
DATABASE THEORY

Lecture 13: Datalog Expressivity and Containment

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 24th May 2022

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2022)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

Review: Datalog
A rule-based recursive query language

father(alice, bob)

mother(alice, carla)

Parent(x, y)← father(x, y)

Parent(x, y)← mother(x, y)

SameGeneration(x, x)

SameGeneration(x, y)← Parent(x, v) ∧ Parent(y, w) ∧ SameGeneration(v, w)

There are three equivalent ways of defining Datalog semantics:
• Proof-theoretic: What can be proven deductively?
• Operational: What can be computed bottom up?
• Model-theoretic: What is true in the least model?

Datalog is more complex than FO query answering:
• ExpTime-complete for query and combined complexity
• P-complete for data complexity

Next question: Is Datalog also more expressive than FO query answering?
Markus Krötzsch, 24th May 2022 Database Theory slide 2 of 27

Expressivity

Markus Krötzsch, 24th May 2022 Database Theory slide 3 of 27

The Big Picture

Where does Datalog fit in this picture?

Tree CQs

k-Bounded Hypertree Width
everything (sub)polynomial

Conjunctive Queries

Arbitrary Query Mappings

First-Order Queries

Polynomial Time Query Mappings

Data compl.: AC0; everything else: NP

equivalence/containment/emptiness: undec.
Data compl.: AC0, Comb./Query compl.: PSpace

everything undecidable

Markus Krötzsch, 24th May 2022 Database Theory slide 4 of 27

Expressivity of Datalog

Datalog is P-complete for data complexity:

• Entailments can be computed in polynomial time with respect to the size of the
input database I

• There is a Datalog program P, such that all problems that can be solved in
polynomial time can be reduced to the question whether P entails some fact over a
database I that can be computed in logarithmic space.

{ So Datalog can solve all polynomial problems?

No, it can’t. Many problems in P that cannot be solved in Datalog:

• Parity: Is the number of elements in the database even?

• Connectivity: Is the input database a connected graph?

• Is the input database a chain (or linear order)?

• . . .

Markus Krötzsch, 24th May 2022 Database Theory slide 5 of 27

Expressivity of Datalog

Datalog is P-complete for data complexity:

• Entailments can be computed in polynomial time with respect to the size of the
input database I

• There is a Datalog program P, such that all problems that can be solved in
polynomial time can be reduced to the question whether P entails some fact over a
database I that can be computed in logarithmic space.

{ So Datalog can solve all polynomial problems?

No, it can’t. Many problems in P that cannot be solved in Datalog:

• Parity: Is the number of elements in the database even?

• Connectivity: Is the input database a connected graph?

• Is the input database a chain (or linear order)?

• . . .

Markus Krötzsch, 24th May 2022 Database Theory slide 5 of 27

Datalog Expressivity and Homomorphisms

How can we know that something is not expressible in Datalog?

A useful property: Datalog is “closed under homomorphisms”

Theorem 13.1: Consider a Datalog program P, an atom A, and databases I and
J . If P entails A over I, and there is a homomorphism µ from I to J , then µ(P)
entails µ(A) over J .

(By µ(P) and µ(A) we mean the program/atom obtained by replacing constants in P and
A, respectively, by their µ-images.)

Proof (sketch):

• Closure under homomorphism holds for conjunctive queries

• Single rule applications are like conjunctive queries

• We can show the claim for all T i
P,I

by induction on i �

Markus Krötzsch, 24th May 2022 Database Theory slide 6 of 27

Datalog Expressivity and Homomorphisms

How can we know that something is not expressible in Datalog?

A useful property: Datalog is “closed under homomorphisms”

Theorem 13.1: Consider a Datalog program P, an atom A, and databases I and
J . If P entails A over I, and there is a homomorphism µ from I to J , then µ(P)
entails µ(A) over J .

(By µ(P) and µ(A) we mean the program/atom obtained by replacing constants in P and
A, respectively, by their µ-images.)

