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Abstract

Simultaneous localization and mapping (SLAM) is one of the core problems in
robotics. Its central theme is the estimation of the location and motion of a
mobile robot situated in an unknown environment and the simultaneous con-
struction of a map of this environment.

In this work, the problem is tackled by using vision sensors. Therefore,
classical Structure From Motion (SFM) techniques, which have a long history
in computer vision, are applied to SLAM. In general, we can distinguish two
major approaches to SFM. Firstly, we have techniques based on the recursive
Kalman Filter where time dependend sequences of images are required. The
second kind of SFM-methods utilizes the constraints in multiple view geometry.
The sequence of the images considered is independent of time.

One of our main objectives is to obtain real-time performance which is re-
quired in the field of robotics rather than offline processing.

We build upon the results by Tobias Pietzsch [24] who presented promising
results using the second kind of SFM algorithms specifically tailored for real-time
performance.

In this work we will analyze the usage of Kalman Filtering concerning the
task of SLAM and compare it with methods that utilize the multiple view con-
straints. As a sensor we will first use a single camera and then compare the
results with the performance of a stereo camera. We track 3D point features as
landmarks.
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Chapter 1

Introduction

One of the most important abilities for mobile robots is navigation. It enables
them to perform complex tasks in real-world environments. Consider for exam-
ple a mobile robot in an office environment who has to deliver mail as presented
in [19]. Without the ability to navigate, it will not be able to fulfil its task.

Nehmzow [34] proposed to devide navigation into three subtasks:

� Self-localisation

� Mapping

� Routing

Self-localisation is the ability of an autonomous robot to estimate its own posi-
tion within a coordinate frame. Generally speaking, localisation techniques can
be divided into two basic categories: Landmark-based methods and Dense Sensor
Matching . The latter uses all available sensor information and compares a dense
sensor scan with an a priori given surface map of the environment. In contrast,
landmark methods rely on the recognition of landmarks in the environment. In
this work, we will concentrate on this technique.

Landmarks need to be stationary and preferably distinguishable so that the
robot recognises them after periods of neglect. The robot’s position is estimated
with respect to them. Therefore, the position of these landmarks within a global
coordinate frame needs to be known as well. They can either be given in advance
or approximated by the robot itself. The latter implies that measurements of
features serving as landmarks inside this environment have to be taken and
are used to estimate their position, which means to build a map. Thus, the
problem of self-localisation is directly linked to mapping. Here, the term map
describes the mapping of entities in the real world to entities in an internal
representation. Concerning vision sensors this internal representation might
consist, for example, of point or line features.

Routing can be seen as an extension of localisation because the robot must
determine the start as well as the target position inside the environment.

In this work we will focus on the first two problems of navigation, sum-
marised in the term of Simultaneous Localisation and Mapping (SLAM) or also
known as Concurrent Mapping and Localisation (CML). The classical solution
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to this problem is based on the Extended Kalman Filter (EKF SLAM) which
was suggested by Smith et al. [28]. Here, it is assumed that the robot moves
in an environment with fixed landmarks that can be measured by distance
sensors. The position of the landmarks as well as of the robot at a particular
point in time are summarised in the term of the system’s state. The task is to
estimate the new state for the next point in time given the last motion of the
robot and new observations provided by the sensor.

The last movement is usually estimated by odometry data as for example
in [10].1 Traditionally, sensors to measure the landmarks were range-only
sensors such as sonar rings [25] or laser range finders (LRF) [14]. Usually,
we need to model the robot’s motion and its sensors to be able to provide
accurate estimates of the system’s state. EKF SLAM is based on a stochastic
model that involves the error concerning the position of the robot as well as
of the landmarks. These errors are assumed to be independent and to have a
Gaussian profile.

Generally, the classic approaches to SLAM using range-only sensors, are
restricted to 2D planar robot motion and mapping. This is due to the fact,
that sonar rings and LRFs just provide measurements all situated on the
same height level. Hence, movements over rough or undulated terrain are not
directly supported. Recently, we find approaches attempting to build a map in
three dimensions (3D-SLAM) using either two planar laser scanners [15] (one
pointing at the horizontal direction, the other at the vertical direction) or a
single 2D laser scanner equipped with a servo motor [4]. With the increase in
computing power we also find 3D-SLAM approaches using vision sensors. Here,
we can distinguish between monocular cameras and stereo cameras.

In contrast to LRF’s, vision systems do not perform well under certain envi-
ronmental conditions such as regions with an uniform appearance, large metallic
or transparent surfaces and poor lightning conditions.2 This is caused by the
fact, that an image not just depends on the geometry of the scene considered,
but also on its photometry . Besides the negative aspect of this dependency,
there are also advantages. With a vision sensor, we are able to percept the
surface properties of objects such as colour and material. LRFs just provide
spatial information and, inferred from the intensity of the reflected rays, also
rough information about the surface [5].

The whole complexity of the physical world cannot be captured with either
of these sensors. We need to concentrate ourselves on the properties that are of
interest for the specific task we want to solve. For the properties not perceptible,
assumptions and hypotheses should be introduced. The result of this process is
either a model or an internal representation of the world. What kind of model
we infer, depends on whether for example we want to move within the environ-
ment, visualise it from several viewpoints or recognise objects and materials.
With regard to the future goal of developing an autonomous mobile robot that
is able to solve complex tasks in real-world environments, we need to achieve
that it is able to navigate as well as to recognise objects of interest. Thus, in
the long term the usage of a camera as a sensor to solve the 3D-SLAM prob-
lem is more promising with regard to the additional ability of object recognition.

1Odometry data contains information about the covered distance from a certain starting
point based on the number of wheel revolutions.

2An LRF is also not able to recognise a glass surface
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Kalman Filter based techniques to Structure from Motion have the ad-
vantage that they are proven to be real-time compliant and that they take
the noise in the measurements into account. Here, not just the position of the
robot and the landmarks is estimated but additionally the uncertainty about
this current estimate is calculated. This information is essential to know for
the robot to be able to move without risk through an unknown environment.
To reconstruct the position of the robot and the landmarks at the current
point in time the previous estimate and current measurements are involved
in the calculations to form the new estimate. Thus, all subsequently taken
measurements are also indirectly involved at every point in time by the previous
estimate. In 2003, Andrew Davison [9] applied this approach to a hand-waved
single camera and achieved remarkable results.

In this work, we will first review and re-implement Davison’s approach
with a single camera. The problem with using a monocular vision sensor is
that the 3D geometry and ego-motion can just be recovered up to a scale
factor. Instead of real distances, we just have relative positions. This problem
can either be solved by calibrating the camera with an object of known size
at the beginning of the navigation process or by using a stereo camera. With
the latter, we are able to determine an estimate of the absolute depth of a
landmark just from the two grabbed images at a certain point of view. After
substituting the stereo camera for the monocular sensor, we will compare the
results obtained by Tobias Pietzsch, who proposed a Structure from Motion
technique based on Multiple View Geometry that was specifically tailored for
real-time processing.

To constrain the complexity of the problem some assumptions are made.

Corresponding projections of 3D points are determined. The problem
of identifying corresponding projections of a world point between several
monocular images or between stereo image pairs is solved by a feature
tracker. This feature tracker is no subject of this work and will therefore
be treated as a black box for the monocular case as well as for the usage
of a stereo camera. In [24], you can find detailed information about the
implementation of a feature tracker for a single camera.

The pinhole camera model is valid. Most cameras suffer from radial lens
distortion. We assume here, that it is negligible or already removed in a
preprocessing step.

The world is static. For the robot the 3D point features anchor the surround-
ing. Its position is related to them in the environment. Therefore, if a
features moves, the position of the robot will also assumed to have changed
although it has not moved in reality. To avoid the task of distinguishing
between static and non-static point feature, we assume that there are no
moving objects in the scene.

The initial position of the camera and a number of features is known.
In this work, we assume that the robot initially knows its position within
the environment and a certain number of features. In our future work we
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will analyse initialisation techniques for the case of SLAM with a single
and stereo camera.

This work is structured as follows: In the Chapter 2, we will give an overview
about existing solutions for the problem of SLAM. In Chapter 3 basics of pro-
jective geometry and camera models are presented. The Kalman Filter as well
as the Extended Kalman Filter (EKF) are explained in Chapter 4. Applica-
tions of the EKF to SLAM with a single camera and with a stereo camera are
given in Chapter 5. In Chapter 6 we will analyse the complexity of the EKF
and methods to reduce it. In Chapter 7 the results of several experiments on
simulated data are presented. The conclusions are drawn in Chapter 8.

Throughout this work, we expect the reader to be familiar with basic con-
cepts of stochastics such as standard deviation, variance or covariance.



Chapter 2

Related Work

The first mobile robot that used a vision sensor to act in its environment was
shakey, developed in 1969 by Nils Nilsson at the Stanford Research Institute.
It operates in highly constrained environments just containing isolated prismatic
objects, as it can be seen in Figure 2.1.

A good impression of the performance of shakey is provided by the state-
ment from Moravec in the book Robots [21]:

On a very good day it could formulate and execute, over a period
of hours, plans involving moving from place to place and pushing
blocks to achieve a goal.

Actually, most of the execution time was needed for vision processing. At the
time of shakey, real-time performance in the field of vision based navigation
was unthinkable facing the massive computational costs.

The problem of inferring 3D structure from a set of 2D images has a
long history in the field of computer vision and is known as Structure from
Motion (SFM). In general, we can distinguish two approaches to SFM. Both
have in common that they track features serving as landmarks, regardless in
which form (e.g., points or lines), through multiple images.

Firstly, there are techniques that utilise the constraints in multiple-view ge-
ometry. Generally speaking, we can determine the relative orientation and dis-
tance between two camera positions if we have given a number of corresponding
points in each image grabbed at the considered camera positions.

Secondly, we have recursive Kalman Filter based methods referred to as
SFM filtering . Here, a 3D model is constantly updated over time by the
currently grabbed image of a sequence.

In the field of Computer Vision, the unfavourable computational circumstances
led to a focus on offline or batch SFM techniques where three-dimensional
models of objects or rooms are built after the camera has captured images of
them.They fell in the first category of SFM-techniques. Global optimisation
methods are applied where all pictures are taken into account. These images
had been grabbed and saved on a computer during the robot had moved
and before they were processed. The result is optimal in the sense that it is
consistent with all available measurements at every point in time. An offline
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Figure 2.1: Shakey, the robot. Developed in 1969 by Nils Nilsson at the
Stanford Research Institute. Picture adapted from [21].
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technique which is mostly applied in the field of photogrammetry is Bundle
Adjustment ([18], [33]). Triggs et al. [33] defined it as follows:

Bundle Adjustment is the problem of refining a visual reconstruc-
tion to produce jointly optimal 3D structure and viewing parameter
(camera pose and/or calibration) estimates. Optimal means that
the parameter estimates are found by minimising some cost function
that quantifies the model fitting error, and jointly that the solution
is simultaneously optimal with respect to both feature and camera
positions.

Here, also the noise in the previously obtained measurements is involved.

In the field of robot navigation, more specifically in the field of SLAM,
traditional approaches used basically range-only sensors such as sonar rings
and laser range finders (LRFs). The large amount of image processing to
obtain spatial information is unnecessary because LRFs directly provide depth
measurements. Assuming a horizontal alignment of the considered sensor, the
measurements are all located on the same height level and thus, restricted
conditions like 2D planar robot motion and mapping were used, e.g., in [14]
or [10]. We summarise these methods in the term 2D-SLAM .

