subset S of the set of atoms. Given such
a subset, the potential diagram is ∆S := {α | α ∈ S} ∪ {¬α | α 6∈ S}. Of course,
not every such set ∆S is indeed the diagram of an Ω0-structure, but the ones
that are not will lead to unsatisfiability when satisfiability in Ti of Γi ∪ ∆S is
tested. Since the size of ∆S is O(n ·22n), the complexity of this satisfiability test
is one exponential higher than the complexity of the satisfiability problem in Ti.

Assume that we have guessed sets S1, S2 determining the diagrams of semi-
lattices A,B generated by a1, . . . , an and b1, . . . , bn, respectively. Guessing an
Ω0-homomorphism ν : A → B is not really necessary. In fact, if it exists, such
a homomorphism ν is uniquely determined by the requirement that ν(ai) = bi
(i = 1, . . . , n) since the semilattice A is generated by the a1, . . . , an. Obviously,
an Ω0-homomorphism ν : A → B with ν(ai) = bi exists iff α(a1, . . . , an) ∈ S1 im-
plies α(b1, . . . , bn) ∈ S2 for all Ω0-atoms α(x1, . . . , xn). Thus, if one first guesses
S1, then one can start with S′1 := {α(b1, . . . , bn) | α(a1, . . . , an) ∈ S1} and add
some additional atoms when guessing S2.

To sum up, in the case of T0 being the theory of semilattices, our combined de-
cision procedure has the following complexity. Its starts with a non-deterministic
exponential step that guesses potential diagrams ∆S1 and ∆S2 such that the ho-
momorphism condition (∗) is satisfied. Then it tests Γi ∪ ∆Si (i = 1, 2) for
satisfiability in Ti. Since the size of ∆Si is exponential, the complexity of this
step is one exponential higher than the complexity of deciding the universal frag-
ment of Ti. This shows that our combination procedure has the same complexity
as the one for E-connections described in [13].

Let us consider the complexity increase caused by the combination proce-
dure in more detail for the complexity class ExpTime, which is often encoun-
tered when considering the global satisfiability problem in modal logic. Thus,
assume that the decision procedures for the universal fragments of T1 and T2

are in ExpTime, and that T0 is the theory of semilattices. The combined de-
cision procedure then generates doubly-exponentially many decision problems
of exponential size for the component procedures. Each of these component de-
cision problems can be decided in double-exponential time. Thus, the overall
complexity of the combined decision procedure is 2ExpTime.

5 A variant of the connection scheme

Here we consider a slightly different combination scheme where a theory T is
connected with itself rather than with a copy of itself. Let T0 ⊆ T be theories



over the respective signatures Ω0 ⊆ Ω. We use T>T0 to denote the theory whose
models are models M of T endowed with a homomorphism h :M|Ω0 →M|Ω0 .
Thus, the signature Ω′ of T>T0 is obtained from the signature Ω of T by adding
a new function symbol hS of arity SS for every sort S of Ω0. The axioms of
T>T0 are obtained from the axioms of T by adding

hS(f(x1, . . . , xn)) ≈ f(hS1(x1), . . . , hSn(xn)),
P (x1, . . . , xn)→ P (hS1(x1), . . . , hSn(xn)),

for every function (predicate) symbol f (P ) in Ω0 of arity S1 . . . SnS (S1 . . . Sn).

Example 5. An interesting example of a theory obtained as such a connection
is the theory EK corresponding to the basic modal logic K (see Example 1). In
fact, let T be the theory of Boolean algebras, and T0 the theory of semilattices
over the signature Ω0 as defined in Example 1. If we use the symbol ♦ for the
connection function, then T>T0 is exactly the theory EK.

Theorem 2. Let T0, T be theories over the respective signatures Ω0, Ω, where
Ω0 is a subsignature of Ω. Assume that T0 ⊆ T , that T0 is universal and ef-
fectively locally finite, and that T is T0-algebraically compatible. Then the de-
cidability of the universal fragment of T entails the decidability of the universal
fragment of T>T0 .

To prove the theorem, we consider a finite set Γ ∪ Γ0 of ground flat literals over
the signature Ω′ of T>T0 , where Γ is a set of literals in the signature Ω of T
(expanded with free constants), and Γ0 is of the form

Γ0 = {h(a1) ≈ b1, . . . , h(an) ≈ bn}.

