Membership Constraints in Formal Concept Analysis

Sebastian Rudolph, Christian Săcărea, and Diana Troancă

TU Dresden and Babeş-Bolyai University of Cluj-Napoca sebastian.rudolph@tu-dresden.de, \{csacarea,dianat\}@cs.ubbcluj.ro

$$
\text { July } 29,2015
$$

Formal Concept Analysis

Definition

A formal context is a triple $\mathbb{K}=(G, M, I)$ with a set G called objects, a set M called attributes, and $I \subseteq G \times M$ the binary incidence relation where gIm means that object g has attribute m.
A formal concept of a context \mathbb{K} is a pair (A, B) with extent $A \subseteq G$ and intent $B \subseteq M$ satisfying $A \times B \subseteq I$ and A, B are maximal w.r.t. this property, i.e., for every $C \supseteq A$ and $D \supseteq B$ with $C \times D \subseteq I$ must hold $C=A$ and $D=B$.

	m_{1}	m_{2}	m_{3}	m_{4}	m_{5}	m_{6}
g_{1}	\times					
g_{2}		\times		\times		
g_{3}			\times	\times		
g_{4}				\times		
g_{5}		\times	\times		\times	
g_{6}						\times

Constraints on Formal Contexts

Definition (inclusion/exclusion constraint)

A inclusion/exclusion constraint (MC) on a formal context $\mathbb{K}=(G, M, I)$ is a quadruple $\mathbb{C}=\left(G^{+}, G^{-}, M^{+}, M^{-}\right)$with

- $G^{+} \subseteq G$ called required objects,
- $G^{-} \subseteq G$ called forbidden objects,
- $M^{+} \subseteq M$ called required attributes, and
- $M^{-} \subseteq M$ called forbidden attributes.

A formal concept (A, B) of \mathbb{K} is said to satisfy a $M C$ if all the following conditions hold:

$$
G^{+} \subseteq A, \quad G^{-} \cap A=\emptyset, \quad M^{+} \subseteq B, \quad M^{-} \cap B=\emptyset .
$$

An MC is said to be satisfiable with respect to \mathbb{K}, if it is satisfied by one of its formal concepts.

Problem (MCSAT)

input: \quad formal context \mathbb{K}, membership constraint \mathbb{C} output: YES if \mathbb{C} satisfiable w.r.t. \mathbb{K}, NO otherwise.

Theorem

MCSAT is NP-complete, even when restricting to membership constraints of the form $\left(\emptyset, G^{-}, \emptyset, M^{-}\right)$.

Proof.

In NP: guess a pair (A, B) with $A \subseteq G$ and $B \subseteq M$, then check if it is a concept satisfying the membership constraint. The check can be done in polynomial time.
NP-hard: We polynomially reduce the NP-hard 3SAT problem to MCSAT.

Reduction from 3SAT to MCSAT (By EXAmple)

Satisfiability of formula

$$
\varphi=(r \vee s \vee \neg q) \wedge(s \vee \neg q \vee \neg r) \wedge(\neg q \vee \neg r \vee \neg s)
$$

corresponds to satisfiability of MC

$$
(\emptyset,\{(r \vee s \vee \neg q),(s \vee \neg q \vee \neg r),(\neg q \vee \neg r \vee \neg s)\}, \emptyset,\{\tilde{q}, \tilde{r}, \tilde{s}\})
$$

in the context

	q	r	s	$\neg q$	$\neg r$	$\neg s$	\tilde{q}	\tilde{r}	\tilde{s}
$(r \vee s \vee \neg q)$	\times				\times	\times	\times	\times	\times
$(s \vee \neg q \vee \neg r)$	\times	\times				\times	\times	\times	\times
$(\neg q \vee \neg r \vee \neg s)$	\times	\times	\times				\times	\times	\times
q		\times	\times	\times	\times	\times		\times	\times
r	\times		\times	\times	\times	\times	\times		\times
s	\times	\times		\times	\times	\times	\times	\times	
$\neg q$	\times	\times	\times		\times	\times		\times	\times
$\neg r$	\times	\times	\times	\times		\times	\times		\times
$\neg s$	\times	\times	\times	\times	\times		\times	\times	

Bijection between valuations making φ true (here:
$\{q \mapsto$ true,$r \mapsto$ false, $s \mapsto$ true $\}$)
and concepts satisfying MC (here: $(\{r, \neg q, \neg s\},\{q, s, \neg r\})$).