The classic solution for SLAM is based on the Extended Kalman Filter
(EKF-SLAM) and was suggested by Smith et al. [28]. In 2002, another
approach using LRF’s was developed. FastSLAM by Montemerlo et al. [20]
is based on Monte Carlo localisation (MCL) and does away with some of the
assumptions of the EKF based approaches to be able to cope with a larger
number of landmarks. FastSLAM scales better than EKF-SLAM. Nevertheless,
depending on the number of known landmarks both 2D-SLAM techniques are
real-time compliant.

Recently, there is a general tendency in robot navigation to 3D maps.
In contrast to 2D-SLAM, where we have three Degrees of Freedom (DoF),
3D-SLAM allows us to estimate six DoF.1 This enables to cope with uneven
terrain or to detect obstacles that are smaller than the height of the 2D-LRF
measurements.

To be able to percept landmarks in three dimensions, we need to apply 3D
sensor devices. First of all, we have 3D laser scanners. They either consist
of two 2D LRFs (one vertically aligned, the other horizontally aligned) as for
example in [15] or of a single 2D LRF equipped with a servo motor. Using the
latter, Nüchter presented imposing results in his diploma thesis [4].

Secondly, vision sensors are also able to percept 3D landmarks. Thanks
to the rapid development in imaging and computing hardware, nowadays it is
possible to transfer a full-resolution image into the memory of a computer at
a frame rate of 30 Hz and process the data in real-time. Also the geometry of
vision has been understood to the point that full spatial information can be
reconstructed by using a stereo camera or a sequence of pictures taken by a
monocular camera.

To enable a mobile robot to navigate purely vision-based, the formerly

12D-SLAM:2D translation and yaw; 3D-SLAM:3D translation, roll, pitch and yaw
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offline processing SFM-techniques to reconstruct 3D information from images,
have to be adapted in order to obtain real-time performance. The collection
of a batch of images before processing them, requires motion of the considered
robot. This compromises the safety of navigation. How should the robot know
how to avoid an obstacle when it obtains the necessary information after it
has already collided? Thus, the data-gathering delay cannot be forgiven. If
we assume that just one image after each time step is taken into account,
we will also not achieve real-time compliance. Every time a new image had
been grabbed the whole sequence of images has to be reconsidered for the
re-calculation of the scene. Thus, the longer the period of navigation the longer
is the calculation process. Instead of batch methods, we prefer “windowed” or
recursive versions of offline SFM-techniques.

“Windowed” methods are characterised by just processing a small and con-
stant number of images instead of the whole sequence such as in Bundle Adjust-
ment. They are also based on the geometry of multiple views. For example, in
the diploma thesis of Tobias Pietzsch [24] a method, namely “Sequential Align-
ment of Image Triples”, was analysed and improved by exploiting additional
information from redundant 2-view motion estimates. The appropriate appli-
cation fulfils the request for real-time performance. It is based on the 8-point
algorithm by Longuet-Higgins [13] for reconstructing a scene from two arbitrary
projections by just using eight corresponding points in each image. This al-
gorithm is extended to enable the reconstruction of the whole trajectory of a
mobile robot by a sequence of images captured at different positions en route.
The main problem is, that the error in each estimate for distance and relative
orientation between two views accumulate over time and causes a motion drift.

Error in the estimates is basically caused by inaccurate or respectively noisy
measurements. To diminish this problem we can try to reduce the noise, e.g.,
by using a stereo camera to derive absolute 3D positions of the considered
points, and we can handle the noise explicitly by using the second form of SFM-
techniques: the recursive Kalman Filter based methods.

In contrast to the multiple-view based approaches, the latter exploits the
chronological ordering of the obtained images and the fact that motion is sub-
jected to a certain degree of regularity. If, after time step k, the vision sensor
is situated at a known position somewhere in the room, it will not jump to a
completely different location after the next time step k +1. Rather, it will have
moved just slightly to a position near the old one. Motion depends on forces,
inertia and other physical constraints. The same we have with the process of
obtaining images from a 3D scene. Perspective projection is not arbitrary but
underlies certain laws.
Known or measurable forces or accelerations can be used in a model in or-
der to obtain an approximation of 3D structure and motion. Constraints that
are unknown, unmeasurable or too complex are treated as uncertainty in the
model. Uncertainty in forces or accelerations is represented as the realisation of
a normally distributed random vector with zero mean.

To sum up, in Kalman Filter based SFM-methods, we have a dynamical
system whose unknown state describes the structure and motion at a certain
point in time. Its “output” are the measurable images. The task is to infer the
system’s state given its output in the presence of uncertainty. Just one picture
by a monocular camera or one stereo image by a stereo camera is needed each
point in time to apply this technique.
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AIS 3D laser scanner bumblebee�

Field of Range 180◦ (horizontal)
120◦ (vertical)

100◦ (horizontal and
vertical)

min. Resolution 16,200 point
measurements in 1.35
seconds

640× 480 pixels at 30 Hz
frame rate

Size 350× 240× 240 mm 160× 40× 50 mm

Weight 4.5 kg 375 g

Power Consumption 20 W + 12 W
Servomotor

2.1 W

Price 8,500 ¿ 2,000 ¿

Table 2.1: AIS 3D laser scanner versus bumblebee�. Specifications for the LRF
adapted from [31] and for the stereo camera from [2].

Here, we have a similarity between SFM-techniques and classical SLAM-
methods: the Kalman or Extended Kalman Filter.

Recently, Chiuso et al. [3] presented a real-time sequential Kalman Filter
based SFM approach that was more focused on the mapping aspect of the
SLAM problem. Therefore, 2D projections of 3D points serving as landmarks
were tracked over time using a monocular camera. The main drawback of this
work is a motion drift that occurs because features will not be re-identified after
periods of neglect.

An impressive and successful application of vision based SLAM for a single
and a stereo camera using the Extended Kalman Filter has been developed very
recently by Davison [8], [9]. In contrast to the work of Chiuso, 3D point features
were tracked in the environment and can be re-recognised. Therefore, measure-
ments of these “old” features can be used to correct the possible drift in motion.

The question may arise what the differences between 3D LRFs and vi-
sion sensors are and where the advantages or disadvantages can be found
for each device with respect to 3D-SLAM. In Table 2.1 we listed technical
specifications for the AIS 3D laser scanner used by Nüchter [4] and for the
bumblebee� stereo camera by Point Grey Research [2]. The LRF is depicted in
Figure 2.2, the stereo camera in Figure 2.3. Just considering these technical
details, we can state that the camera has advantages over the laser apart from
a minor field of range.

Firstly, there is the time aspect. In about the time the laser range finder is
able to return the distance for a single direction, bumblebee�provides the colour
values of 786 pixels. Of course, we should not forget, that the image data need
to be processed to derive spatial information, what can be done in real-time.
Another drawback of the laser range finder is its weight and power consumption.



14 CHAPTER 2. RELATED WORK

Figure 2.2: AIS 3D laser scanner. Based on a simple 2D LRF, it is additionally
equipped with a servo motor. Picture adapted from [1].

Figure 2.3: bumblebee�stereo camera by Point Grey. Picture adapted from [2].
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The LRF actively scans the surface by emitting pulsed laser beams for which
mechanical processes are necessary. In contrast to that, a camera just passively
measures light intensities. Thus, the usage of a stereo camera will benefit to a
longer period of navigation due to a lower power consumption.

Not contained in Table 2.1 are information about the accuracy of each sensor
device. Based on the used 2D-LRF the precision of the 3D-LRF amounts to 1
or 5 cm. Additionally, we have half a degree deviation due to the time-critical
control of the servo motor. The accuracy of the camera is not measurable that
precisely. This is due to the fact, that it depends on the light and surface con-
straints in the environment. As already mentioned in the introductive chapter,
a vision sensor does not perform well under certain environmental conditions
such as uniform regions, metallic and transparent surfaces or poor lightning
conditions. Then, finding corresponding projections in multiple images becomes
harder. This is known as the data association problem [32].

On the other hand, the cause for this problem when using vision sensors
can also be seen as an advantage over the LRF: an image grabbed by a camera
not just depends on the geometry of a scene but also on its photometry. This
means that we not just have spatial information as derived by a laser scanner
but also colour information. The pictures based on the intensity of the reflected
laser beam as presented in the work of Nüchter [4] can not compete with a
coloured image of the environment in terms of reproduction of reality. Some
special lasers are additionally equipped with digital cameras that contribute
colour information to the distance measurements, e.g., in [7]. But this will hike
the already higher price of an LRF in comparison to the stereo camera.

To sum up, we can say that the choice of the appropriate sensor device
depends on the task to be fulfilled. If we just need to navigate safely in a
more regular environment such as an office hall, a 3D-LRF or even a 2D-LRF is
sufficient and more accurate than a vision sensor. Colour or surface information
are simply not necessary but might rather be disturbing. Facing the future goal
of dealing with complex task in a real-time environment, object recognition
might be required. Consider for example a mobile robot who is equipped with a
vacuum cleaner and a gripper as in [22]. If its task is to clean up the environment,
navigating the environment will not be sufficient. The robot will also need to
recognise the objects on the floor in order to pick them up and take them to
the desired place.

In the near future, cameras can be seen as more flexible and versatile than
distance sensors such as laser range finders. The advantageous technical han-
dling and price of such a camera will also contribute to this development.





Chapter 3

Foundations

In this chapter we will provide a basis for the understanding of the following
chapters. Thus, in the first section we will introduce the notational conventions
used in this work. To understand the application of the two different vision sen-
sors for the problem of SLAM, knowledge about the camera systems is essential.
Section 3.2 will provide these information.

3.1 Notation

Throughout this work, the following notational conventions are used.

� Scalars are denoted by italic symbols, e.g., a, b, c.

� Vectors, regardless in which dimension, are denoted in bold lower case
symbols, e.g., x = (x, y)>. Usually, the dimension of a vector is clear
from the context. Nevertheless, this is sometimes declared by subscripts
in brackets, e.g., x(2).
Sometimes, geometric relations are presented in a projective framework
and homogeneous coordinates are used. They are labeled with a tilde
superscript, e.g., x̃ = (x, y, w)>.

� In this work we will deal with estimates of vectors. They are indicated
by a hat superscript, e.g., x̂. They also can be referred to as a posteriori
estimates in contrast to estimates that are additionally labeled with a
minus superscript, which are a priori estimates, e.g., x̂−. The reason for
this distinction is given in Chapter 4.

� Matrices, regardless in which dimension, are denoted in bold-face capital
letters, e.g., A,B,C. Usually, their dimension is clear from the context,
but sometimes it will be denoted by a subscript, e.g. A3×3.

� Frames of reference are denoted by sans-serif capital letters, e.g., W,C.
They are imaginary alignments of a set of axes in 3D space also referred
to as coordinates frames. These axes are denoted by sans-serif lower case
symbols, e.g., x, y, z.
In this work we have to deal with four reference frames: the world coordi-
nate frame W, the camera coordinate frame C, the image coordinate frame

17
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I and the pixel coordinate frame P. Vectors that are related to a specific
reference frame, e.g., to W, are denoted by appropriate superscripts like
xW.
We frequently will need to convert vectors, related to a frame of reference,
to another, e.g., by rotating them. Therefore, we need a transformation
matrix converting the components of a vector in frame C to components
in frame W. This is denoted by

xC = RCWxW.

The inverse transformation is then formulated easily as

xW = RWCxC.

� Instead of the conventional 3×3 rotation matrices we will use quaternions
as a representation of rotations. This will ease the linearization needed to
derive the appropriate jacobian matrices in Appendix A. Quaternions are
four-dimensional vectors denoted by q = (q0, q1, q2, q3)> with ‖q‖ = 1.
If we have given a roation as an angle θ around some axis given as a unit
vector x, the according quaternion can be calculated by

q =
[

cos( θ
2 )

sin( θ
2 )x

]
(3.1)

In Appendix B the handling of quaternions is explained in detail.