Proof (sketch):

• Closure under homomorphism holds for conjunctive queries

• Single rule applications are like conjunctive queries

• We can show the claim for all T i
P,I

by induction on i �

Markus Krötzsch, 24th May 2022 Database Theory slide 6 of 27

Limits of Datalog Expressiveness

Closure under homomorphism shows many limits of Datalog

Special case: there is a homomorphism from I to J if I ⊂ J
{ Datalog entailments always remain true when adding more facts

• Parity cannot be expressed

• Connectivity cannot be expressed

• It cannot be checked if the input database is a chain

• Many FO queries with negation cannot be expressed (e.g., ¬p(a))
• . . .

However this criterion is not sufficient!
Datalog cannot even express all polynomial time query mappings that are closed under
homomorphism

Markus Krötzsch, 24th May 2022 Database Theory slide 7 of 27

Limits of Datalog Expressiveness

Closure under homomorphism shows many limits of Datalog

Special case: there is a homomorphism from I to J if I ⊂ J
{ Datalog entailments always remain true when adding more facts

• Parity cannot be expressed

• Connectivity cannot be expressed

• It cannot be checked if the input database is a chain

• Many FO queries with negation cannot be expressed (e.g., ¬p(a))
• . . .

However this criterion is not sufficient!
Datalog cannot even express all polynomial time query mappings that are closed under
homomorphism

Markus Krötzsch, 24th May 2022 Database Theory slide 7 of 27

Limits of Datalog Expressiveness

Closure under homomorphism shows many limits of Datalog

Special case: there is a homomorphism from I to J if I ⊂ J
{ Datalog entailments always remain true when adding more facts

• Parity cannot be expressed

• Connectivity cannot be expressed

• It cannot be checked if the input database is a chain

• Many FO queries with negation cannot be expressed (e.g., ¬p(a))
• . . .

However this criterion is not sufficient!
Datalog cannot even express all polynomial time query mappings that are closed under
homomorphism

Markus Krötzsch, 24th May 2022 Database Theory slide 7 of 27

Capturing PTime in Datalog

How could we extend Datalog to capture all query mappings in P?
{ semipositive Datalog on an ordered domain

Definition 13.2: Semipositive Datalog, denoted Datalog⊥, extends Datalog by al-
lowing negated EDB atoms in rule bodies.
Datalog (semipositive or not) with a successor ordering assumes that there are
special EDB predicates succ (binary), first and last (unary) that characterise a to-
tal order on the active domain.

Semipositive Datalog with a total order corresponds to standard Datalog on an extended
version of the given database:

• For each ground fact r(c1, . . . , cn) with I 6|= r(c1, . . . , cn), add a new fact r̄(c1, . . . , cn)
to I, using a new EDB predicate r̄

• Replace all uses of ¬r(t1, . . . , tn) in P by r̄(t1, . . . , tn)
• Define extensions for the EDB predicates succ, first and last to characterise some

(arbitrary) total order on the active domain.

Markus Krötzsch, 24th May 2022 Database Theory slide 8 of 27

Capturing PTime in Datalog

How could we extend Datalog to capture all query mappings in P?
{ semipositive Datalog on an ordered domain

Definition 13.2: Semipositive Datalog, denoted Datalog⊥, extends Datalog by al-
lowing negated EDB atoms in rule bodies.
Datalog (semipositive or not) with a successor ordering assumes that there are
special EDB predicates succ (binary), first and last (unary) that characterise a to-
tal order on the active domain.

Semipositive Datalog with a total order corresponds to standard Datalog on an extended
version of the given database:

• For each ground fact r(c1, . . . , cn) with I 6|= r(c1, . . . , cn), add a new fact r̄(c1, . . . , cn)
to I, using a new EDB predicate r̄

• Replace all uses of ¬r(t1, . . . , tn) in P by r̄(t1, . . . , tn)
• Define extensions for the EDB predicates succ, first and last to characterise some

(arbitrary) total order on the active domain.

Markus Krötzsch, 24th May 2022 Database Theory slide 8 of 27

A PTime Capturing Result

Theorem 13.3: A Boolean query mapping defines a language in P if and only if it
can be described by a query in semipositive Datalog with a successor ordering.