Theorem

When restricted to membership constraints of the form $\left(G^{+}, \emptyset, M^{+}, M^{-}\right)$or $\left(G^{+}, G^{-}, M^{+}, \emptyset\right)$ MCSAT is in AC_{0}.

Proof.

$\left(G^{+}, \emptyset, M^{+}, M^{-}\right)$is satisfiable w.r.t. \mathbb{K} if and only if it is satisfied by $\left(M^{+^{\prime}}, M^{+\prime \prime}\right)$. By definition, this is the case iff
(1) $G^{+} \subseteq M^{+\prime}$ and
(2) $M^{+\prime \prime} \cap M^{-}=\emptyset$.

These conditions can be expressed by the first-order sentences
(1) $\forall x, y \cdot\left(x \in G^{+} \wedge y \in M^{+} \rightarrow x I y\right)$ and
(2) $\forall x \cdot\left(x \in M^{-} \rightarrow \exists y \cdot\left(\forall z \cdot\left(z \in M^{+} \rightarrow y I z\right) \wedge \neg y I x\right)\right)$.

Due to descriptive complexity theory, first-order expressibility of a property ensures that it can be checked in AC_{0}.

Triadic FCA

Definition

A tricontext is a quadruple $\mathbb{K}=(G, M, B, I)$ with

- a set G called objects,
- a set M called attributes, and
- a set B called conditions, and
- $Y \subseteq G \times M \times B$ the ternary incidence relation where $(g, m, b) \in Y$ means that object g has attribute m under condition b.

Definition

A triconcept of a tricontext \mathbb{K} is a triple $\left(A_{1}, A_{2}, A_{3}\right)$ with extent $A_{1} \subseteq G$, intent $A_{2} \subseteq M$, and modus $A_{3} \subseteq B$ satisfying $A_{1} \times A_{2} \times A_{3} \subseteq Y$ and for every $C_{1} \supseteq A_{1}, C_{2} \supseteq A_{2}, C_{3} \supseteq A_{3}$ that satisfy $C_{1} \times C_{2} \times C_{3} \subseteq Y$ holds $C_{1}=A_{1}, C_{2}=A_{2}$, and $C_{3}=A_{3}$.

Membership constraints in triadic FCA

Definition

A triadic inclusion exclusion constraint (3MC) on a tricontext $\mathbb{K}=(G, M, B, Y)$ is a sextuple $\mathbb{C}=\left(G^{+}, G^{-}, M^{+}, M^{-}, B^{+}, B^{-}\right)$with
■ $G^{+} \subseteq G$ called required objects, $G^{-} \subseteq G$ called forbidden objects,
■ $M^{+} \subseteq M$ called required attributes, $M^{-} \subseteq M$ called forbidden attributes,
■ $B^{+} \subseteq B$ called required conditions, and $B^{-} \subseteq B$ called forbidden conditions.

A triconcept $\left(A_{1}, A_{2}, A_{3}\right)$ of \mathbb{K} is said to satisfy such a $3 M C$ if all the following conditions hold: $G^{+} \subseteq A_{1}, G^{-} \cap A_{1}=\emptyset, M^{+} \subseteq A_{2}$, $M^{-} \cap A_{2}=\emptyset, B^{+} \subseteq A_{3}, B^{-} \cap A_{3}=\emptyset$.
A 3MC constraint is said to be satisfiable with respect to \mathbb{K}, if it is satisfied by one of its triconcepts.

Problem (3MCSAT)

input: formal context \mathbb{K}, triadic inclusion/exclusion constraint \mathbb{C}
output: YES if \mathbb{C} satisfiable w.r.t. \mathbb{K}, NO otherwise.