� We also have to deal with the geometry of two views. To distinguish
between the left and the right camera system we label vectors referring to
the left one with superscript l and vectors referring to the right one with
superscript r, e.g.,xl ,xr .

3.2 Camera Models and Calibration

To obtain measurements of feature points in the environment we will use vision
sensors. To relate these measurements of 2D points in a picture to 3D Points
in the world, we need to understand the process of projection and model it.

In the following we will introduce the pinhole camera model which describes
how a 2D image of a 3D scene is obtained by a monocular camera. Secondly,
the geometry of two views is explained to obtain a model for a stereo camera.

This section is chiefly based on the book Computer Vision by Klette et
al. [29].

3.2.1 Pinhole Camera Model

In the pinhole model it is assumed that an image is derived by a central pro-
jection of points in space onto the image plane. As depicted in Figure 3.1, the
intersection of a ray from the camera projection centre C to the 3D position of a
point xC = (xC, yC, zC) with the image plane is defined as the image xI = (xI, yI)
of this point. The camera coordinate frame is three-dimensional with the axes
x, y and z. The coordinate frame of the image plane is two-dimensional with the
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Figure 3.1: The pinhole camera model.

axes x and y. The z-axis is also referred to as the principal axis and perpen-
dicularly pierces the image plane at the principal point c = (0, 0) which at the
same time represents the origin of the image coordinate frame. The distance
between the camera projection centre and the principal point is referred to as
the focal length f . Therefore, the image coordinates (xI, yI) of the projected
3D camera point (xC, yC, zC) can be also represented in in camera coordinates:
(x

′C = xI, y
′C = yI, z

′C = f). We can summarize this relation as:

xI = f
xC

zC
(3.2)

yI = f
yC

zC
. (3.3)

If we use homogeneous coordinates x̃I = (xI, yI, wI) and x̃C = (xC, yC, zC, wC)
instead of Euclidian coordinates, we can express this fact in a matrix

x̃I =

f 0 0 0
0 f 0 0
0 0 1 0

 x̃C. (3.4)

This matrix is referred to as the projection matrix FIC.
If we set f = 1 the image coordinates are normalized .

External Parameters

In the description above, it is assumed that a 3D point is already given in camera
coordinates. This is quite simplified. More common is the case that 3D points
are related to the world reference frame and have to be converted into camera
coordinates before projecting them onto the image plane as already explained
above.

Assume that the camera coordinate frame is somehow shifted and rotated
with respect to the world coordinate frame like depicted in Figure 3.2. The
translation can be described by a three-dimensional vector tW = (tx, ty, tz)>.
The rotation is fully described by three angles α, β and γ around the x−, y−
and z−axes which can be augmented into a rotation matrix R. The whole
transformation of world into camera coordinates can be represented by a 4× 4
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Figure 3.2: The camera coordinate frame shifted about tW and rotated about
β around the y−axis with respect to the world coordinate frame.

matrix DCW containing the translation vector as well as the rotation matrix.
We have

x̃C = DCWx̃W (3.5)
(3.6)

=
[
RW

3×3 tW
(3)

0(3) 1

]
with 0 = (0 0 0). (3.7)

Internal Parameters

Up to now, we just have consideres the image coordinate frame I. In addition
to that, there is the pixel coordinate frame P, where the pixels are adressed in
instead of image points. Its axes are named as the u− and v−axis.

Its origin is not necessarily the same as the one of the image coordinate
frame. Usually, it is the upper left corner of the image plane. The origin of
the image coordinate frame is referred to as the principal point and is given
as cP = (uP

0,vP
0) in pixel coordinates. The u− and v− axis are maybe not

perpendicular to each other. The angle between them is referred to as θ. Here,
we assume that θ = 90◦ and therefore, cos θ = 0. The size of the pixels also has
to be taken into consideration. The pixel dimensions are given as kx and ky.

We can express the relation between the image and pixel coordinate frame
as a matrix converting image into pixel coordinates.

x̃P = KPIx̃I

=


f
kx

0 uP
0

0 f
ky

vP
0

0 0 1

 x̃I
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Figure 3.3: Entities in standard stereo geometry.

The parameters contained in the so called calibration matrix KPI are referred
to as internal parameters.

3.2.2 Stereo Camera Model

In the last section the projection of a 3D point onto the image plane of a camera
was explained. In the case of a stereo camera we have two image planes, two
projection centres and therefore two images of one 3D point. In general, the
image planes are shifted and rotated to each other. Here we assume what is
known as standard stereo geometry . This constellation is characterized by an
identical focal length f of the left and right camera , parallel principal axes
and row-identical orientation of the image planes. The distance between the
projection centers cl and cr is denoted as b, the so called baseline. A stereo
image derived by a camera system in standard stereo geometry is referred to as
rectified .

If we have a 3D point xC = (xC, yC, zC) in camera coordinates the projections
xI

l = (xI
l , y

I) and xI
r = (xI

r , y
I) will have the same yI−coordinate but different

xI−coordinates. This situation is depicted in Figure 3.3. The difference between
the left and right xI−coordinate is referred to as the disparity d.

We can determine the 3D coordinates of the considered point related to the
left or right camera system if we have given the two projections xI

l and xI
r of

a world point xW, the baseline b and the focal length f . Here, we assume that
the left camera system is equal to the world coordinate frame. Then we have

xW = xC
l =

b ∗ xI
l

xI
l − xI

r

=
b ∗ xI

l

d
(3.8)

yW = yC
l =

b ∗ yI

xI
l − xI

r

=
b ∗ yI

d
(3.9)

zW = zC
l =

b ∗ f

xI
l − xI

r

=
b ∗ f

d
(3.10)

If we assume that we have already given the two projections of one point we
ignored one of the main problems in stereo analysis: the search for correspond-
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Figure 3.4: The epipolar line constraint. The world point xW, its projections
xI

l and xI
r , both projections centers cl and cr span the epipolar plane. The

intersection of this plane with an image plane is referred to as an epipolar line.
The projections of all world points situated on the ray from the left camera
centre cl to some world coordinates will lie on the same epipolar line on the
right image plane.

ing image points concerning one 3D point. As already stated above, we assume
that the camera system is in standard stereo geometry. Thus, corresponding
projections of one point will always have the same y− coordinate. This coordi-
nate corresponds to a horizontal line in each image and is refered to as epipolar
line. If we have given the image coordinates of the left projection of a world
point, we just need to search the according epipolar line in the right image to
determine the corresponding right projection. We reduced the dimension of the
search space from 2D to 1D. This relation is referred to as the epipolar constraint
and is depicted in Figure 3.4.



Chapter 4

The Kalman Filter
Approach

Imagine you are sitting in a car waiting at a crossroad to pass it. The visibility is
poor due to parked cars at the roadside. But there are some gaps between them
so that you have the possibility to observe these openings to decide whether
you can cross the street without causing an accident or not. You have to guess
the number, position and velocity of potential vehicles moving on the road from
just a few information derived by watching these gaps over time.
Let us integrate the mentioned attributes of the street into the concept of a
state of the street. The observations can also be seen as measurements and are
noisy because of the poor visibility.
An estimation of the state of the street is just possible if you know how vehicles
move on a road and how the measurements are related to this motion. Due
to the noise in the measurements and to not directly observable aspects like
acceleration there will not be absolute certainty in your estimation.

This task is one instance of the problem known as the observer design prob-
lem. In general, you have to estimate the unknown internal state of a dynamical
system given its output in the presence of uncertainty. The output depends
somehow on the system’s state. To be able to infer this state from the out-
put you need to know the according relation and the system’s “behaviour”. In
such situations, we have to construct a model. In practise it is not possible to
represent the system considered with absolute precision. Instead, the accord-
ing model will stop at some level of detail. The gap between it and reality is
filled with some probabilistic assumption referred to as noise. The noise model
introduced in this chapter will be applied throughout this work.

An optimal solution for this sort of problems in the case of linear models
can be derived by using the Kalman Filter which is explained in the first section
of this chapter based on [12]. Most of the interesting instances of the observer
design problem, e.g. the SLAM problem, do not fulfil the condition of linearity.
To be able to apply the Kalman Filter approach to this non-linear sort of tasks,
we have to linearise the models. The according algorithm is referred to as
Extended Kalman Filter. We will introduce it in the second section.

23
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4.1 The Discrete Kalman Filter

In this section we introduce the Kalman Filter chiefly based on its original
formulation in [17] where the state is estimated at discrete points in time. The
algorithm is slightly simplified by ignoring the so called control input which is
not used in this specific application of purely vision based SLAM. Nevertheless,
in a robotic application it might be useful to involve e.g. odometry data as
control input. A complete description of the Kalman Filter can be found in [17]
and [12].

In the following, we will firstly introduce the models for the system’s state
and the process model which describes the already mentioned system’s “be-
haviour”. Here, also the noise model is presented. After that, we introduce the
model for the relation between the state and its output. The section closes with
a description of the whole Kalman Filter algorithm.

4.1.1 Model for the Dynamical System to Be Estimated

The Kalman filter is based on the assumption that the dynamical system, which
should be estimated, can be modelled as a normally distributed random process
X(k) with mean x̂k and covariance matrix Pk where index k represents time.
The mean x̂k is referred to as the estimate of the unknown real state xk of
the system at the point k in time. This state is modelled by an n dimensional
vector:

x =



x1

...
xi

...
xn


For the simplicity of the notation we did not use the subscript k, here. Through-
out this work, we will continue omitting k when the components of a vector or
matrix are presented even if they are different at each point in time.

Our main objective is to derive a preferably accurate estimate x̂k for the
state of the observed system at time k.

The covariance matrix Pk describes the possible error between the state
estimate x̂k and the unknown real state xk, in other words - the uncertainty in
the state estimation after time step k. It can be modelled as an n× n matrix.

P =



x1x1 . . . x1xi . . . x1xn

...
. . .

...
. . .

...
xix1 . . . xixi . . . xixn

...
. . .

...
. . .

...
xnx1 . . . xnx1 . . . xnxn


where the main diagonal contains the variances of each variable in the state
vector and the other entries contain the covariances of pairs of these variables.
Covariance matrices are always symmetric due to the symmetric property of
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covariances.1

If we want to derive an accurate estimate of the system’s state, the corre-
sponding uncertainty should obviously be small. The Kalman filter is optimal
in the sense, that it minimises the error covariance matrix Pk.

4.1.2 Process Model

Examined over time the dynamical system is subject to a transformation. Some
aspects of this transformation are known and can be modelled. Others, e.g.,
acceleration as in the example above (also influencing the state of the system)
are unknown, not measurable or too complex to be modelled. Then, this trans-
formation has to be approximated by a process model A involving the known
factors. The “classic” Kalman filter expects that the model is linear. Under
this condition the normal distribution of the state model is maintained after it
has undergone the linear transformation A. The new mean x̂k and covariance
matrix Pk for the next point in time are derived by

x̂k = Ax̂k−1 (4.1)
Pk = APk−1A>. (4.2)

Due to the approximative character of A, the state estimate x̂k is also just an
approximation of the real state xk. The difference is represented by a random
variable w:

xk = Axk−1 + wk−1. (4.3)

The individual values for w are not known for each point k in time but need to
be involved to improve the estimation. We assume these values to be realisations
of a normally distributed white noise vector with zero mean. In the following,
this vector w is referred to as process noise. It is denoted by

p(w) ∼ N(0,Q) (4.4)

where zero is the mean and Q the process noise covariance. The individual
values of w at each point in time can now be assumed to be equal to the mean,
to zero. Thus, we stick to Equation (4.1) to estimate xk as x̂k.

The process noise does not influence the current state estimate, but the un-
certainty about it. Intuitively we can say, the higher the discrepancy is between
the real process and the according model, the higher is the uncertainty about
the quality of the state estimate.
This can be expressed by extending the computation of the error covariance Pk

in Equation (4.2) with the process noise covariance matrix Q.