Example 13.4: We can express Connectivity for binary graphs as follows:

Reachable(x, x)←

Reachable(x, y)← Reachable(y, x)

Reachable(x, z)← Reachable(x, y) ∧ edge(y, z)

Connected(x)← first(x)

Connected(y)← Connected(x) ∧ succ(x, y) ∧ Reachable(x, y)

Accept()← last(x) ∧ Connected(x)

Markus Krötzsch, 24th May 2022 Database Theory slide 9 of 27

A PTime Capturing Result

Theorem 13.3: A Boolean query mapping defines a language in P if and only if it
can be described by a query in semipositive Datalog with a successor ordering.

Example 13.4: We can express Connectivity for binary graphs as follows:

Reachable(x, x)←

Reachable(x, y)← Reachable(y, x)

Reachable(x, z)← Reachable(x, y) ∧ edge(y, z)

Connected(x)← first(x)

Connected(y)← Connected(x) ∧ succ(x, y) ∧ Reachable(x, y)

Accept()← last(x) ∧ Connected(x)

Markus Krötzsch, 24th May 2022 Database Theory slide 9 of 27

Datalog Expressivity: Summary

The PTime capturing result is a powerful and exhaustive characterisation for
semipositive Datalog with a successor ordering

Situation much less clear for other variants of Datalog (as of 2018):
• What exactly can we express in Datalog without EDB negation and/or successor

ordering?
– Does a weaker language suffice to capture PTime? { No!
– When omitting negation, do we get query mappings closed under homomorphism?

No!1

• How about query mappings in PTime that are closed under homomorphism?
– Does plain Datalog capture these? { No!2

– Does Datalog with successor ordering capture these? { No!3

1Counterexample on previous slide
2[A. Dawar, S. Kreutzer, ICALP 2008]
3[S. Rudolph, M. Thomazo, IJCAI 2016]: “We are somewhat baffled by this result: in order to

express queries which satisfy the strongest notion of monotonicity, one cannot dispense with
negation, the epitome of non-monotonicity.”
Markus Krötzsch, 24th May 2022 Database Theory slide 10 of 27

The Big Picture

Tree CQs

k-Bounded Hypertree Width
everything (sub)polynomial

Conjunctive Queries

Arbitrary Query Mappings

First-Order Queries

Polynomial Time Query Mappings

Data compl.: AC0; everything else: NP

equivalence/containment/emptiness: undec.
Data compl.: AC0, Comb./Query compl.: PSpace

everything undecidable

Datalog Queries
Data compl.: PTime, Comb./Query compl.: ExpTime

= semipositive Datalog with a successor ordering

Note: languages that capture the same query mappings must have the same data complexity, but
may differ in combined or in query complexity
Markus Krötzsch, 24th May 2022 Database Theory slide 11 of 27

Datalog Containment

Markus Krötzsch, 24th May 2022 Database Theory slide 12 of 27

Datalog Implementation and Optimisation

How can Datalog query answering be implemented?
How can Datalog queries be optimised?

Recall: static query optimisation

• Query equivalence

• Query emptiness

• Query containment

{ all undecidable for FO queries, but decidable for (U)CQs

Markus Krötzsch, 24th May 2022 Database Theory slide 13 of 27

Learning from CQ Containment?

How did we manage to decide the question Q1
?
v Q2 for conjunctive queries Q1 and Q2?

Key ideas were:

• We want to know if all situations where Q1 matches are also matched by Q2.

• We can simply view Q1 as a database IQ1 : the most general database that Q1 can
match to

• Containment Q1
?
v Q2 holds if Q2 matches the database IQ1 .

{ decidable in NP

A CQ Q[x1, . . . , xn] can be expressed as a Datalog query with a single rule
Ans(x1, . . . , xn)← Q
{ Could we apply a similar technique to Datalog?

Markus Krötzsch, 24th May 2022 Database Theory slide 14 of 27

Learning from CQ Containment?

How did we manage to decide the question Q1
?
v Q2 for conjunctive queries Q1 and Q2?

Key ideas were:

• We want to know if all situations where Q1 matches are also matched by Q2.

• We can simply view Q1 as a database IQ1 : the most general database that Q1 can
match to

• Containment Q1
?
v Q2 holds if Q2 matches the database IQ1 .

{ decidable in NP

A CQ Q[x1, . . . , xn] can be expressed as a Datalog query with a single rule
Ans(x1, . . . , xn)← Q
{ Could we apply a similar technique to Datalog?

