
Membership Constraints in Formal Concept
Analysis

Sebastian Rudolph, Christian Săcărea, and Diana Troancă

TU Dresden and Babeş-Bolyai University of Cluj-Napoca
sebastian.rudolph@tu-dresden.de, {csacarea,dianat}@cs.ubbcluj.ro

July 29, 2015



Formal Concept Analysis

Definition
A formal context is a triple K = (G,M , I ) with a set G called
objects, a set M called attributes, and I ⊆ G ×M the binary
incidence relation where gIm means that object g has
attribute m.
A formal concept of a context K is a pair (A,B) with extent
A ⊆ G and intent B ⊆ M satisfying A× B ⊆ I and A, B are
maximal w.r.t. this property, i.e., for every C ⊇ A and D ⊇ B
with C ×D ⊆ I must hold C = A and D = B.

m1 m2 m3 m4 m5 m6

g1 ×
g2 × ×
g3 × ×
g4 ×
g5 × × ×
g6 ×



Constraints on Formal Contexts
Definition (inclusion/exclusion constraint)
A inclusion/exclusion constraint (MC) on a formal context
K = (G,M , I ) is a quadruple C = (G+,G−,M+,M−) with

� G+ ⊆ G called required objects,

� G− ⊆ G called forbidden objects,

� M+ ⊆ M called required attributes, and

� M− ⊆ M called forbidden attributes.

A formal concept (A,B) of K is said to satisfy a MC if all the
following conditions hold:

G+ ⊆ A, G− ∩A = ∅, M+ ⊆ B, M− ∩ B = ∅.
An MC is said to be satisfiable with respect to K, if it is satisfied by
one of its formal concepts.

Problem (MCSAT)
input: formal context K, membership constraint C
output: yes if C satisfiable w.r.t. K, no otherwise.



Theorem

MCSAT is NP-complete, even when restricting to membership
constraints of the form (∅,G−, ∅,M−).

Proof.
In NP: guess a pair (A,B) with A ⊆ G and B ⊆ M , then check
if it is a concept satisfying the membership constraint. The
check can be done in polynomial time.
NP-hard: We polynomially reduce the NP-hard 3SAT problem
to MCSAT.



Reduction from 3SAT to MCSAT (by example)
Satisfiability of formula

ϕ = (r ∨ s ∨ ¬q) ∧ (s ∨ ¬q ∨ ¬r) ∧ (¬q ∨ ¬r ∨ ¬s)

corresponds to satisfiability of MC

(∅, {(r ∨ s ∨ ¬q), (s ∨ ¬q ∨ ¬r), (¬q ∨ ¬r ∨ ¬s)}, ∅, {q̃, r̃ , s̃})

in the context

q r s ¬q ¬r ¬s q̃ r̃ s̃
(r ∨ s ∨ ¬q) × × × × × ×
(s ∨ ¬q ∨ ¬r) × × × × × ×
(¬q ∨ ¬r ∨ ¬s) × × × × × ×
q × × × × × × ×
r × × × × × × ×
s × × × × × × ×
¬q × × × × × × ×
¬r × × × × × × ×
¬s × × × × × × ×

Bijection between valuations making ϕ true (here:
{q 7→true, r 7→false, s 7→true})
and concepts satisfying MC (here: ({r ,¬q,¬s}, {q, s,¬r})).



Theorem
When restricted to membership constraints of the form
(G+, ∅,M+,M−) or (G+,G−,M+, ∅) MCSAT is in AC0.

Proof.
(G+, ∅,M+,M−) is satisfiable w.r.t. K if and only if it is
satisfied by (M+′,M+′′). By definition, this is the case iff

1 G+ ⊆ M+′ and
2 M+′′ ∩M− = ∅.

These conditions can be expressed by the first-order sentences
1 ∀x, y.(x∈G+ ∧ y∈M+ → xIy) and
2 ∀x.(x∈M− → ∃y.(∀z.(z∈M+ → yIz) ∧ ¬yIx)).