Pk = APk−1A> + Q (4.5)

The choice of the values for the process noise covariance matrix reflects the
quality we expect from the process model. If we set them to small values, we
are quite sure that our assumptions about the considered system are mostly
right. The uncertainty regarding to our estimates will be low. But then, we will
be unable or hardly able to cope with large variations between the model and

1The covariance value x1xn is the same as xnx1. In practise this means, that x1 is
correlated to xn like xn to x1
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the system. Setting the variances to large values instead means to accept that
there might be large differences between the state estimate and the real state of
the system. We will be able to cope with large variations but the uncertainty
about the state estimate will increase stronger than with a small process noise.
A lot of good measurements are needed to constrain the estimate.

4.1.3 Output of the System

As already mentioned earlier, the output of the system is related to the state of
the system. If we know this relation and the estimated state after the current
time step, we are able to predict the according measurement of the system’s
output. In this section, we will introduce the model for the measurement of the
output. In the next section the relation between state and output is examined.

As well as the state of the considered dynamical system, also its output
is modelled as a normally distributed random process Z(k) with mean ẑk and
covariance matrix Sk where index k indicates time. The mean ẑk represents
the estimated and predicted measurement of the output depending on the state
estimate x̂k at the point k in time. The real measurement zk of the output
is obtained by explicitly measuring the system’s output. zk is modelled as an
m dimensional vector

z =



z1

...
zi

...
zm


The so called innovation covariance matrix Sk describes the possible error be-
tween the estimate ẑk and the real measurement zk, in other words - the uncer-
tainty in the measurement estimation after time step k. It can be modelled as
an m×m matrix

S =



z1z1 . . . z1zi . . . z1zm

...
. . .

...
. . .

...
ziz1 . . . zizi . . . zizm

...
. . .

...
. . .

...
zmz1 . . . zmz1 . . . zmzm


where the main diagonal contains the variances of each variable in the mea-
surement vector and the other entries contain the covariances of pairs of these
variables.

Note, that in contrast to the system’s real state, the real measurement can be
obtained and we are therefore able to compare predicted and real measurement.
The precisely known difference between estimation and reality constitutes the
basis to correct the state estimate used to predict the measurement. This will
be explained in detail in Section 4.1.5.

4.1.4 Measurement Model

In the previous sections we mentioned, that the system’s output is somehow
related to the system’s state. In this sections the relation is modelled.
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We have the same situation as for the process model. The connection be-
tween the output and the state can just be modelled up to a certain degree.
Known factors are summarised in the measurement model H. After we have
obtained a new state estimate for the current point in time, we can apply H
to predict the according measurement ẑk and covariance matrix Sk. If this
measurement model is linear, the normal distribution of the state model is
maintained after applying this linear transformation.

ẑk = Hx̂k (4.6)
Sk = HPkH>. (4.7)

Because measurements of the system’s output are mostly noisy due to inaccurate
sensors, the difference between the estimate ẑk and the real measurement zk is
not just caused by the dependency on the state estimate but also by a random
variable v:

zk = Hxk + vk. (4.8)

As already mentioned for the process noise, the individual values of v are not
known for each point k in time. We apply the same noise model and approximate
these unknown values as realisations of a normally distributed white noise vector
with zero mean. In the following, v is referred to as measurement noise. It is
denoted by

p(v) ∼ N(0,R) (4.9)

As v is now assumed to be equal to the mean of its distribution at each point
in time, it does not influence the measurement estimate but the uncertainty
about it. This is modelled by extending the computation of the measurement
innovation covariance matrix Sk in Equation (4.7) with the measurement noise
covariance matrix R.

Sk = HPkH> + R (4.10)

Again, the values chosen for the measurement noise covariance matrix indicate
how sure we are about the assumptions we made in our measurement model.

More information about the influence of the measurement noise are given
below in connection with the Kalman Gain.

4.1.5 Predict and Correct Steps

In the last sections we introduced the model for the process the system is subject
to and the model for the relation between the system’s state and its output.
These models are used in the Kalman Filter algorithm to determine an optimal
estimate of the unknown state of the system.

As already mentioned in Section 4.1.3, we use the known difference between
the predicted measurement ẑk and real measurement zk as basis to correct the
state estimate derived by the application of the process model A. The filter
can be divided into two parts. In the predict step the process model and the
current state and error covariance matrix estimates are used to derive an a
priori state estimate for the next time step. Next, in the correct step, a (noisy)
measurement is obtained to enhance the a priori state estimate and derive an
improved a posteriori estimate.
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Initialisation Predict Correct

Figure 4.1: The Predict-Correct Cycle of the Kalman Filter Algorithm.

Before this predict-correct cycle as depicted in Figure 4.1 can be started, the
state and its error covariance matrix have to be initialised. In the following we
will assume that this is already the case.

Predict Step

We are situated at the point k in time and the state and error covariance matrix
estimates at time k−1 are given. By using Equations (4.1) and (4.5) we predict
the state and error covariance matrix for k:

x̂−k = Ax̂k−1

P−k = APk−1A> + Q.

The minus superscript labels the predicted state and error covariance matrix as
a priori in contrast to a posteriori estimates.

Correct Step

Assume that we have already obtained an actual measurement zk of the system’s
output. With the help of this, we first want to calculate the a posteriori state
estimate x̂k. This is a linear combination of the a priori estimate x̂−k and a
weighted difference between zk and the predicted measurement ẑk. According
to Equation (4.6), ẑk is calculated by Hx̂−k . Summarised, we have:

x̂k = x̂−k + Kk(zk − ẑk)
= x̂−k + Kk(zk −Hx̂−k ).

The difference zk −Hx̂−k is called measurement innovation or residual . If the
value is zero, the prediction and the actual measurement are in complete agree-
ment and the a priori state estimate won’t be corrected. If it is unequal to zero,
x̂k will be unequal to x̂−k .

The weight Kk, the so called Kalman Gain, is represented by a n × m
matrix and minimises the a posteriori error covariance estimate P−k . It can be
calculated by

Kk =
P−k H>

(HP−k H> + R)
(4.11)

Note, that the denominator equals Equation (4.10), representing the uncertainty
in the predicted measurement. If we look closely at Equation (4.11), we can
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see that, if the measurement error covariance error R approaches zero, the
measurement innovation is weighted more heavily.

lim
R→0

Kk =
1
H

In other words, the smaller the measurement error, the more reliable is the
actual measurement zk.
On the other hand, if the predicted error covariance matrix P−k approaches to
be zero the residual is weighted less.

lim
P−k →0

Kk = 0

This means, the smaller the uncertainty in the a priori state estimate x̂−k , the
more reliable is the predicted measurement ẑk.

Secondly, we have to correct the a priori error covariance matrix estimate
to derive the a posteriori estimate.

Pk = (I−KkH)P−k

For details of the derivation of the filter algorithm see [26].

In Figure 4.2 the whole algorithm is given again step by step.

4.1.6 A Simple Example

To clarify the effectiveness of the Kalman Filter we will examine a simple ex-
ample. To stick to the central theme of this work right from the beginning,
this example will be an instance of the SLAM problem. The section will be
structured as follows: Firstly, we will give a short description of the problem.
After that, the process and measurement model are formulated. The section
closes with some experiments on simulated data.

Problem Description

In Chapter 5, we will analyse how to apply the Kalman Filter approach to
the problem of SLAM with using a vision sensor mounted on a robot. This
firstly means to track the position and orientation of the camera within the
3D environment (localisation) and secondly to estimate the position of some
landmarks situated in the world (mapping).

In the following we will simplify this task to SLAM in one dimension. The
camera is represented by a point moving randomly in 1D. There also is a static
landmark with a position known up to a certain degree. The process model of
this example should describe the motion of the camera. We will assume that it
moves smoothly so that fast changes in its velocity are unlikely. We are able to
measure the distance between the landmark and the moving point at discrete
points in time. The measurement model should relate this distance to the state
of the considered system.

The situation is depicted in Figure 4.3.
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1. Predict Step

(a) Predict the state
x̂−k = Ax̂k−1

(b) Predict the error covariance matrix

P−k = APk−1A> + Q

2. Correct Step

(a) Calculate the Kalman Gain

Kk =
P−k H>

(HP−k H> + R)

(b) Correct the a priori state estimate

x̂k = x̂−k + Kk(zk −Hx̂−k )

(c) Correct the a priori error covariance matrix estimate

Pk = (I−KkH)P−k

Figure 4.2: Equations of one Kalman Filter Cycle. We assume that the state,
its covariance and the noise values are already initialised.
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Figure 4.3: An Example for a Point Moving Randomly in 1D. A static landmark
is situated at x = 3. The distance between the current point position and this
landmark is measurable at each time step.
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Process and Measurement Model

At first we have to model the state x which has to be estimated. Three important
entities have to be taken into account. Firstly, there is the position of the point
in a point in time. It is fully described by an one-dimensional coordinate in x-
direction. Secondly, we choose a constant velocity to describe the motion of the
point. 2 This does not mean that we assume the point is moving constantly over
all time but that this value is the average velocity between two points in time
and changes occur with a Gaussian profile. These changes are modelled beneath
as process noise. At last, the position of the landmark has to be augmented into
the state.

x =

xp

vp

xf

 =

 Position of the point
Velocity of the point

Position of the landmark


The error covariance matrix is then a 3× 3 matrix of the following form

P =

xpxp xpvp xpxf

vpxp vpvp vpxf

xfxp xfvp xfxf

 .

The task of the process model A is to approximate the transformation of the
considered system over time. Here, this is the motion of the point between
time k and k − 1. This constant time period is denoted as 4k. A is used to
predict the state of the system for the current point k in time from the old state
estimate at time k − 1 by calculating x̂(k) = Ax̂(k − 1).

x̂p(k) = old point position + old velocity per 4k
= x̂p(k − 1) + v̂p(k − 1)4k

v̂p(k) = constant velocity due to assumed smooth motion
= v̂p(k − 1)

x̂f (k) = static landmark
= x̂f (k − 1)

(4.12)

As already mentioned, the constant velocity value just describes the average
velocity in the time period 4k. Therefore, it is just an approximation. Varia-
tions are caused by random unmeasurable accelerations a.3 We involve it in the
process noise vector w. If we would know the individual values of w at each k,
we could derive the real state:

x(k) = Ax(k − 1) + w(k − 1)

Because the process noise is an additive constant, w is modelled as a three-
dimensional vector w = (w0, w1, w2)>. Noise is just added to the velocity
component of the state. Thus, the first and third component, w0 and w2,
referring to the position of the moving point and to the position of the landmark,
are set to zero. Just the second value carries a different random value after each
time step: w = (0, a4k, 0)> . Adding the noise term to the process model, we

2A velocity vp describes the distance 4x covered in a certain time intervall 4k.
3An acceleration a is a change in velocity 4vp in a certain time intervall 4k. Thus,

w1 = a4k = 4vp, the change in velocity.
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have:

xp(k) = xp(k − 1) + (vp(k − 1) + a(k − 1)4k)4k

vp(k) = vp(k − 1) + a(k − 1)4k

xf (k) = xf (k − 1)

We do not know the individual values for a at each point in time. Therefore, we
model the process noise as a realization of a normally distributed white noise
random vector with zero mean and a covariance matrix Q.

p(w) ∼ N(0,Q)

Now, we can assume w to be equal to the mean of its distribution, which is zero.
We derive the process model already formulated in Equation (4.12). Expressed
in a linear transformation with 4k assumed to be 1, this is

A =

1 1 0
0 1 0
0 0 1

 .

Q is of the following form:

Q =

0 0 0
0 σ2

p 0
0 0 0

 .