Markus Krötzsch, 24th May 2022 Database Theory slide 14 of 27

Checking Rule Entailment

The containment decision procedure for CQs suggests a procedure for single Datalog
rules:

• Consider a Datalog program P and a rule H ← B1 ∧ . . . ∧ Bn.
• Define a database IB1∧...∧Bn as for CQs:

– For every variable x in H ← B1 ∧ . . . ∧ Bn,
we introduce a fresh constant cx, not used anywhere yet

– We define Hc to be the same as H but with each variable x replaced by cx;
similarly we define Bc

i for each 1 ≤ i ≤ n
– The database IB1∧...∧Bn contains exactly the facts Bc

i (1 ≤ i ≤ n)
• Now check if Hc ∈ T∞P (IB1∧...∧Bn):

– If no, then there is a database on which H ← B1 ∧ . . . ∧ Bn

produces an entailment that P does not produce.
– If yes, then P |= H ← B1 ∧ . . . ∧ Bn

Markus Krötzsch, 24th May 2022 Database Theory slide 15 of 27

Example: Rule Entailment
Let P be the program

Ancestor(x, y)← parent(x, y)

Ancestor(x, z)← parent(x, y) ∧ Ancestor(y, z)

and consider the rule Ancestor(x, z)← parent(x, y) ∧ parent(y, z).

Then Iparent(x,y)∧parent(y,z) = {parent(cx, cy), parent(cy, cz)} (abbreviate as I)
We can compute T∞P (I):

T0
P(I) = I

T1
P(I) = {Ancestor(cx, cy), Ancestor(cy, cz)} ∪ I

T2
P(I) = {Ancestor(cx, cz)} ∪ T1

P(I)

T3
P(I) = T2

P(I) = T∞P (I)

Therefore, Ancestor(x, z)c = Ancestor(cx, cz) ∈ T∞P (I),
so P entails Ancestor(x, z)← parent(x, y) ∧ parent(y, z).

Markus Krötzsch, 24th May 2022 Database Theory slide 16 of 27

Example: Rule Entailment
Let P be the program

Ancestor(x, y)← parent(x, y)

Ancestor(x, z)← parent(x, y) ∧ Ancestor(y, z)

and consider the rule Ancestor(x, z)← parent(x, y) ∧ parent(y, z).

Then Iparent(x,y)∧parent(y,z) = {parent(cx, cy), parent(cy, cz)} (abbreviate as I)

We can compute T∞P (I):

T0
P(I) = I

T1
P(I) = {Ancestor(cx, cy), Ancestor(cy, cz)} ∪ I

T2
P(I) = {Ancestor(cx, cz)} ∪ T1

P(I)

T3
P(I) = T2

P(I) = T∞P (I)

Therefore, Ancestor(x, z)c = Ancestor(cx, cz) ∈ T∞P (I),
so P entails Ancestor(x, z)← parent(x, y) ∧ parent(y, z).

Markus Krötzsch, 24th May 2022 Database Theory slide 16 of 27

Example: Rule Entailment
Let P be the program

Ancestor(x, y)← parent(x, y)

Ancestor(x, z)← parent(x, y) ∧ Ancestor(y, z)

and consider the rule Ancestor(x, z)← parent(x, y) ∧ parent(y, z).

Then Iparent(x,y)∧parent(y,z) = {parent(cx, cy), parent(cy, cz)} (abbreviate as I)
We can compute T∞P (I):

T0
P(I) = I

T1
P(I) = {Ancestor(cx, cy), Ancestor(cy, cz)} ∪ I

T2
P(I) = {Ancestor(cx, cz)} ∪ T1

P(I)

T3
P(I) = T2

P(I) = T∞P (I)

Therefore, Ancestor(x, z)c = Ancestor(cx, cz) ∈ T∞P (I),
so P entails Ancestor(x, z)← parent(x, y) ∧ parent(y, z).

Markus Krötzsch, 24th May 2022 Database Theory slide 16 of 27

Example: Rule Entailment
Let P be the program

Ancestor(x, y)← parent(x, y)

Ancestor(x, z)← parent(x, y) ∧ Ancestor(y, z)

and consider the rule Ancestor(x, z)← parent(x, y) ∧ parent(y, z).