The theorem is an easy consequence of the following proposition, whose proof is
similar to the one of Proposition 1.

Proposition 2. The constraint Γ ∪ Γ0 is satisfiable in T>T0 iff there exists a
triple (A,B, ν) such that

1. A is an Ω0-model of T0, which is generated by {aA1 , . . . , aAn };
2. B is an Ω0-model of T0, which is generated by {bB1 , . . . , bBn};
3. ν : A → B is an Ω0-homomorphism such that ν(aAj ) = bBj for j = 1, . . . , n;
4. Γ ∪∆Ω0(A) ∪∆Ω0(B) is satisfiable in T .

Applied to the connection of BA with itself w.r.t. the theory of semilattices
considered in Example 5, the theorem shows that deciding the universal theory of
EK can be reduced to deciding the universal theory of BA. It is well-known that
deciding the universal theory of EK is equivalent to deciding global consequence
in K, and that deciding the universal theory of BA is equivalent to proposi-
tional reasoning. Thus, we have shown the (rather surprising) result that the
global consequence problem in K can be reduced to purely propositional reason-
ing. However, if we directly apply the non-deterministic combination algorithm
suggested by Proposition 2, then the complexity of the obtained decision pro-
cedure is worse then the known ExpTime-complexity [20] of the problem. The
deterministic combination procedure described below overcomes this problem.



A deterministic combination procedure

As pointed out in [18], Nelson-Oppen style combination procedures can be made
deterministic in the presence of a certain convexity condition. Let T be a theory
over the signature Ω, and let Ω0 be a subsignature of Ω. Following [21], we say
that T is Ω0-convex iff every finite set of ground ΩX -literals (using additional
free constants from X) T -entailing a disjunction of n > 1 ground ΩX0 -atoms,
already T -entails one of the disjuncts. Note that universal Horn Ω-theories are
always Ω-convex. In particular, this means that equational theories (like BA)
are convex w.r.t. any subsignature.

Let T0 ⊆ T be theories over the respective signatures Ω0, Ω, where Ω0 is a
subsignature of Ω. If T is Ω0-convex, then Theorem 2 can be shown with the
help of a deterministic combination procedure. (The same is actually also true
for Theorem 1, but will not explicitly be shown here.)

Let Γ ∪ Γ0 be a finite set of ground flat literals (with free constants) in the
signature of T>T0 ; suppose also that Γ does not contain the symbol h and that
Γ0 = {h(a1) ≈ b1, . . . , h(an) ≈ bn}. We say that Γ is Γ0-saturated iff for every
Ω0-atom α(x1, . . . , xn), T ∪ Γ |= α(a1, . . . , an) implies α(b1, . . . , bn) ∈ Γ.

Theorem 3. Let T0, T be theories over the respective signatures Ω0, Ω, where
Ω0 is a subsignature of Ω. Assume that T0 ⊆ T , that T0 is universal and ef-
fectively locally finite, and that T is Ω0-convex and T0-algebraically compatible.
Then the following deterministic procedure decides whether Γ ∪ Γ0 is satisfiable
in T>T0 (where Γ, Γ0 are as above):

1. Γ0-saturate Γ ;
2. check whether the Γ0-saturated set Γ̂ obtained this way is satisfiable in T .

The saturation process (and thus the procedure) terminates because T0 is locally
finite. In addition, if Γ ∪Γ0 is satisfied in a modelM of T>T0 , then the reduct of
M to the signature Ω obviously satisfies Γ̂ . Conversely, if the Γ0-saturated set
Γ̂ is satisfiable in T , then one can use Γ̂ to construct a triple (A,B, ν) satisfying
1.–4 of Proposition 2 (see [2] for details).

Example 5 (continued). Let us come back to the connection of T := BA with
itself w.r.t. the theory T0 of semilattices, which yields as combined theory the
equational theory EK corresponding to the basic modal logic K. In this case,
checking during the saturation process whether T ∪Γ |= α(a) amounts to check-
ing whether a propositional formula φΓ (whose size is linear in the size of Γ )
implies a propositional formula of the form ψ1 ⇔ ψ2, where ψ1, ψ2 are disjunc-
tions of the propositional variables from a. Since there are only exponentially
many different formulae of the form ψ1 ⇔ ψ2, the saturation process needs at
most exponentially many such propositional tests, and the size of the interme-
diate sets Γ and of the Γ0-saturated set Γ̂ is at most exponential. However, all
these sets contain only the free constants a. Since propositional reasoning can
be done in time exponential in the number of propositional variables, this shows
that both the saturation process and the final satisfiability test of Γ̂ in T can be
done in time exponential in the number of free constants a.