The constant value of σp as the standard deviation of the noise in the velocity
value indicates the amount of smoothness in the motion we expect. If we choose
it to be small, we expect the point to move with a nearly constant velocity.
Then, we will not be able to cope with sudden accelerations. If we choose large
values instead, we will be able to track the point well, if it acts in another way
than expected by the process model. On the other hand, the uncertainty about
a state estimate is higher than with small values for σp.

The measurement model approximates the relation between the actual
measurement zk and the current state xk. In our example the measurement
consists of just one value representing the distance dk between the moving
point and the static landmark at the current point k in time. Expressed in a
linear equation, we have

ẑ(k) = dk = xp(k)− xf (k) (4.13)

The sensor used to measure the distance is assumed to provide just noisy mea-
surements. If we would know the value for this measurement noise exactly, we
could determine the real measurement and not just an estimate. If we denote
the measurement noise by the random variable v, the real measurement can be
computed by:

z(k) = dk = xp(k)− xf (k) + v(k).

But we do not know the individual values of the random variable v. Therefore,
we apply our noise model such that the values of v are a realization of a normally
distributed white noise with zero mean and the variance σ2

m

p(v) ∼ N(0, σ2
m).
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The measurement noise has the same dimension as the measurement and its
distribution is therefore modelled by specifying a variance instead of a covariance
matrix.

We can now assume the value v to be equal to the mean of its distribution,
to zero. Then, we derive the measurement model already formulated in Equa-
tion (4.13). Note, that the difference between the estimate of the measurement
ẑk and the real measurement is not just caused by the unknown noise, but also
by the fact that in reality we just have an estimate of the state to predict the
measurement. The final measurement model for this problem is:

ẑ(k) = dk = x̂p(k)− x̂f (k).

Expressed in a linear transformation we have

H =
[
1 0 −1

]
.

The constant value σm as the standard deviation of the measurement noise
distribution indicates how sure we are about the correctness of the real mea-
surements. Large value show that we do not trust them that much and we
will weight the measurement innovation less. Small values indicate that the
measured values are accurate. The residual will be weighted more heavily.

Experiments on Simulated Data

In the previous section, we derived the basis for the application of the Kalman
Filter on our problem: the appropriate process and measurement model. In
this section, we will test these models on simulated data. The simulation was
initialized with the state:

x0 =

0
1
3


The subsequent real positions of the point moving in 1D were generated by
applying the process exactly described in the according model and adding some
random values. The standard deviation of the random values is set to 0.2.
The real measurements were also generated as described in the measurement
model. Measurment noise is simulated by adding random values with a standard
deviation of 0.2.

To start the predict-correct cycle of the Kalman Filter, we have to initialize
the state and its error covariance matrix as well as the process and measurement
noise values. Let us set the state to the real initial values. We assume an
uncertainty about the initial position of the moving point as well as about the
position of the landmark and velocity at time 0. Let the error covariance be

P0 =

1 0 0
0 1 0
0 0 1


The real noise in the measurements can usually be determined prior to the
application of the filter. To determine the process noise covariance is more com-
plicated, because we generally do not have the ability to measure the process,
we want to estimate, directly. Anyway, we set the standard deviation of the
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Figure 4.4: The Simulation of the Problem of Estimating a Moving Point’s
Position by Orientating at a Single Landmark. The deviation between the
estimation and real position of the point is very small as well as between the
estimated and real position of the landmark.

noise in the velocity σv and in the measurement σm to the real value used in
the simulation: 0.2

We will run the filter on ten simulated measurements. The results are de-
picted in Figure 4.4. In Figure 4.5, the behaviour of the error covariance P
during the ten filter cycles is visualized.

4.2 The Extended Kalman Filter

As we saw in Section 4.1.6, the Kalman Filter algorithm works quite well for the
estimation of a linear system with linear related measurements depending on
the quality of the appropriate models for the process and measurement of the
output. Moreover, the Kalman Filter is optimal in the sense that it minimizes
the error covariance representing the uncertainty in the estimate of the state.

To come back to the main theme of this work, estimating the position of
a moving robot and of static landmarks using a camera sensor, we need to be
able to cope with nonlinear motion and a nonlinear relationship between mea-
surements and the system’s state. The nonlinear motion is caused by possible
rotational movements, the robot is able to do. Measurements of landmarks in
the surrounding of the robot are projections of them onto the image plane of
the camera sensor. The process of projection is nonlinear.

In Section 4.1.2, it is stated that a Gaussian distribution is maintained by a
linear transformation. This is not the case if we use a nonlinear transformation
instead. Thus, we cannot apply the Kalman Filter equations in its original
formulation to estimate a nonlinear system. A solution for this problem is to
linearize the transformation via Taylor Expansion. A Kalman Filter that uses
Taylor Expansion to linearize the process and measurement models is called
Extended Kalman Filter , in the following abbreviated as EKF .
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Figure 4.5: The Error Covariance matrix P. After two iterations, the initial
value of 1 for the variances has settled at approximatly 0.5 for the estimation
of the point’s position and of the landmark’s position and at approximatly 0.04
for the estimation of the velocity.

Like in Section 4.1.1 we assume that the considered system can be modelled
as a normally distributed random process X(k) with mean x̂k as the estimation
of the real system’s state xk and covariance matrix Pk. Its output can be
modelled as well as a normally distributed random process Z(k) with mean ẑk

as the prediction of the real measurement zk and covariance matrix Sk. In the
following sections the EKF is derived for nonlinear process and measurement
models.

Right from the beginning, we will stick to the “super minus” notation label-
ing a priori estimates.

4.2.1 Process Model

Let us assume that our system to be estimated, represented by a state vector
xk at time k, is now governed by the nonlinear funtion

xk = f(xk−1,wk−1) (4.14)

relating the previous state xk−1 at the point k − 1 in time to the next state xk

at the current point k in time. The random value wk−1 represents the process
noise as in Equation (4.4).

p(w) ∼ N(0,Q)

We assume w to be equal to the mean of its distribution, which is zero. The
result of the function f will then be an approximation x̂−k of the real state xk.

x̂−k = f(x̂k−1, 0) (4.15)

Let the difference between the real state and its estimate, namely the error in
the prediction, be a random variable e:

exk
= xk − x̂−k .
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To be able to estimate the result of the process represented by the non-
linear Equation (4.14) via the Kalman Filter algorithm, we linearize it
about the current state estimate given in Equation (4.15) by setting up a
first order Taylor polynomial ([16], p.411):

xk ≈ x̂−k + A(xk−1 − x̂k−1) + Wwk−1 = x̂k (4.16)

The matrix A is the Jacobian matrix containing the partial derivatives of (4.15)
with respect to x, whereas the Jacobian matrix W is filled with the partial
derivatives of f with respect to w. Note, that we ommitted time subscript k for
the Jacobians to simplify the notation. Nevertheless, they may be different at
each point in time. In the following, we will stick to omitting k for the Jacobian
matrices.

The a priori estimate x̂−k in Equation (4.16) can be calculated by f(x̂k−1, 0).
The remainder term approximates exk

as êxk
.

exk
≈ A(xk−1 − x̂k−1) + Wwk−1 = êxk

(4.17)

With this defintion of êxk
, we can rewrite Equation (4.16) to

x̂k = x̂−k + êxk
(4.18)

According to Equation (4.18), we need to estimate the random value exk
as êxk

at each point in time to achieve our actual goal: estimating xk as x̂k.
Note, that (4.17) is a linear equation. Thus, we can apply a second hypo-

thetical “classic” Kalman Filter to estimate exk
. We will model this dynamical

linear error system as a normally distributed random process with mean êxk

and covariance matrix Pk representing the uncertainty about the estimated exk
.

Since exk
denotes the error in the state estimate, it is clear that it should always

be approximatly zero. Therefore, the mean êxk
of the distribution is chosen to

be zero.
Let’s consider Equation (4.17) again. The second term Wwk−1 denotes the

noise in the estimation of exk
. It is the product of the process noise w and the

Jacobian matrix W containing the partial derivatives of Equation (4.15) with
respect to w. Remember, that the process noise is assumed to be always equal
to zero. Thus, the term Wwk−1 is also assumed to be equal to zero. If w
is transformed by applying W, the corresponding covariance matrix Q of the
process noise is transformed by WQW>. The noise in the estimation of exk

is
then modelled as

p(Wwk−1) ∼ N(0,WQW>).

To involve this noise in the prediction of the error exk
between real and esti-

mated state, the according error covariance WQW> is added to the prediction
APk−1A> of its error covariance P. To summarize the last statements, we
have:

ê−xk
= A(xk−1 − x̂k−1) = 0 (4.19)

P−k = APk−1A> + WQW>. (4.20)

Equations (4.19) and (4.20) represent the process model for the linear error
system.
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If we substitute Equation (4.19) for êxk
in Equation (4.18), the process model

for the nonlinear system to predict a state estimate x̂−k is then

x̂−k = f(x̂k−1, 0) (4.21)

P−k = APk−1A> + WQW>. (4.22)

The process noise covariance matrix WQW> acts in the nonlinear process
model as the covariance matrix Q in the linear process model: It represents the
amount of trust in the process model. High values indicate that high variations
between the state estimate and the real state are expected. Low values show a
lot of confidence in the process model.

4.2.2 Measurement Model

Let us assume that the relation between the system and its output is described
by the nonlinear function

zk = h(xk,vk) (4.23)

where vk represents the measurement noise as in (4.9).

p(v) ∼ N(0,R)

As usual, we assume vk to be zero which is the mean of its distribution.

ẑk = h(x̂−k , 0). (4.24)

The result ẑk is just an approximation of the real measurement. Let the differ-
ence between the actual and the predicted measurement be the random value

ezk
= zk − ẑk.

In contrast to the error exk
between the real state and its estimate, ezk

is
accessible.

To estimate the measurement of the system’s output we linearize Equa-
tion (4.23) about the current state estimate given in Equation (4.24) by setting
up a first order Taylor polynomial:

zk ≈ ẑk + H(xk − x̂−k ) + Vvk (4.25)

The matrix H is the Jacobian matrix containing the partial derivatives of Equa-
tion (4.24) with respect to x in contrast to the Jacobian matrix V which contains
the derivatives of the same equation with respect to the measurement noise v.

The predicted measurement ẑk in Equation (4.25) can be calculated by Equa-
tion (4.24). The error ezk

is approximated as êzk
by the remainder term

ezk
≈ H(xk − x̂−k ) + Vvk = êzk

. (4.26)

With this definition of êzk
we can rewrite Equation (4.25).

zk ≈ ẑk + êzk
(4.27)

Note, that Equation (4.26) is a linear equation. Therefore, we also model the
error in the estimation of the output as a normally distributed random process
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with mean êzk
and innovation covariance matrix Sk, which approximates the

error between the predicted and the actual measurement. From the notion that
ezk

specifies the estimated error in the estimation of the state xk of the system,
it is clear that it should preferably be approximatly equal to zero. Thus, the
mean êzk

of its distribution is assumed to be always equal to zero.
If we re-consider Equation (4.26), we can state that Vvk is the noise term in

the prediction of ezk
. Remember that the measurement noise v is assumed to

be zero at every point in time. Thus, the product of v and the Jacobian matrix
V containing the partial derivatives of Equation (4.24) with respect to the noise
is zero. If v is transformed by applying V, the corresponding covariance matrix
R is transformed by VRV>. Then, the noise involved in the estimation of the
error ezk

is modelled as follows:

p(Vvk) ∼ N(0,VRV>)

The covariance matrix of the noise Vvk is added to the prediction of the inno-
vation covariance matrix by HP−k H>. Summarized, we have:

ê−zk
= H(xk − x̂k) = 0 (4.28)

Sk = HP−k H> + VRV>. (4.29)

Equations (4.28) and (4.29) represent the measurement model for the linear
error system and are used to correct the a priori error estimate ê−xk

between
the state and its approximation.