Then Iparent(x,y)∧parent(y,z) = {parent(cx, cy), parent(cy, cz)} (abbreviate as I)
We can compute T∞P (I):

T0
P(I) = I

T1
P(I) = {Ancestor(cx, cy), Ancestor(cy, cz)} ∪ I

T2
P(I) = {Ancestor(cx, cz)} ∪ T1

P(I)

T3
P(I) = T2

P(I) = T∞P (I)

Therefore, Ancestor(x, z)c = Ancestor(cx, cz) ∈ T∞P (I),
so P entails Ancestor(x, z)← parent(x, y) ∧ parent(y, z).
Markus Krötzsch, 24th May 2022 Database Theory slide 16 of 27

Deciding Datalog Containment?

Idea for two Datalog programs P1 and P2:

• If P2 |= P1, then every entailment of P1 is also entailed by P2

• In particular, this means that P1 is contained in P2

• We have P2 |= P1 if P2 |= H ← B1 ∧ . . . ∧ Bn for every rule H ← B1 ∧ . . . ∧ Bn ∈ P1

• We can decide P2 |= H ← B1 ∧ . . . ∧ Bn.

Can we decide Datalog containment this way?

{ No! In fact, Datalog containment is undecidable. What’s wrong?

Markus Krötzsch, 24th May 2022 Database Theory slide 17 of 27

Deciding Datalog Containment?

Idea for two Datalog programs P1 and P2:

• If P2 |= P1, then every entailment of P1 is also entailed by P2

• In particular, this means that P1 is contained in P2

• We have P2 |= P1 if P2 |= H ← B1 ∧ . . . ∧ Bn for every rule H ← B1 ∧ . . . ∧ Bn ∈ P1

• We can decide P2 |= H ← B1 ∧ . . . ∧ Bn.

Can we decide Datalog containment this way?

{ No! In fact, Datalog containment is undecidable. What’s wrong?

Markus Krötzsch, 24th May 2022 Database Theory slide 17 of 27

Implication Entailment vs. Datalog Entailment

P1 : P2 :

A(x, y)← parent(x, y) B(x, y)← parent(x, y)

A(x, z)← parent(x, y) ∧ A(y, z) B(x, z)← parent(x, y) ∧ B(y, z)

Consider the Datalog queries 〈A, P1〉 and 〈B, P2〉

:

• Clearly, 〈A, P1〉 and 〈B, P2〉 are equivalent (and mutually contained in each other).

• However, P2 entails no rule of P1 and P1 entails no rule of P2.

{ IDB predicates do not matter in Datalog, but predicate names matter in first-order
implications

Markus Krötzsch, 24th May 2022 Database Theory slide 18 of 27

Implication Entailment vs. Datalog Entailment

P1 : P2 :

A(x, y)← parent(x, y) B(x, y)← parent(x, y)

A(x, z)← parent(x, y) ∧ A(y, z) B(x, z)← parent(x, y) ∧ B(y, z)

Consider the Datalog queries 〈A, P1〉 and 〈B, P2〉:

• Clearly, 〈A, P1〉 and 〈B, P2〉 are equivalent (and mutually contained in each other).

• However, P2 entails no rule of P1 and P1 entails no rule of P2.

{ IDB predicates do not matter in Datalog, but predicate names matter in first-order
implications

Markus Krötzsch, 24th May 2022 Database Theory slide 18 of 27

Implication Entailment vs. Datalog Entailment

P1 : P2 :

A(x, y)← parent(x, y) B(x, y)← parent(x, y)

A(x, z)← parent(x, y) ∧ A(y, z) B(x, z)← parent(x, y) ∧ B(y, z)

Consider the Datalog queries 〈A, P1〉 and 〈B, P2〉:

• Clearly, 〈A, P1〉 and 〈B, P2〉 are equivalent (and mutually contained in each other).

• However, P2 entails no rule of P1 and P1 entails no rule of P2.

{ IDB predicates do not matter in Datalog, but predicate names matter in first-order
implications

Markus Krötzsch, 24th May 2022 Database Theory slide 18 of 27

Datalog as Second-Order Logic
Datalog is a fragment of second-order logic:
IDB predicates are like variables that can take any set of tuples as value!

