## Membership Constraints in Formal Concept Analysis

#### Sebastian Rudolph, Christian Săcărea, and Diana Troancă

TU Dresden and Babeş-Bolyai University of Cluj-Napoca sebastian.rudolph@tu-dresden.de, {csacarea,dianat}@cs.ubbcluj.ro

July 29, 2015

## FORMAL CONCEPT ANALYSIS

#### Definition

A formal context is a triple  $\mathbb{K} = (G, M, I)$  with a set G called **objects**, a set M called **attributes**, and  $I \subseteq G \times M$  the binary **incidence relation** where gIm means that object g has attribute m.

A formal concept of a context  $\mathbb{K}$  is a pair (A, B) with extent  $A \subseteq G$  and intent  $B \subseteq M$  satisfying  $A \times B \subseteq I$  and A, B are maximal w.r.t. this property, i.e., for every  $C \supseteq A$  and  $D \supseteq B$  with  $C \times D \subseteq I$  must hold C = A and D = B.

|                       | $m_1$ | $m_2$ | $m_3$ | $m_4$ | $m_5$ | $m_6$ |
|-----------------------|-------|-------|-------|-------|-------|-------|
| <i>g</i> <sub>1</sub> | ×     |       |       |       |       |       |
| $g_2$                 |       | ×     |       | ×     |       |       |
| $g_3$                 |       |       | ×     | ×     |       |       |
| $g_4$                 |       |       |       | ×     |       |       |
| $g_5$                 |       | ×     | ×     |       | ×     |       |
| $g_6$                 |       |       |       |       |       | ×     |



## CONSTRAINTS ON FORMAL CONTEXTS

#### Definition (inclusion/exclusion constraint)

A inclusion/exclusion constraint (MC) on a formal context  $\mathbb{K} = (G, M, I)$  is a quadruple  $\mathbb{C} = (G^+, G^-, M^+, M^-)$  with

 $\blacksquare \quad G^+ \subseteq G \ called \ required \ objects,$ 

- $\blacksquare \ G^- \subseteq G \ called \ \textit{forbidden objects},$
- $\blacksquare M^+ \subseteq M \ called \ required \ attributes, \ and$

 $\blacksquare M^- \subseteq M \ called \ forbidden \ attributes.$ 

A formal concept (A, B) of  $\mathbb{K}$  is said to **satisfy** a MC if all the following conditions hold:

 $G^+ \subseteq A$ ,  $G^- \cap A = \emptyset$ ,  $M^+ \subseteq B$ ,  $M^- \cap B = \emptyset$ . An MC is said to be **satisfiable** with respect to  $\mathbb{K}$ , if it is satisfied by one of its formal concepts.

#### Problem (MCSAT)

*input:* formal context  $\mathbb{K}$ , membership constraint  $\mathbb{C}$ output: YES if  $\mathbb{C}$  satisfiable w.r.t.  $\mathbb{K}$ , NO otherwise.

MCSAT is NP-complete, even when restricting to membership constraints of the form  $(\emptyset, G^-, \emptyset, M^-)$ .

#### Proof.

In NP: guess a pair (A, B) with  $A \subseteq G$  and  $B \subseteq M$ , then check if it is a concept satisfying the membership constraint. The check can be done in polynomial time. NP-hard: We polynomially reduce the NP-hard 3SAT problem to MCSAT.