If we substitute Equation (4.28) for êzk
in Equation (4.27), the measurement

model for the nonlinear system is:

ẑk = h(x̂−k , 0) (4.30)

Sk = HP−k H> + VRV>. (4.31)

4.2.3 Predict and Correct Steps

Using the Kalman Filter for the estimation of the state of a linear system, means
that we exactly know how uncertain we are about this estimate. Whereas,
using the EKF for the estimation of the state of a nonlinear system means to
additionally estimate the uncertainty in this state estimate. This can be done by
a second hypthetical Kalman Filter, presented in the previous chapters, which
estimates the error between the real state and its estimate.

Let’s assume, that we already used the process model for the nonlinear
system given in Equations (4.21) and (4.22) to derive an a priori estimate x̂−k for
the state and P−k for its error covariance. Then, we can predict the measurement
by using Equation (4.30). After we have obtained the real measurement zk, we
can calculate the error ezk

between zk and the predicted measurement ẑk.
According to Equation (4.19), the predicted error estimate ê−xk

between the
real state and its estimate is assumed to be zero in every time step.

The Kalman Filter equation to correct the a priori error estimate ê−xk
and

derive an a posteriori êxk
is then

êxk
= ê−xk

+ Kkezk

= Kkezk
.
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1. Predict Step

(a) Predict the state.

x̂−k = f(x̂k−1, 0)

(b) Predict the error covariance matrix.

P−k = APk−1A> + WQW>

2. Correct Step

(a) Calculate the Kalman Gain.

Kk =
P−k H>

(HP−k H> + VRV>)

(b) Correct the a priori state estimate

x̂−k + Kk(zk − h(x̂−k , 0))

(c) Correct the a posteriori error covariance matrix estimate

Pk = (I−KkH)P−k

Figure 4.6: Equations of one Extended Kalman Filter Cycle. We assume that
the state, its covariance and the noise values are already initialized. Note, that
for simplicity the superscript k is not used here for the Jacobians, although,
they have to be re-calculated after each predict-correct cycle.

If we substitute this into Equation (4.18) we get

x̂k = x̂−k + Kkezk
.

Because ezk
is the measurement residual, we also can write

x̂k = x̂−k + Kk(zk − ẑk) (4.32)
= x̂−k + Kk(zk − h(x̂−k , 0)). (4.33)

Equation (4.33) can be used in the correct step of the Extended Kalman Filter
algorithm to derive the a posteriori estimate for the state of the nonlinear
system. The Kalman Gain Kk itself is calculated as in Equation (4.11) with
the appropriate substitution for the measurement error covariance matrix given
in (4.31):

Kk =
P−k H>

(HP−k H> + VRV>)

In Figure 4.6, the Extended Kalman Filter algorithm is given step by step.
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Lighthouse

x0 xi xj Position of the Ship
αi αj·

Figure 4.7: A ship is sailing on the straight line perpendicular to the axis
between x0, the initial position of the ship, and the position of the lighthouse.
xi and xj are sample positions of the ship which need to be estimated from the
corresponding observable angles αi and αj .

4.2.4 A Simple Example

The derivation of the Extended Kalman Filter presented in the previous section
is a bit more complicated than the explanations of the “classic” Filter. In
this section a simple example is examined to provide a better understanding of
the EKF algorithm. Again, we will consider an instance of the general SLAM
problem.

The section is structures as follows. Firstly, we will describe the specific
problem in general. After that, the models for the system’s state and process
and the relation between the state and the measurement are presented. The
section closes with some experiments on simulated data.

Problem Description

Imagine you are the skipper of a ship and your task is to sail a straight route of a
certain length on an ocean. As you might infer from this sentence, the example
deals more or less with the routing aspect of navigation. But we will focus on
the localization and mapping problem. To be more concrete, as a skipper you
need to localize your ship on that straight route. We assume that there is a
lighthouse with an uncertainly known position to orientate at.

Your initial position is located in some distance from that lighthouse. You
will sail in a perpendicular direction to the axis between the lighthouse and the
initial ship position. It is obvious that the motion of a ship is smooth, so that
changes in the velocity are unlikely.

You will be able to measure the angle between the current position of your
ship and the lighthouse. Of course, these values will be more or less guesses
than precise measurements. We assume that you are not able to measure your
velocity which is normally the case.

This situation is depicted in Figure 4.7.

Process and Measurement Model

In this example we have two tasks. Firstly, we need to localize the position x of
the moving ship on the straight route at every time step. Secondly, we have to
refine our knowledge about the position y of the lighthouse.
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Thus, the state x of the considered system contains three entities. The
position x and velocity vs of the ship are the first ones. Again, we choose
a constant value for the velocity which represents an average value during the
constant time period4k. The third component of the state denotes the distance
between the lighthouse and the initial position x0 of the ship.

x =

 x
vx

y

 =

 Position of the Ship
Velocity of the Ship

Distance of the Lighthouse from x0


With this definition of the state, we have the following error covariance matrix
P representing the uncertainty in the estimation of the state.

P =

 xx xvx xy
vxx vxvx vxy
yx yvx yy


The process, the system is subject to, is just the motion of the ship on that
route. The process model f we will set up here, relates the state at time k − 1
to k by calculating:

x̂(k) = old position + old velocity per time intervall
= x̂(k − 1) + v̂x(k − 1)4k

v̂x(k) = constant velocity due to assumed smooth motion
= v̂x(k − 1)

ŷ(k) = static landmark
= ŷ(k − 1)

(4.34)

These equations are linear. Nevertheless, we will treat them as to be nonlinear
and apply the EKF approach. We will see, that the EKF equations will reduce
to the equations of the “classic” Kalman Filter.

As already mentioned, vx just describes the average velocity between two
time steps. Thus, it is just an approximation of the real velocity. The random
difference between estimated and real velocity is modelled as process noise w =
(w0, w1, w2)> = (0, a4k, 0)>. As the state, w is a three-dimensional vector.
Just the velocity is corrupted by noise. Therefore, just w1 carries a value unequal
to zero involving unmeasurable acceleration a:

p(w) ∼ N(0,Q)

Q is of the following form

Q =

0 0 0
0 σ2

v 0
0 0 0


The variable σv denotes the standard deviation of the noise in the velocity.

If we would know the indivdual values for w, we could derive the real state
of the considered system by calculating f(xk−1,wk−1):

x(k) = x(k − 1) + (vx(k − 1) + w1)4k + w0

vx(k) = vx(k − 1) + w1

y(k) = y(k − 1) + w2

= x(k − 1) + (vx(k − 1) + a(k − 1)4k)4k
= vx(k − 1) + a(k − 1)4k
= y(k − 1)

(4.35)
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Again, we assume w to be always equal to the mean of its distribution which is
zero. Then we derive the process model f(x̂k−1, 0), as it is already formulated
in Equation (4.34). To be able to predict the error covariance matrix P at each
point in time, we need to derive the Jacobian matrix A containing the partial
derivatives of Equation (4.34) with respect to the state x and the Jacobian
matrix W containing the partial derivatives of Equation (4.34) with respect to
the noise w. Assuming that 4k is equal to 1, as A, we have:

A =


∂x
∂x

∂x
∂vx

∂x
∂y

∂vx

∂x
∂vx

∂vx

∂vx

∂y
∂y
∂x

∂y
∂vx

∂y
∂y

 =

1 1 0
0 1 0
0 0 1

 .

Note, that this is the same as Equation (4.34) expressed as a linear transforma-
tion.

As W, we have:

W =


∂x

∂w0

∂x
∂w1

∂x
∂w2

∂vx

∂w0

∂vx

∂w1

∂vx

∂w2
∂y

∂w0

∂y
∂w1

∂y
∂w2

 =

1 0 0
0 1 0
0 0 1

 .

Hence, WQW> = Q. Then, the equation to predict the error covariance
equals the one for the standard Kalman Filter: P−(k) = AP(k − 1)A> + Q.

Now, let us consider the measurement model for our system. It provides
the relation between the state x of the system and the measurement z of its
output. Remember, as measurement we obtain the value for the angle α at
each time step. If we have a look again at Figure 4.7, we can state, that the
situation can be represented by a right triangle. Then, two definitions hold:

a2 + b2 = c2

a = c · sinα

We define the axis between the lighthouse and x0 as a, the distance, the ship
has covered till a certain point in time, as b and the connection between the
lighthouse and the current position of the ship as the hypotenuse c. b is then
equal to x in the state and a is the same as y. Thus, the measurement model
to obtain the measurement z is

ẑ(k) = α = arcsin

(
y(k)√

(x(k))2 + (y(k))2

)
. (4.36)

Thus, we have a nonlinear measurement model h.
The value provided for α might be more or less a guess than a precise mea-

surement. Therefore we have to introduce measurement noise v to model the
difference between the real measurement and the predicted one. If we know the
noise value for each time step, we would obtain z instead of ẑ by calculating
h(xk, vk):

z(k) = α = arcsin

(
y(k)√

(x(k))2 + (y(k))2

)
+ v(k).
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But this is not the case. Therefore, we model v as normally distributed mea-
surement noise with zero mean and standard deviation σr.

p(v) ∼ N(0, σ2
r)

Now, we can assume v to be zero at each point in time which is the mean
of its distribution. Then we obtain h(x, 0) as it is already formulated in Equa-
tion (4.36). The standard deviation is added to the calculation of the innovation
covariance matrix S(k) = HP(k)−H> which is also one dimensional. Because
we have a nonlinear model, the value for the variance is firstly transformed by
VσrV> and then added.

As usual, the value we choose for σr indicates how we rate the quality of
the measurement model.

Because we have a nonlinear measurement model, we need to derive the
Jacobian matrices H and V for each point in time. H contains the partial
derivatives of the measurement model h(xk, 0) with respect to the state. It is
of the following form:

H =
[

∂h
∂x

∂h
∂vx

∂h
∂y

]
For ∂h

∂x we have
∂h

∂x
=

−xy√
1− y2

x2+y2

√
(x2 + y2)3

∂h
∂vx

is equal to zero, because the velocity of the point is irrelevant in the mea-
surement model. For ∂h

∂y we have

∂h

∂y
=

1√
x2+y2

− y2√
(x2+y2)3√

1− y2

x2+y2

The covariance matrix V contains the partial derivatives of h(xk, 0) with
respect to the noise v. Thus, it is of the following form:

V =
∂h

∂v

Because the measurement noise v is an additive constant, ∂h
∂v is equal to 1.

Experiments on Simulated Data

In the previous section we derived the basis to apply the EKF approach to
solve our problem: the process and measurement model. In this section, we
will test these models on simulated data. We repeat the procedure from the
simple example for the standard Kalman Filter. The initial values for the Filter
reflect reality but are just known approximately. This is represented by an error
covariance matrix P where the values in the main diagonal are unequal to zero.
The values for the process and measurement noise are also choosen to represent
the real values.
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Figure 4.8: The Simulation of the Problem of Estimating a the Position of a
Ship by Orientating at a Lighthouse.

To start the predict-correct cycle we initialize the state x and the error
covariance matrix P. For x we choose:

x =

 0
1
20


These initial values are just uncertainly known. For P we choose:

P =

1 0 0
0 1 0
0 0 1


In reality, the standard deviation of the process and measurement noise need to
be determined prior to the application of the filter. Here, the values σv and σm

reflect the real noise values.