Theorem

3MCSAT is NP-complete, even when restricting to 3MCs of the following forms:

$$
\begin{aligned}
\text { - } & \left(\emptyset, G^{-}, \emptyset, M^{-}, \emptyset, \emptyset\right),\left(\emptyset, G^{-}, \emptyset, \emptyset, \emptyset, B^{-}\right),\left(\emptyset, \emptyset, \emptyset, M^{-}, \emptyset, B^{-}\right), \\
- & \left(G^{+}, G^{-}, \emptyset, \emptyset, \emptyset, \emptyset\right),\left(\emptyset, \emptyset, M^{+}, M^{-}, \emptyset, \emptyset\right),\left(\emptyset, \emptyset, \emptyset, \emptyset, B^{+}, B^{-}\right) .
\end{aligned}
$$

Proof.

In NP: guess a triple $\left(A_{1}, A_{2}, A_{3}\right)$ with $A_{1} \subseteq G$ and $A_{2} \subseteq M$ and $A_{3} \subseteq M$, then check if it is a triconcept satisfying the 3MC. The check can be done in polynomial time.
NP-hard: for the first type, use the same reduction as in the previous proof. For the second type, we polynomially reduce the NP-hard 3SAT problem to 3MCSAT in another way.

Reduction from 3SAT to 3MCSAT (By example)

Satisfiability of formula

$$
\varphi=(r \vee s \vee \neg q) \wedge(s \vee \neg q \vee \neg r) \wedge(\neg q \vee \neg r \vee \neg s)
$$

corresponds to satisfiability of 3 MC

$$
(\{*\},\{(r \vee s \vee \neg q),(s \vee \neg q \vee \neg r),(\neg q \vee \neg r \vee \neg s)\}, \emptyset, \emptyset, \emptyset, \emptyset)
$$

in the tricontext

*	*	q	r	s	$(r \vee s \vee \neg q)$	*	q	r	s	$(s \vee \neg q \vee \neg r)$	*	q	r	s	$(\neg q \vee \neg r \vee \neg s)$	*	q	r	s
*	\times	\times	\times	\times	*	\times	\times			*	\times	\times	\times		*	\times	\times	\times	\times
$\neg q$	\times		\times	\times	$\neg q$		\times	\times	\times	$\neg q$		\times	\times	\times	$\neg q$		\times	\times	\times
$\neg r$	\times	\times		\times	$\neg r$	\times	\times	\times	\times	$\neg r$		\times	\times	\times	$\neg r$		\times	\times	\times
$\neg s$	\times	\times	\times		$\neg s$	\times	\times	\times	\times	$\neg s$	\times	\times	\times	\times	$\neg s$		\times	\times	\times

Bijection between valuations making φ true (here:
$\{q \mapsto$ true, $r \mapsto$ false, $s \mapsto$ true $\}$)
and triconcepts satisfying 3MC (here: $(\{*\},\{*, q, s\},\{*, \neg r\})$).

Theorem

3MCSAT is in AC_{0} when restricting to MCs of the forms
$\left(\emptyset, G^{-}, M^{+}, \emptyset, B^{+}, \emptyset\right),\left(G^{+}, \emptyset, \emptyset, M^{-}, B^{+}, \emptyset\right)$, and
$\left(G^{+}, \emptyset, M^{+}, \emptyset, \emptyset, B^{-}\right)$.

Proof.