Example 13.5: The previous query 〈A, P1〉 can be expressed by the formula

∀A.

 ∀x, y.A(x, y) ← parent(x, y) ∧

∀x, y, z.A(x, z) ← parent(x, y) ∧ A(y, z)

→ A(v, w)

• This is a formula with two free variables v and w.
{ query with two result variables

• Intuitive semantics: “〈c, d〉 is a query result if A(c, d) holds
for all possible values of A that satisfy the rules”
{ Datalog semantics in other words

We can express any Datalog query like this, with one second-order variable per IDB
predicate.

Markus Krötzsch, 24th May 2022 Database Theory slide 19 of 27

Datalog as Second-Order Logic
Datalog is a fragment of second-order logic:
IDB predicates are like variables that can take any set of tuples as value!

Example 13.5: The previous query 〈A, P1〉 can be expressed by the formula

∀A.

 ∀x, y.A(x, y) ← parent(x, y) ∧

∀x, y, z.A(x, z) ← parent(x, y) ∧ A(y, z)

→ A(v, w)

• This is a formula with two free variables v and w.
{ query with two result variables

• Intuitive semantics: “〈c, d〉 is a query result if A(c, d) holds
for all possible values of A that satisfy the rules”
{ Datalog semantics in other words

We can express any Datalog query like this, with one second-order variable per IDB
predicate.
Markus Krötzsch, 24th May 2022 Database Theory slide 19 of 27

First-Order vs. Second-Order Logic

A Datalog program looks like a set of first-order implications,
but it has a second-order semantics

We have already seen that Datalog can express things that are impossible to express in
FO queries – that’s why we introduced it!1

Consequences for query optimisation:

• Entailment between sets of first-order implications is decidable (shown above)

• Containment between Datalog queries is not decidable (shown next)

1Possible confusion when comparing of FO and Datalog: entailments of first-order implications agree with
answers of Datalog queries, so it seems we can break the FO locality restrictions; but query answering is
model checking not entailment; FO model checking is much weaker than second-order model checking
Markus Krötzsch, 24th May 2022 Database Theory slide 20 of 27

Undecidability of Datalog Query Containment

A classical undecidable problem:

Post Correspondence Problem:

• Input: two lists of words α1, . . . ,αn and β1, . . . , βn

• Output: “yes” if there is a sequence of indices i1, i2, i3, . . . , im such that
αi1αi2αi3 · · ·αim = βi1βi2βi3 · · · βim .

{ we will reduce PCP to Datalog containment

We need to define Datalog programs that work on databases that encode words:

• We represent words by chains of binary predicates

• Binary EDB predicates represent letters

• For each letter σ, we use a binary EDB predicate letter[σ]
• We assume that the words αi have the form ai

1 · · · a
i
|αi |

, and that the words βi have
the form bi

1 · · · b
i
|βi |

Markus Krötzsch, 24th May 2022 Database Theory slide 21 of 27

Solving PCP with Datalog Containment

A program P1 to recognise potential PCP solutions.

Rules to recognise words αi and βi for every i ∈ {1, . . . , n}:

Ai(x0, x|αi |)← letter[ai
1](x0, x1) ∧ . . . ∧ letter[ai

|αi |
](x|αi |−1, x|αi |)

Bi(x0, x|βi |)← letter[bi
1](x0, x1) ∧ . . . ∧ letter[bi

|βi |
](x|βi |−1, x|βi |)

Rules to check for synchronised chains (for all i ∈ {1, . . . , n}):

PCP(x, y1, y2)← Ai(x, y1) ∧ Bi(x, y2)

PCP(x, z1, z2)← PCP(x, y1, y2) ∧ Ai(y1, z1) ∧ Bi(y2, z2)

Accept()← PCP(x, z, z)

Markus Krötzsch, 24th May 2022 Database Theory slide 22 of 27

Solving PCP with Datalog Containment (2)

Example: α1 = aa, β1 = a, α2 = b, β2 = aab

Example for an intended database and least model (selected parts):

letter[a]letter[a] letter[a] letter[a] letter[b]
1 2 3 4 5 6

A1

A2

A1

B1B1

B2

Additional IDB facts that are derived (among others):

PCP(1, 3, 2) PCP(1, 5, 3) PCP(1, 6, 6) Accept()