σv = 0.02
σm = 0.02

We will run the filter on 10 simulated measurements. The results for the es-
timation of the ship’s position are depicted in Figure 4.8. In Figure 4.9, the
estimated lighthouse position is opposed to the real one. In Figure 4.10, the
behaviour of the error covariance P is depicted during the ten filter cycles. We
can note that the uncertainty about the position of the ship decreases first and
then starts to increase slowly. This is due to the more and more influencing mea-
surement noise. The farer the ship is getting away from its starting point the
lesser the measured angle will change its value. The measurement noise stays at
a constant level and will therefore increase its influence concerning uncertainty
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Figure 4.9: The Results for the Mapping of the Lighthouse.

about the correctness of the infered position of the ship. Small changes in the
value of the angle will cause larger deviations in the estimation of the ship’s
position and therefore a large uncertainty about the state estimate.
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Figure 4.10: The Error Covariance matrix P. After just one iteration, the
uncertainty about the ship’s position has decreased massivly. Then it increases
slightly. In contrast to that, the uncertainty about the velocity has nearly fallen
to zero.



Chapter 5

Real-Time SLAM

Our goal is to develop a vision system to enable a mobile robot to navigate
reliably and safely in an unknown environment. Therefore, we need to determine
the position and orientation of a vision sensor mounted on a mobile robot inside
a certain environment and simultaneously construct a three-dimensional map of
this environment. The problem should be solved in real-time so that the robot
knows everything of interest at dense consecutive points in time. It is important
that the accuracy of the estimation of the position etc. does not decrease over
time but stays at a rather constant level to ensure a reliable detection of obstacles
for a secure navigation.

In the following we present the application of the Extended Kalman Filter
to the problem of SLAM with two different vision sensors. We will start with a
general introduction. After that, we will generalise our task from a mobile robot
situated on a plane to a camera moving freely in space. Firstly, this camera will
be monocular. Secondly, we discuss the application of a stereo camera sensor.
Finally, the EKF-algorithm is summarised again.

For the sake of simplification we also assume that the initial position of the
camera and a fixed number of features are already initialised.

5.1 The SLAM Problem

Our approach is Kalman Filter based. Thus, the considered system, a mobile
robot in an unknown environment, is represented by a state containing instances
of all relevant information at the current time. After a constant period of time,
in the following always denoted as 4k, the state needs to be updated to adopt
the changes due to the robot’s motion. Measurements of the environment are
needed for this update. In our case we detect the relative position of land-
marks to the location of the robot within the environment via a vision sensor.
These landmarks are represented by three-dimensional points in the surround-
ing world, also referred to as 3D point features. Thus, the information available
from a picture is greatly reduced to just a few points: the projections of these
world points. On the one hand, this means that the available solution for our
problem might suffer from local inaccuracies, on the other hand, we have a
massive reduction of complexity. So, we need to find a balance between the
two aspects simplification and precision to obtain real-time performance and

47
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reliable navigation.
The extraction of the corresponding projections of the landmarks out of

the picture is done by a feature tracker. As already said at the beginning of
this work, it is handled here as a black box and assumed to work correctly. It
provides measurements given in image coordinates at regular intervals 4k.

Due to the motion of the robot just some landmarks will be visible at a
considered point in time, the other might be simply out of view. The prerequisite
to avoid a gradually increasing divergence between the state estimate and the
real state of the system in question is to be able to re-recognise landmarks after
periods of neglect.

This issues might be clarified by the following example: Imagine you have to
draw a very long straight line on the ground but you are just equipped with a 1m
ruler. At the beginning there might occur just small inaccuracies, because you
are able to compare the current fragment of the line with the first one. But the
longer the line gets the more it will diverge from the original orientation. This
is due to the small errors in each segment which will accumulate with increasing
line length. A solution would be to provide the original orientation for farther
line sections by setting kind of flags placed at regular intervals which are also
visible after a large distance.

The application of this concept to the localisation and mapping problem is
exemplary clarified in Picture 5.1 which is adapted from [30]. A robot, equipped
with any sensor device, e.g., with a monocular camera, is moving along the
dashed line in an environment with eight feature points aligned in two rows of
four landmarks each. Initially, the robot knows its starting position but has no
idea where the landmarks are. We assume that it can determine and distinct
them well.

As the robot starts moving, the uncertainty about its position increases
steadily. This is indicated by the growing grey error ellipses in the Picture
5.1(a) to 5.1(c). During the robot’s motion, it can obtain noisy measurements
of the relative position of nearby landmarks. From these values it estimates the
position of the corresponding feature points. The uncertainty in the position
estimate of the landmark is closely related to the uncertainty in the robot’s
location. Because the first feature was measured from the known starting point
of the robot, there is almost no uncertainty about the feature’s position. All the
other landmarks were measured from more and more uncertain robot locations.
This contributes to the uncertainty in their position estimates indicated by the
growing grid ellipses.

In Picture 5.1(d), the feature firstly measured from the starting point of
the robot is re-recognised and measured again. Because the location of this
landmark is quite certain it acts as a kind of flag for the robot’s position. As
a result, the uncertainty in the position estimate of the robot as well as of the
other landmarks reduces enormously.

The question why the estimates concerning the other seven features are also
corrected might be posed. Remember Chapter 4, where we introduced the
Kalman Filter approach. The considered system is described by a state x and
an error covariance matrix P. This matrix represents the uncertainty in the
whole state estimate as a multivariate Gaussian. This means that all according
random variables take their values in mutual dependency. The Gaussian can
be decomposed into its individual parts for each component contained in the
state to derive the single error ellipses. On the main diagonal of P you can
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Figure 5.1: A robot moves along the dashed line in an environment with eight
feature points aligned in two rows of four landmarks each. It tries to localise
itself and the features by using a sensor device, e.g., a monocular camera.(a)-(c)
As the robot moves on the uncertainty about its own position (indicated by
the grey ellipses) and about the position of the measured features (indicated by
the grid ellipses) increases. (d) The firstly measured feature, whose position is
known quite certainly, is re-recognised. The robot’s position estimation and the
estimates concerning the landmarks are corrected.
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find the variances of the distribution. Beyond the main diagonal, there are
the covariances of pairs of variables. They indicate the amount of correlation
between these variables. As already said above, the estimate of the position
of the robot and of the landmarks are highly correlated. Thus, a reduction of
the uncertainty in the estimate of the robot’s position will also decrease the
uncertainty in the estimate of the feature position.

5.2 Using a Single Camera

In this section we are going to concentrate on the more general problem of
tracking a freely moving camera instead of a robot driving on a plane.

Our considered system consists of several static 3D point features in the
world and a monocular camera moving with a certain velocity in this environ-
ment. Therefore, we have two frames of reference: the fixed world coordinate
frame, indicated by superscript W, and the moving camera coordinate frame,
indicated by superscript C. Measurements of the landmarks are taken relative to
the camera frame. But they are related to fixed 3D positions in the environment
based on the (uncertainly) known robot’s position also in the according world
frame. If the landmarks would be just related to the camera frame, the robot
will not be able to re-recognise them after periods of neglect because the 3D
features are not static. But as already mentioned in the introductive chapter,
this ability is essential to avoid an increasing divergence between the real and
estimated position of the robot.

In the following, we begin with designing the state as a description of our
considered system. It will contain the relevant information for our approach to
the SLAM problem. Then we formulate the process model to be able to predict
the motion of the camera. This prediction is corrected with a measurement
provided by the camera. For this purpose we will also set up a measurement
model which relates the state to the measurements.

5.2.1 Model for the Dynamical System to be Estimated

Our considered system can be described by three entities: state (position and
orientation) of the camera, motion of the camera and position of the 3D point
features.

Therefore, as components of the state vector x we choose the 3D position
tW = (tx, ty, tz)> and the orientation qCW = (q0, q1, q2, q3)> of the camera
projection centre with respect to the world coordinate frame.

For the representation of the motion of the camera we add a constant linear
velocity vW = (vx, vy, vz)> and angular velocity ωCW = (ωx, ωy, ωz)> to the
state, each represented by three-dimensional vectors. This does not mean that
we assume that the robot moves at constant velocities over the whole time but
rather that these are the expected average values in the period 4k of time.
Accelerations are not measurable in a picture obtained at an instance of time.
Therefore, they are presumed to occur randomly and are handled as uncertainty
about the motion of the camera. Again we apply the noise model already intro-
duced in Chapter 4. We assume accelerations to be realisations of a normally
distributed process noise. This is discussed in more detail in Section 5.2.2.
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All the last mentioned components can be summarised in the vector xv with
a total dimension of 13.

xv =


tW

qCW

vW

ωCW

 =


Position of the camera

Orientation of the camera
Linear velocity

Angular velocity


Additionally, the landmarks in the world also represented by n three-

dimensional vectors yW
i = (xW

i , yW
i , zW

i )> are contained in the state.1 Therefore
we have

x =



tW

qCW

vW

ωCW

yW
1
...

yW
i
...

yW
n


The total dimension m of the state x is therefore m = 13+3n. Because each

row and column is related to one component of the state, the according error
covariance matrix P is a (13 + 3n)× (13 + 3n) matrix.

P =


tWtW tWqCW . . . tWyW

n

qCWtW qCWqCW . . . qCWyW
n

...
...

. . .
...

yW
n tW yW

n qCW . . . yW
n yW

n


As already said before, its main diagonal contains the variances of all compo-
nents of the state x and all other values specify the correlation between pairs of
these variables.

5.2.2 Process Model

The state x, defined in the section before, is subject to a transformation over
time. In our case this transformation is the motion of the camera. We are not
able to model this motion up to absolute precision because we do not know the
“intention” of the robot or camera. Instead, we accept a certain discrepancy
between our model and reality and form this as some probabilistic entity repre-
sented by the process noise. In our case we assume that the camera moves with
an average linear velocity v and angular velocity ω and ignore possible accel-
erations. The individual values for acceleration at each point in time, whether
linear or angular, are unknown and not determinable by measurements provided
by a vision sensor. So, each is assumed to occur randomly. This randomness can

1The number of landmarks is allowed to change dynamically over time. New landmarks
might be added or “bad” features are deleted. Unless this is no subject of this work, we
assume the number of landmarks in the state to be static.



52 CHAPTER 5. REAL-TIME SLAM

be modelled as normally distributed white noise with zero mean and a specific
variance.

Let a = (ax, ay, az)> be the random vector for the linear acceleration. With
Qa as the corresponding covariance matrix, it can be modelled as

p(a) ∼ N(0,Qa) (5.1)

Qa contains the variances of the distribution for each component of a:

Qa =

σ2
ax

0 0
0 σ2

ay
0

0 0 σ2
az

 (5.2)

Linear acceleration is usually defined as a change in velocity 4vW per time pe-
riod 4k. Remember that 4k denotes the time covered between two consecutive
points in time. The average value of velocity vW is enhanced by the random
value a at each time step and forms the new average velocity vW

new for the next
time step. Expressed in a linear equation, we have

vW
new = vW + aW4k

= vW + VW

Let the second random vector α = (αx, αy, αz)> be the angular acceleration.
With the covariance matrix Qα, it is represented by

p(α) ∼ N(0,Qα) (5.3)

Qα is modelled analogous to Qa. Also, angular acceleration is defined as a
change in (angular) velocity 4ωW per time period 4k. This change contributes
to the assumed average angular velocity at each point in time and forms the
average value ωCW

new after the next time step. Expressed in a linear equation, we
have

ωCW
new = ωCW + αCW4k

= ωCW + ΩCW

Thus, the process noise consist of two components: random linear and an-
gular acceleration. We summarise them in the noise vector w.

w =
[
VW

ΩCW

]
=
[

aW4k
αCW4k

]
.

As already mentioned above, the process noise in all is modelled as normally
distributed white noise with zero mean and a certain variance, here represented
by the covariance matrix Q.

p(w) ∼ N(0,Q)

The covariance matrix Q of the process noise carries the appropriate covariance
matrices given in Equation (5.1) and (5.3).