$\mathbb{C}=\left(\emptyset, G^{-}, M^{+}, \emptyset, B^{+}, \emptyset\right)$ is satisfiable w.r.t. \mathbb{K} if and only if the triconcept $\left(G_{U}, M, B\right)$ satisfies it (where
$G_{U}=\{g \mid\{g\} \times M \times B \subseteq Y\}$), that is, if $G_{U} \cap G^{-}=\emptyset$. This can be expressed by the first-order formula

$$
\forall x . x \in G^{-} \rightarrow \exists y, z .(y \in M \wedge z \in B \wedge \neg(x, y, z) \in Y)
$$

Therefore, checking satisfiability of this type of 3MCs is in AC_{0}. The other cases follow by symmetry.

n-ADIC FCA

Definition

An n-context is an ($n+1$)-tuple $\mathbb{K}=\left(K_{1}, \ldots, K_{n}, R\right)$ with K_{1}, \ldots, K_{n} being sets, and $R \subseteq K_{1} \times \ldots \times K_{n}$ the n-ary incidence relation. An n-concept of an n-context \mathbb{K} is an n-tuple $\left(A_{1}, \ldots, A_{n}\right)$ satisfying $A_{1} \times \ldots \times A_{n} \subseteq R$ and for every n-tuple $\left(C_{1}, \ldots, C_{n}\right)$ with $A_{i} \supseteq C_{i}$ for all $i \in\{1, \ldots, n\}$, satisfying $C_{1} \times \ldots \times C_{n} \subseteq R$ holds $C_{i}=A_{i}$ for all $i \in\{1, \ldots, n\}$.

Definition

A n-adic inclusion/exclusion constraint ($n M C$) on a n-context $\mathbb{K}=\left(K_{1}, \ldots, K_{n}, R\right)$ is a $2 n$-tuple $\mathbb{C}=\left(K_{1}^{+}, K_{1}^{-}, \ldots, K_{n}^{+}, K_{n}^{-}\right)$with $K_{i}^{+} \subseteq K_{i}$ called required sets and $K_{i}^{-} \subseteq K_{i}$ called forbidden sets. An n-concept $\left(A_{1}, \ldots, A_{n}\right)$ of \mathbb{K} is said to satisfy such a membership constraint if $K_{i}^{+} \subseteq A_{i}$ and $K_{i}^{-} \cap A_{i}=\emptyset$ hold for all $i \in\{1, \ldots, n\}$. An n-adic membership constraint is said to be satisfiable with respect to \mathbb{K}, if it is satisfied by one of its n-concepts.

Theorem

For a fixed $n>2$, the $n M C S A T$ problem is

- NP-complete for any class of constraints that allows for
- the arbitrary choice of at least two forbidden sets or
\square the arbitrary choice of at least one forbidden set and the corresponding required set,
- in AC_{0} for the class of constraints with at most one forbidden set and the corresponding required set empty,
- trivially true for the class of constraints with all forbidden sets and at least one required set empty.

EcONDING IN ANSWER SET PROGRAMMING

Given an n-context $\mathbb{K}=\left(K_{1}, \ldots, K_{n}, R\right)$ and $n \mathrm{MC} \mathbb{C}=\left(K_{1}^{+}, K_{1}^{-}, \ldots, K_{n}^{+}, K_{n}^{-}\right)$, let the corresponding problem be given by the following set of ground facts $F_{\mathbb{K}, \mathbb{C}}$:
$\square \operatorname{set}_{i}(a)$ for all $a \in K_{i}$,
$\square \operatorname{rel}\left(a_{1}, \ldots, a_{n}\right)$ for all $\left(a_{1}, \ldots, a_{n}\right) \in R$,

- $\operatorname{required}_{i}(a)$ for all $a \in K_{i}^{+}$, and
\square forbidden $_{i}(a)$ for all $a \in K_{i}^{-}$.
Let P denote the following fixed answer set program (with rules for every $i \in\{1, \ldots, n\})$:

Program

$$
\begin{aligned}
\operatorname{in}_{i}(x) & \leftarrow \operatorname{set}_{i}(x) \wedge{\sim \operatorname{out}_{i}(x)}^{\operatorname{out}_{i}(x)}
\end{aligned} \leftarrow \operatorname{set}_{i}(x) \wedge \operatorname{in}_{i}(x)
$$

Then the answer sets of P correspond to the n-concepts of \mathbb{K} satisfying \mathbb{C}.

Applications

■ "concept retrieval"

- guided navigation by interactively narrowing down the search space ("faceted browsing")
- context debugging

Thank You!