## REDUCTION FROM 3SAT TO MCSAT (BY EXAMPLE) Satisfiability of formula

$$\varphi = (r \vee s \vee \neg q) \wedge (s \vee \neg q \vee \neg r) \wedge (\neg q \vee \neg r \vee \neg s)$$

corresponds to satisfiability of MC

$$(\emptyset, \{(r \lor s \lor \neg q), (s \lor \neg q \lor \neg r), (\neg q \lor \neg r \lor \neg s)\}, \emptyset, \{\tilde{q}, \tilde{r}, \tilde{s}\})$$

in the context

|                                    | q | r        | s | $\neg q$ | $\neg r$ | $\neg s$ | $\tilde{q}$ | $\tilde{r}$ | $\tilde{s}$ |
|------------------------------------|---|----------|---|----------|----------|----------|-------------|-------------|-------------|
| $(r \lor s \lor \neg q)$           | × |          |   |          | ×        | ×        | ×           | ×           | ×           |
| $(s \lor \neg q \lor \neg r)$      | × | $\times$ |   |          |          | ×        | ×           | ×           | ×           |
| $(\neg q \lor \neg r \lor \neg s)$ | × | ×        | × |          |          |          | ×           | Х           | ×           |
| q                                  |   | ×        | × | ×        | ×        | ×        |             | ×           | ×           |
| r                                  | × |          | × | ×        | ×        | ×        | ×           |             | ×           |
| 8                                  | × | ×        |   | ×        | ×        | ×        | ×           | ×           |             |
| $\neg q$                           | × | ×        | × |          | ×        | ×        |             | ×           | ×           |
| $\neg r$                           | × | ×        | × | ×        |          | ×        | ×           |             | ×           |
| $\neg s$                           | X | ×        | X | ×        | ×        |          | X           | X           |             |

Bijection between valuations making  $\varphi$  true (here:  $\{q \mapsto true, r \mapsto false, s \mapsto true\}$ ) and concepts satisfying MC (here:  $(\{r, \neg q, \neg s\}, \{q, s, \neg r\})$ ).

When restricted to membership constraints of the form  $(G^+, \emptyset, M^+, M^-)$  or  $(G^+, G^-, M^+, \emptyset)$  MCSAT is in AC<sub>0</sub>.

#### Proof.

 $(G^+, \emptyset, M^+, M^-)$  is satisfiable w.r.t. K if and only if it is satisfied by  $(M^{+\prime}, M^{+\prime\prime})$ . By definition, this is the case iff

- $G^+ \subseteq M^{+'}$  and
- $M^{+''} \cap M^- = \emptyset.$

These conditions can be expressed by the first-order sentences

Due to descriptive complexity theory, first-order expressibility of a property ensures that it can be checked in  $AC_0$ .

## TRIADIC FCA

#### Definition

A tricontext is a quadruple  $\mathbb{K} = (G, M, B, I)$  with

- a set G called **objects**,
- a set M called **attributes**, and
- **a** set B called **conditions**, and
- $Y \subseteq G \times M \times B$  the ternary **incidence relation** where  $(g, m, b) \in Y$  means that object g has attribute m under condition b.

#### Definition

A triconcept of a tricontext  $\mathbb{K}$  is a triple  $(A_1, A_2, A_3)$  with extent  $A_1 \subseteq G$ , intent  $A_2 \subseteq M$ , and modus  $A_3 \subseteq B$  satisfying  $A_1 \times A_2 \times A_3 \subseteq Y$  and for every  $C_1 \supseteq A_1$ ,  $C_2 \supseteq A_2$ ,  $C_3 \supseteq A_3$ that satisfy  $C_1 \times C_2 \times C_3 \subseteq Y$  holds  $C_1 = A_1$ ,  $C_2 = A_2$ , and  $C_3 = A_3$ .

## Membership constraints in triadic FCA

#### Definition

A triadic inclusion exclusion constraint (3MC) on a tricontext  $\mathbb{K} = (G, M, B, Y)$  is a sextuple  $\mathbb{C} = (G^+, G^-, M^+, M^-, B^+, B^-)$  with

- $\blacksquare G^+ \subseteq G \text{ called required objects}, G^- \subseteq G \text{ called forbidden} \\ objects,$
- $\blacksquare M^+ \subseteq M \text{ called required attributes, } M^- \subseteq M \text{ called forbidden} \\ attributes,$
- $B^+ \subseteq B$  called required conditions, and  $B^- \subseteq B$  called forbidden conditions.