Markus Krötzsch, 24th May 2022 Database Theory slide 23 of 27

Solving PCP with Datalog Containment (3)

Example: α1 = aaaaa, β1 = bbb

Problem: P1 also accepts some unintended cases

letter[a]letter[a] letter[a] letter[a] letter[a]
1 2 3 4 5 6

A1

letter[b]
7 8

letter[b] letter[b]

B1

Additional IDB facts that are derived:

PCP(1, 6, 6) Accept()

Markus Krötzsch, 24th May 2022 Database Theory slide 24 of 27

Solving PCP with Datalog Containment (3)

Example: α1 = aaaaa, β1 = bbb

Problem: P1 also accepts some unintended cases

letter[a]letter[a] letter[a] letter[a] letter[a]
1 2 3 4 5 6

A1

letter[b]
7 8

letter[b] letter[b]

B1

Additional IDB facts that are derived:

PCP(1, 6, 6) Accept()

Markus Krötzsch, 24th May 2022 Database Theory slide 24 of 27

Solving PCP with Datalog Containment (4)
Solution: specify a program P2 that recognises all unwanted cases

P2 consists of the following rules (for all letters σ,σ′):

EP(x, x)←

EP(y1, y2)← EP(x1, x2) ∧ letter[σ](x1, y1) ∧ letter[σ](x2, y2)

Accept()← EP(x1, x2) ∧ letter[σ](x1, y1) ∧ letter[σ′](x2, y2) σ , σ′

NEP(x1, y2)← EP(x1, x2) ∧ letter[σ](x2, y2)

NEP(x1, y2)← NEP(x1, x2) ∧ letter[σ](x2, y2)

Accept()← NEP(x, x)

Intuition:
• EP defines equal paths (forwards, from one starting point)
• NEP defines paths of different length (from one starting point to the same end

point)

{ P2 accepts all databases with distinct parallel paths
Markus Krötzsch, 24th May 2022 Database Theory slide 25 of 27

Solving PCP with Datalog Containment (5)

What does it mean if 〈Accept, P1〉 is contained in 〈Accept, P2〉?

The following are equivalent:
• All databases with potential PCP solutions also have distinct parallel paths.

• Databases without distinct parallel paths have no PCP solutions.

• Linear databases (words) have no PCP solutions.

• The answer to the PCP is “no”.

{ If we could decide Datalog containment, we could decide PCP

Theorem 13.6: Containment and equivalence of Datalog queries are undecidable.

(Note that emptiness of Datalog queries is trivial)

Markus Krötzsch, 24th May 2022 Database Theory slide 26 of 27

Solving PCP with Datalog Containment (5)

What does it mean if 〈Accept, P1〉 is contained in 〈Accept, P2〉?

The following are equivalent:
• All databases with potential PCP solutions also have distinct parallel paths.

• Databases without distinct parallel paths have no PCP solutions.

• Linear databases (words) have no PCP solutions.

• The answer to the PCP is “no”.

{ If we could decide Datalog containment, we could decide PCP

Theorem 13.6: Containment and equivalence of Datalog queries are undecidable.

(Note that emptiness of Datalog queries is trivial)

Markus Krötzsch, 24th May 2022 Database Theory slide 26 of 27

Solving PCP with Datalog Containment (5)

What does it mean if 〈Accept, P1〉 is contained in 〈Accept, P2〉?

The following are equivalent:
• All databases with potential PCP solutions also have distinct parallel paths.

• Databases without distinct parallel paths have no PCP solutions.

• Linear databases (words) have no PCP solutions.

• The answer to the PCP is “no”.

{ If we could decide Datalog containment, we could decide PCP

Theorem 13.6: Containment and equivalence of Datalog queries are undecidable.

(Note that emptiness of Datalog queries is trivial)

Markus Krötzsch, 24th May 2022 Database Theory slide 26 of 27

Summary and Outlook

Datalog cannot express all query mappings in P . . .

. . . but semipositive Datalog with a successor ordering can

First-order rule entailment is decidable . . .

. . . but Datalog containment is not.

Next question:

• How can we implement Datalog in practice?

Markus Krötzsch, 24th May 2022 Database Theory slide 27 of 27