Consequently, we have shown that Theorem 3 yields an ExpTime decision
procedure for the global consequence relation in K, which thus matches the
known worst-case complexity of the problem.

6 Conditions on the connection functions

Until now, we have considered connection functions that are arbitrary homomor-
phisms. In this section we impose the additional conditions that the connection
functions be surjective, embeddings, or isomorphisms: in this way, we obtain
new combined theories, which we denote by T1 >

s
T0
T2, T1 >

em
T0

T2, T1 >
iso
T0

T2,
respectively. For these combined theories one can show combination results that
are analogous to Theorem 1: one just needs different compatibility conditions.

To treat embeddings and isomorphisms, we use the compatibility condition
introduced in [11, 3] for the case of unions of theories (see also the introduction
of this paper). Following [11, 3], we call this condition T0-compatibility in the
following.

Theorem 4. Let T0, T1, T2 be theories over the respective signatures Ω0, Ω1, Ω2,
where Ω0 is a common subsignature of Ω1 and Ω2. Assume that T0 ⊆ T1 and
T0 ⊆ T2, and that T0 is universal and effectively locally finite.

1. If T2 is T0-compatible, then the decidability of the universal fragments of T1

and T2 entails the decidability of the universal fragment of T1>
em
T0
T2.

2. If T1 and T2 are T0-compatible, then the decidability of the universal frag-
ments of T1 and T2 entails the decidability of the universal fragment of
T1>

iso
T0
T2.

A proof of this theorem, which is similar to the proof of Theorem 1, can be found
in [2]. It is easy to see that the problem of deciding the universal fragment of
T1>

iso
T0
T2 is interreducable in polynomial time with the problem of deciding the

universal fragment of T1 ∪ T2. Consequently, the proof of part 2. of Theorem 4
yields an alternative proof of the combination result in [11].

To treat T1>
s
T0
T2, we must dualize the notions “algebraic completion” and

“algebraic compatibility” (see [2] for the definitions of these dual notions, and
the formulation and proof of the corresponding combination result).

7 Conclusion

We have introduced a new scheme for combining many-sorted theories, and have
shown under which conditions decidability of the universal fragment transfers
from the component theories to their combination. Though this kind of combi-
nation has been considered before in restricted cases [13, 1, 24], it has not been
investigated in the general algebraic setting considered here.

In this paper, we mainly concentrated on the simplest case of connecting
many-sorted theories where there is just one connection function. The approach



was then extended to the case of several independent connection functions, and
to variants of the general combination scheme where the connection function
must satisfy additional properties or where a theory is connected with itself.

On the one hand, our results are more general than the combination results
for E-connections of abstract description systems shown in [13] since they are
not restricted to Boolean-based equational theories, which are closely related to
abstract description systems (see Example 1). For instance, we have shown in
Example 3 that any pair of theories T1, T2 extending a universal theory T0 that
is effectively locally finite and Gaussian satisfies the prerequisites of our transfer
theorem. Examples of such theories having nothing to do with Boolean-based
equational theories can be found in [3].

On the other hand, in the E-connection approach introduced in [13], one usu-
ally considers not only the modal operator induced by a connecting relation E
(see Example 1), but also the modal operator induced by its inverse E−1. It is not
adequate to express these two modal operators by independent connection func-
tions going in different directions since this does not capture the relationships
that must hold between them. For example, if ♦ is the diamond operator induced
by the connecting relation E, and �− is the box operator induced by its inverse
E−, then the formulae x→ �−♦x and ♦�−y → y are valid in the E-connection.
In order to express these relationships in the algebraic setting without assuming
the presence of the Boolean operators in the shared theory, one can replace the
logical implication → by a partial order ≤, and require that x ≤ r(`(x)) and
`(r(y)) ≤ y hold for the connection functions r, ` generalizing the diamond and
the inverse box operator. If `, r are also order preserving, then this mean that
`, r is a pair of adjoint functions for the partial order ≤. This suggests a new way
of connecting theories through pairs of adjoint functions. Again, we can show
transfer of decidability provided that certain algebraic conditions are satisfied.
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