A triconcept  $(A_1, A_2, A_3)$  of  $\mathbb{K}$  is said to **satisfy** such a 3MC if all the following conditions hold:  $G^+ \subseteq A_1$ ,  $G^- \cap A_1 = \emptyset$ ,  $M^+ \subseteq A_2$ ,  $M^- \cap A_2 = \emptyset$ ,  $B^+ \subseteq A_3$ ,  $B^- \cap A_3 = \emptyset$ . A 3MC constraint is said to be satisfiable with respect to  $\mathbb{K}$ , if it is satisfied by one of its triconcepts.

#### Problem (3MCSAT)

**output**: YES if  $\mathbb{C}$  satisfiable w.r.t.  $\mathbb{K}$ , NO otherwise.

#### Theorem

*3MCSAT is* NP-complete, even when restricting to *3MCs of the* following forms:

- $\blacksquare \hspace{0.1 in} (\emptyset, \hspace{0.1 in} G^- \hspace{-.1 in}, \hspace{-.1 in} \emptyset, \hspace{-.1 in} M^- \hspace{-.1 in}, \hspace{-.1 in} \emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} (\emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} M^- \hspace{-.1 in}, \hspace{-.1 in} \emptyset, \hspace{-.1 in} B^-), \hspace{0.1 in} (\emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} M^- \hspace{-.1 in}, \hspace{-.1 in} \emptyset, \hspace{-.1 in} B^-), \hspace{0.1 in} (\emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} M^- \hspace{-.1 in}, \hspace{-.1 in} \emptyset, \hspace{-.1 in} B^-), \hspace{0.1 in} (\emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} M^- \hspace{-.1 in}, \hspace{-.1 in} \emptyset, \hspace{-.1 in} B^-), \hspace{0.1 in} (\emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} M^- \hspace{-.1 in}, \hspace{-.1 in} \emptyset, \hspace{-.1 in} B^-), \hspace{0.1 in} (\emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} M^- \hspace{-.1 in}, \hspace{-.1 in} \emptyset, \hspace{-.1 in} B^-), \hspace{0.1 in} (\emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} M^- \hspace{-.1 in}, \hspace{-.1 in} \emptyset, \hspace{-.1 in} B^-), \hspace{0.1 in} (\emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} M^- \hspace{-.1 in}, \hspace{-.1 in} \emptyset, \hspace{-.1 in} B^-), \hspace{0.1 in} (\emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} M^- \hspace{-.1 in} \emptyset, \hspace{-.1 in} B^-), \hspace{0.1 in} (\emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} M^- \hspace{-.1 in} \emptyset, \hspace{-.1 in} \emptyset, \hspace{-.1 in} M^- \hspace{-.1 in} \emptyset), \hspace{-.1 in} (I^-), \hspace{-.1 in} (I^-), \hspace{-.1 in} M^- \hspace{-.1 in} \emptyset, \hspace{-.1 in} M^- \hspace{-.1 in} \emptyset), \hspace{-.1 in} (I^-), \hspace{-.1 in} (I^-), \hspace{-.1 in} M^- \hspace{-.1 in} \emptyset), \hspace{-.1 in} (I^-), \hspace{-.1$
- $\blacksquare \ (G^+\!\!, G^-\!\!, \!\emptyset, \!\emptyset, \!\emptyset, \!\emptyset), \ (\emptyset, \!\emptyset, M^+\!\!, M^-\!\!, \!\emptyset, \!\emptyset), \ (\emptyset, \!\emptyset, \!\emptyset, \!\emptyset, \!B^+\!\!, B^-).$

#### Proof.

In NP: guess a triple  $(A_1, A_2, A_3)$  with  $A_1 \subseteq G$  and  $A_2 \subseteq M$ and  $A_3 \subseteq M$ , then check if it is a triconcept satisfying the 3MC. The check can be done in polynomial time. NP-hard: for the first type, use the same reduction as in the previous proof. For the second type, we polynomially reduce

the NP-hard 3SAT problem to 3MCSAT in another way.