Due to descriptive complexity theory, first-order expressibility
of a property ensures that it can be checked in AC0.



Triadic FCA

Definition
A tricontext is a quadruple K = (G,M ,B, I ) with
� a set G called objects,
� a set M called attributes, and
� a set B called conditions, and
� Y ⊆ G ×M × B the ternary incidence relation where

(g,m, b) ∈ Y means that object g has attribute m under
condition b.

Definition
A triconcept of a tricontext K is a triple (A1,A2,A3) with
extent A1 ⊆ G, intent A2 ⊆ M, and modus A3 ⊆ B satisfying
A1 ×A2 ×A3 ⊆ Y and for every C1 ⊇ A1, C2 ⊇ A2, C3 ⊇ A3
that satisfy C1 × C2 × C3 ⊆ Y holds C1 = A1, C2 = A2, and
C3 = A3.



Membership constraints in triadic FCA

Definition
A triadic inclusion exclusion constraint (3MC) on a tricontext
K = (G,M ,B,Y ) is a sextuple C = (G+,G−,M+,M−,B+,B−) with

� G+⊆ G called required objects, G−⊆ G called forbidden
objects,

� M+⊆ M called required attributes, M−⊆ M called forbidden
attributes,

� B+⊆ B called required conditions, and B−⊆ B called forbidden
conditions.

A triconcept (A1,A2,A3) of K is said to satisfy such a 3MC if all
the following conditions hold: G+ ⊆ A1, G− ∩A1 = ∅, M+ ⊆ A2,
M− ∩A2 = ∅, B+ ⊆ A3, B− ∩A3 = ∅.
A 3MC constraint is said to be satisfiable with respect to K, if it is
satisfied by one of its triconcepts.



Problem (3MCSAT)
input: formal context K, triadic inclusion/exclusion

constraint C
output: yes if C satisfiable w.r.t. K, no otherwise.

Theorem
3MCSAT is NP-complete, even when restricting to 3MCs of the
following forms:
� (∅,G−,∅,M−,∅,∅), (∅,G−,∅,∅,∅,B−), (∅,∅,∅,M−,∅,B−),
� (G+,G−,∅,∅,∅,∅), (∅,∅,M+,M−,∅,∅), (∅,∅,∅,∅,B+,B−).

Proof.
In NP: guess a triple (A1,A2,A3) with A1 ⊆ G and A2 ⊆ M
and A3 ⊆ M , then check if it is a triconcept satisfying the 3MC.
The check can be done in polynomial time.
NP-hard: for the first type, use the same reduction as in the
previous proof. For the second type, we polynomially reduce
the NP-hard 3SAT problem to 3MCSAT in another way.



Reduction from 3SAT to 3MCSAT (by
example)

Satisfiability of formula

ϕ = (r ∨ s ∨ ¬q) ∧ (s ∨ ¬q ∨ ¬r) ∧ (¬q ∨ ¬r ∨ ¬s)

corresponds to satisfiability of 3MC

({∗}, {(r ∨ s ∨ ¬q), (s ∨ ¬q ∨ ¬r), (¬q ∨ ¬r ∨ ¬s)}, ∅, ∅, ∅, ∅)

in the tricontext
∗ ∗ q r s
∗ × × × ×
¬q × × ×
¬r × × ×
¬s × × ×

(r∨s∨¬q) ∗ q r s
∗ × ×
¬q × × ×
¬r × × × ×
¬s × × × ×

(s∨¬q∨¬r) ∗ q r s
∗ × × ×
¬q × × ×
¬r × × ×
¬s × × × ×

(¬q∨¬r∨¬s) ∗ q r s
∗ × × × ×
¬q × × ×
¬r × × ×
¬s × × ×

Bijection between valuations making ϕ true (here:
{q 7→true, r 7→false, s 7→true})
and triconcepts satisfying 3MC (here: ({∗}, {∗, q, s}, {∗,¬r})).