# REDUCTION FROM 3SAT TO 3MCSAT (BY EXAMPLE)

Satisfiability of formula

$$\varphi = (r \vee s \vee \neg q) \wedge (s \vee \neg q \vee \neg r) \wedge (\neg q \vee \neg r \vee \neg s)$$

corresponds to satisfiability of 3MC

 $(\{*\},\{(r \lor s \lor \neg q),(s \lor \neg q \lor \neg r),(\neg q \lor \neg r \lor \neg s)\}, \emptyset, \emptyset, \emptyset, \emptyset)$ 

#### in the tricontext

| *        | * | q | r | s |
|----------|---|---|---|---|
| *        | × | × | × | × |
| $\neg q$ | × |   | × | × |
| $\neg r$ | × | × |   | × |
| $\neg s$ | × | × | × |   |

| $r \lor s \lor \neg q$ ) | Τ | * | q | r | s |
|--------------------------|---|---|---|---|---|
|                          |   |   |   |   |   |
|                          |   | × | × |   |   |
| ٩                        |   |   | × | × | Х |
| r                        | Τ | × | × | × | × |
| ¬s                       | Τ | × | × | × | × |

| $(s \lor \neg q \lor \neg r)$ |   | * | q | r | s |
|-------------------------------|---|---|---|---|---|
| *                             |   | × | × | × |   |
| $\neg q$                      |   |   | × | × | × |
| $\neg r$                      | Π |   | × | × | × |
| $\neg s$                      | Π | × | × | × | Х |

| $\left[ \left( \neg q \lor \neg r \lor \neg s \right) \right]$ |   | * | q        | r        | s        |
|----------------------------------------------------------------|---|---|----------|----------|----------|
| *                                                              | Γ | Х | Х        | Х        | Х        |
| $\neg q$                                                       |   |   | $\times$ | $\times$ | $\times$ |
| $\neg r$                                                       |   |   | $\times$ | $\times$ | ×        |
| $\neg s$                                                       |   |   | $\times$ | $\times$ | $\times$ |

Bijection between valuations making  $\varphi$  true (here:  $\{q \mapsto true, r \mapsto false, s \mapsto true\}$ ) and triconcepts satisfying 3MC (here:  $(\{*\}, \{*, q, s\}, \{*, \neg r\})$ ).

3MCSAT is in AC<sub>0</sub> when restricting to MCs of the forms  $(\emptyset, G^-, M^+, \emptyset, B^+, \emptyset), (G^+, \emptyset, \emptyset, M^-, B^+, \emptyset), and (G^+, \emptyset, M^+, \emptyset, \emptyset, B^-).$ 

#### Proof.

 $\mathbb{C} = (\emptyset, G^-, M^+, \emptyset, B^+, \emptyset)$  is satisfiable w.r.t.  $\mathbb{K}$  if and only if the triconcept  $(G_U, M, B)$  satisfies it (where  $G_U = \{g \mid \{g\} \times M \times B \subseteq Y\}$ ), that is, if  $G_U \cap G^- = \emptyset$ . This can be expressed by the first-order formula

 $\forall x.x \in G^- \to \exists y, z.(y \in M \land z \in B \land \neg(x, y, z) \in Y).$ 

Therefore, checking satisfiability of this type of 3MCs is in  $AC_0$ . The other cases follow by symmetry.

### *n*-ADIC FCA

#### Definition

An *n*-context is an (n+1)-tuple  $\mathbb{K} = (K_1, \ldots, K_n, R)$  with  $K_1, \ldots, K_n$ being sets, and  $R \subseteq K_1 \times \ldots \times K_n$  the *n*-ary incidence relation. An *n*-concept of an *n*-context  $\mathbb{K}$  is an *n*-tuple  $(A_1, \ldots, A_n)$  satisfying  $A_1 \times \ldots \times A_n \subseteq R$  and for every *n*-tuple  $(C_1, \ldots, C_n)$  with  $A_i \supseteq C_i$ for all  $i \in \{1, \ldots, n\}$ , satisfying  $C_1 \times \ldots \times C_n \subseteq R$  holds  $C_i = A_i$  for all  $i \in \{1, \ldots, n\}$ .

#### Definition

A n-adic inclusion/exclusion constraint (nMC) on a n-context  $\mathbb{K} = (K_1, \ldots, K_n, R)$  is a 2n-tuple  $\mathbb{C} = (K_1^+, K_1^-, \ldots, K_n^+, K_n^-)$  with  $K_i^+ \subseteq K_i$  called required sets and  $K_i^- \subseteq K_i$  called forbidden sets. An n-concept  $(A_1, \ldots, A_n)$  of  $\mathbb{K}$  is said to satisfy such a membership constraint if  $K_i^+ \subseteq A_i$  and  $K_i^- \cap A_i = \emptyset$  hold for all  $i \in \{1, \ldots, n\}$ . An n-adic membership constraint is said to be satisfiable with respect to  $\mathbb{K}$ , if it is satisfied by one of its n-concepts.

#### For a fixed n > 2, the nMCSAT problem is

■ NP-complete for any class of constraints that allows for

- $\hfill\square$  the arbitrary choice of at least two forbidden sets or
- □ the arbitrary choice of at least one forbidden set and the corresponding required set,
- in AC<sub>0</sub> for the class of constraints with at most one forbidden set and the corresponding required set empty,
- trivially true for the class of constraints with all forbidden sets and at least one required set empty.

#### ECONDING IN ANSWER SET PROGRAMMING

Given an *n*-context  $\mathbb{K} = (K_1, \ldots, K_n, R)$  and  $n \text{MC} \mathbb{C} = (K_1^+, K_1^-, \ldots, K_n^+, K_n^-)$ , let the corresponding problem be given by the following set of ground facts  $F_{\mathbb{K},\mathbb{C}}$ :

- **set**<sub>i</sub>(a) for all  $a \in K_i$ ,
- **rel** $(a_1,\ldots,a_n)$  for all  $(a_1,\ldots,a_n) \in R$ ,
- **required**<sub>i</sub>(a) for all  $a \in K_i^+$ , and
- forbidden<sub>i</sub>(a) for all  $a \in K_i^-$ .

Let P denote the following fixed answer set program (with rules for every  $i \in \{1, \ldots, n\}$ ):

#### Program

$$\begin{array}{l} \operatorname{in}_{i}(x) \leftarrow \operatorname{set}_{i}(x) \wedge \operatorname{-out}_{i}(x) \\ \operatorname{out}_{i}(x) \leftarrow \operatorname{set}_{i}(x) \wedge \operatorname{-in}_{i}(x) \\ \leftarrow \bigwedge_{j \in \{1, \dots, n\}} \operatorname{in}_{j}(x_{j}) \wedge \operatorname{-rel}(x_{1}, \dots, x_{n}) \\ \operatorname{exc}_{i}(x_{i}) \leftarrow \bigwedge_{j \in \{1, \dots, n\} \setminus \{i\}} \operatorname{in}_{j}(x_{j}) \wedge \operatorname{-rel}(x_{1}, \dots, x_{n}) \\ \leftarrow \operatorname{out}_{i}(x) \wedge \operatorname{-exc}_{i}(x) \\ \leftarrow \operatorname{out}_{i}(x) \wedge \operatorname{required}_{i}(x) \\ \leftarrow \operatorname{in}_{i}(x) \wedge \operatorname{forbidden}_{i}(x) \end{array}$$

Then the answer sets of P correspond to the *n*-concepts of  $\mathbb{K}$  satisfying  $\mathbb{C}$ .

## APPLICATIONS

"concept retrieval"

 guided navigation by interactively narrowing down the search space ("faceted browsing")

context debugging

## Thank You!