Theorem
3MCSAT is in AC0 when restricting to MCs of the forms
(∅,G−,M+, ∅,B+, ∅), (G+, ∅, ∅,M−,B+, ∅), and
(G+, ∅,M+, ∅, ∅,B−).

Proof.
C = (∅,G−,M+, ∅,B+, ∅) is satisfiable w.r.t. K if and only if
the triconcept (GU ,M ,B) satisfies it (where
GU = {g | {g} ×M × B ⊆ Y }), that is, if GU ∩G− = ∅. This
can be expressed by the first-order formula

∀x.x ∈ G− → ∃y, z.(y ∈ M ∧ z ∈ B ∧ ¬(x, y, z) ∈ Y ).

Therefore, checking satisfiability of this type of 3MCs is in
AC0. The other cases follow by symmetry.



n-adic FCA

Definition
An n-context is an (n+1)-tuple K = (K1, . . . ,Kn,R) with K1, . . . ,Kn
being sets, and R ⊆ K1 × . . .×Kn the n-ary incidence relation.
An n-concept of an n-context K is an n-tuple (A1, . . . ,An) satisfying
A1 × . . .×An ⊆ R and for every n-tuple (C1, . . . ,Cn) with Ai ⊇ Ci
for all i ∈ {1, . . . ,n}, satisfying C1 × . . .× Cn ⊆ R holds Ci = Ai for
all i ∈ {1, . . . ,n}.

Definition
A n-adic inclusion/exclusion constraint (nMC) on a n-context
K = (K1, . . . ,Kn,R) is a 2n-tuple C = (K+

1 ,K−
1 , . . . ,K+

n ,K−
n ) with

K+
i ⊆ Ki called required sets and K−

i ⊆ Ki called forbidden sets.
An n-concept (A1, . . . ,An) of K is said to satisfy such a membership
constraint if K+

i ⊆ Ai and K−
i ∩Ai = ∅ hold for all i ∈ {1, . . . ,n}.

An n-adic membership constraint is said to be satisfiable with respect
to K, if it is satisfied by one of its n-concepts.



Theorem
For a fixed n > 2, the nMCSAT problem is
� NP-complete for any class of constraints that allows for

� the arbitrary choice of at least two forbidden sets or
� the arbitrary choice of at least one forbidden set and the

corresponding required set,
� in AC0 for the class of constraints with at most one

forbidden set and the corresponding required set empty,
� trivially true for the class of constraints with all forbidden

sets and at least one required set empty.



Econding in answer set programming
Given an n-context K = (K1, . . . , Kn , R) and nMC C = (K+

1 , K−1 , . . . , K+
n , K−n ),

let the corresponding problem be given by the following set of ground facts FK,C:

� seti(a) for all a ∈ Ki ,
� rel(a1, . . . , an) for all (a1, . . . , an) ∈ R,
� requiredi(a) for all a ∈ K+

i , and

� forbiddeni(a) for all a ∈ K−i .

Let P denote the following fixed answer set program (with rules for every
i ∈ {1, . . . , n}):

Program
ini(x) ← seti(x) ∧ ∼outi(x)

outi(x) ← seti(x) ∧ ∼ini(x)
←

∧
j∈{1,...,n} inj(xj) ∧ ∼rel(x1, . . . , xn)

exci(xi) ←
∧

j∈{1,...,n}\{i} inj(xj) ∧ ∼rel(x1, . . . , xn)
← outi(x) ∧ ∼exci(x)
← outi(x) ∧ requiredi(x)
← ini(x) ∧ forbiddeni(x)

Then the answer sets of P correspond to the n-concepts of K satisfying C.



Applications

� "concept retrieval"
� guided navigation by interactively narrowing down the

search space (“faceted browsing”)
� context debugging

Thank You!