Q =
[
Qa 0
0 Qα

]
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For simplification, it is assumed that linear and angular acceleration is uncou-
pled in contrast to reality. Therefore, the covariances are zero. The choice of
the values for σa and σα indicates what kind of motion we expect. If we choose
small values we estimate a smooth movement of the camera where accelerations
are very unlikely. But then, we will not be able to cope with motions were sud-
den rapid movements occur. To track these ones, we need to set the variances
to high values. The rate of growth of uncertainty about the predicted state of
our system will be higher than with small values for σa and σα.

So far, we have just discussed the change of the velocity components in the
state x between two points in time and in the course of that also about the
process noise. But how are the position and orientation values influenced by
these terms?

In general, an average linear velocity is defined as a certain distance 4sW

covered in a specified period of time 4k.
If we have given the position tW of the camera and the appropriate average

velocity at time (k−4k), we can derive the expected position at time k. In the
following, estimates for k are labelled by subscript new whereas a subscript for
the values at time (k −4k) is omitted to simplify the notation.

tW
new = tW + (vW + VW)4k.

The average angular velocity is defined as a certain amount of rotation given
in radians around some axis. All these informations are contained in the three-
dimensional vector ωCW: Its orientation specifies the axis and its magnitude
represents the amount of rotation in radians in a certain period of time 4k.

So, if we have given the orientation qCW and the average angular velocity of
the camera at time (k −4k) we can derive the new orientation at the current
time k.

qCW
new = qCW × q((ωCW + ΩCW)4k)

The term q((ωCW + ΩCW)4k) refers to the calculation of a quaternion from an
angle θ and axis x (Equation (3.1)).

The positions yW
i of the 3D features does not change over time because they

are assumed to be static.
We can combine the last equations and statements to the process model

where the change of the state of the system between two consecutive points in
time is modelled.

xnew = f(x,w) =



tW
new

qCW
new

vW
new

ωCW
new

yW
1,new
...

yW
i,new
...

yW
n,new


=



rW + (vW + VW)4k
q((ωCW + ΩCW)4k)× qCW

vW + VW

ωCW + ΩCW

yW
1
...

yW
i
...

yW
n


We will not know the individual values for the linear and angular acceleration

at each time step. Therefore, we assume it to be zero, which is the mean of their
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distribution. Then, we have

x̂new = f(x̂, 0) =



t̂W
new

q̂CW
new

v̂W
new

ω̂CW
new

ŷW
1,new
...

ŷW
i,new
...

ŷW
n,new


=



r̂W + v̂W4k
q̂(ω̂CW4k)× q̂CW

v̂W

ω̂CW

ŷW
1
...

ŷW
i
...

ŷW
n


Due to the non-linearity of the quaternion multiplication and calculation of a
quaternion from an angle-axis representation of rotation, this model is nonlinear.
As already explained in Section 4.2 we have to linearise it about the current
estimate to apply the Kalman Filter approach to a nonlinear system. Therefore,
we create the Jacobian matrix A containing the partial derivatives of the process
model f with respect to the state x. It is used to project the uncertainty about
one estimate at the previous point in time, given in the error covariance matrix
P, to the next point in time. The Jacobian matrix A is given in detail in
Appendix A.

To involve the noise in the process model we also need to create the Jacobian
matrix W containing the partial derivatives of the process model f with respect
to the noise vector w. It is also given in detail in Appendix A.

Besides predicting the state x̂new by calculating f(x, 0), we also predict the
uncertainty about the state estimate Pnew by

Pnew = APA> + WQW>

As already done in Chapter 4, we go on omitting the time index k for the
Jacobian matrices although they are different at each time step.

5.2.3 Output of the System

The camera we try to localise within the environment provides the measure-
ments we use to infer the state of the system. As already said above, the
information of one picture delivered by the camera is reduced to a set of 2D
points which are projections of 3D landmarks situated in the environment. The
position and orientation of the camera affect which features are projected onto
the image plane. Thus, the output of the system depends on its state.

The measurement is described by a vector z containing coordinates zi =
(xI

i, y
I
i)
> of the 2D projections of the currently visible landmarks. Let l features

be visible, then we have

z =



z1

...
zi

...
zl

 .
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The corresponding covariance matrix S2l×2l is defined as the uncertainty about
the predicted measurement. Each row and column is related to one component
of the measurement vector. Its main diagonal contains the variances of the com-
ponents of z. All the other values represent the amount of correlation between
the measurements.

5.2.4 Measurement Model

The measurement model specifies how the output depends on the state of the
system. Here, we have projections of points in the world coordinate frame onto
the image plane of a monocular camera. If we remember Section 3.2.1, the
relation between the projective 3D world coordinates ỹW

(4) of a point and the
image coordinates of its projection ỹI

(3) is established by two transformation
matrices. First, we need to shift and rotate the world coordinates into the
camera frame by using the Matrix (3.5).

ỹC = DCWỹW

The image coordinates of the projection of the point in camera coordinates are
derived by applying Matrix (3.4).

ỹI = FICỹC

Now, we need to fill these matrices with the appropriate values. The external
parameters to convert world into camera coordinates are given in the state as
a translation tW and a rotation qW. Expressed in a linear transformation, the
camera coordinates of a landmark yW

i can be obtained by

yC
i =

xC
i

yC
i

zC
i

 = RCW(yW
i − tW) (5.4)

Here, RCW refers to the rotation matrix derived by the quaternion qCW and is
used to simplify the notation. More about the relation between several repre-
sentations of rotations is given in Appendix B.

As shown in Equation (3.2) and (3.3) we can easily derive the Euclidean
image coordinates by a division. Thus, the measurement model hi for a single
world point ŷW

i is

ŷI
i = hi(x, 0) =

[
xI

i

yI
i

]
=

xC
i

zC
i

yC
i

zC
i

 (5.5)

You might have noticed, that in Equation (5.5) we deal with normalised image
coordinates. This is indicated by the omitted focal length f from the Equa-
tions (3.2) and (3.3) and the lack of internal parameters, like pixel dimension
or position of the principal point, described in Section 3.2.1. The problem with
this is, that the camera sensor just provides measurements in pixel coordinates.
Thus, we need to convert these measurements into the appropriate representa-
tion to be able to apply Equation (5.5).

This is the place where the measurement noise is introduced. The mapping
of pixel on image coordinates is not unique. One pixel merges several image



56 CHAPTER 5. REAL-TIME SLAM

points. The amount of image points referring to one pixel depends on the
resolution of the camera sensor or in other words, to the dimension of one
pixel given in image points. Therefore, the measurement model is augmented
by random noise values vx and vy in x− and y−direction. They represent the
discrepancy between real and estimated image coordinates of the projections of
world points onto the image plane. In Equation (5.5) no noise is introduced and
therefore ŷI

i is labelled with a hat. We will not know the individual random noise
values after each time step. Thus, the measurement noise is in the following
assumed to be normally distributed white noise with zero mean and certain
variance values σ2

x and σ2
y which refer to the pixel dimension. We combine the

mentioned random values in the measurement noise vector v = (vx, vy)> and
the variances in the covariance matrix R.

p(v) ∼ N(0,R)

The covariance matrix is of the following form

R =
[
σ2

x 0
0 σ2

y

]
By setting the covariance values, situated outside the main diagonal, to zero we
assume that the noise in x− and y−direction is uncorrelated.

If we augment Equation (5.5) with the noise v we have

hi(x,v) = yI
i =

[
xI

i

yI
i

]
=

xC
i

zC
i

+ vx

yC
i

zC
i

+ vy

 (5.6)

We derive the complete measurement model h(x,v) by substituting Equa-
tion (5.4) for yC

i = (xC
i , yC

i , zC
i )> in Equation 5.6.

To summarise, we have

z = h(x,v) =



z1

...
zi

...
zn

 =



h1(x,v)
...

hi(x,v)
...

hn(x,v)


As already said before, we are just able to approximate the individual noise
values for vx and vy at each point in time. Therefore, we assume them to
be zero, which is the mean of the according distribution. The projections for
each world point are therefore predicted by Equation (5.5). Then, h(x, 0) is
represented by

ẑ = h(x, 0) =



ẑ1

...
ẑi

...
ẑn

 =



h1(x, 0)
...

hi(x, 0)
...

hn(x, 0)
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where hi(x, 0) is calculated by Equation (5.5). yC
i in (5.5) is derived by Equa-

tion 5.4.
Due to the nonlinearity of rotations and the projection, the measurement

model is also nonlinear. To apply the Kalman Filter approach to this prob-
lem we need to linearise the equations about the current estimate. Firstly, this
means to calculate the Jacobian matrix H which contains the partial derivatives
of the measurement model h with respect to the state x. The Jacobian is given
in detail in Appendix A. The input for the measurement model will not be the
real state x of the system like it is assumed so far, because we simply do not
know it. Instead we have an estimate x̂ derived from the process model. This
estimate is accompanied by an uncertainty about it represented by the covari-
ance matrix P. The Jacobian matrix H is needed to project this uncertainty
into the measurement space. Thus, depending on the uncertainty about the
state, the uncertainty about the predicted measurement can be calculated.

But P is not the sole component that contributes to the uncertainty about
the measurement prediction. The measurement noise also affects the amount of
uncertainty. Thus, we secondly need to calculate the Jacobian matrix V which
contains the partial derivatives of h with respect to the noise vector v to project
the measurement noise into the measurement space. V is also given in Detail
in Appendix A.

Thus, if we have a state estimate x̂, we can predict the measurement ẑ
by calculating h(x̂, 0). The uncertainty about the predicted measurement is
represented by the covariance matrix S and is calculated by

S = HPH> + VRV>

5.3 Using a Stereo Camera

The difficulty with using a monocular camera to solve the SLAM problem is that
the depth of a 3D feature point is not determinable from a single 2D projection.
The process of projection is not invertible. Remember Figure 3.1 where the
pinhole model is depicted. All points situated on one ray from the camera
projection centre through the image plane result in the same 2D projection: the
intersection point between ray and image plane.

Obviously, we have a problem with initialising the position of a 3D feature
point via a single 2D projection. For simplification we assumed in the previ-
ous section that some 3D point features are already initialised with a specific
uncertainty. Nevertheless, Davison [9] presented a solution for the initialisation
problem via a monocular camera.

If we already have some predefined feature points with predefined uncer-
tainty, the uncertainty about the distance between the camera and each world
point will not decrease after the first Kalman Filter cycle. Opposed to the
depth, the estimates about the feature position in horizontal and vertical di-
rection are much more precise because the 2D projection provides sufficient
information to calculate them. Two or more different corresponding projections
of one world point enables to obtain more confidence about the depth of the
feature. Although, we acquire these additional information during the motion
of the camera, the uncertainty about depth will just decrease slowly. This is due
to the fact, that the 3D position of the feature considered is computed based
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Camera Coordinate Frame

World Coordinate Frame

Feature Point

Figure 5.2: Uncertainty, Represented by the Grid Ellipsoid, about the 3D po-
sition of a Point Feature after one Kalman Filter Cycle. The measurement is
obtained by a single camera.

on the uncertainly known state of the camera and on noisy measurements. The
calculated values are therefore also accompanied by uncertainty. In Figure 5.2
the situation after one Kalman Filter cycle is depicted.

This drawback in the estimation of the feature point position can be solved
by using a stereo camera. If the two corresponding projections of one world point
are determined and the stereo camera system is in standard stereo geometry,
the 3D coordinates can be calculated by Equations (3.8) to (3.10). Thus, we
can easily initialise the 3D position of landmarks and the uncertainty about
this position will decrease similarly in all directions. The situation is depicted
in Figure 5.3. The same initial state and error covariance is used as for the
situation where the image is obtained by a single camera. When comparing
with Figure 5.2, it can be noted that the uncertainty about depth is smaller
than with using a monocular vision sensor.

Nevertheless, we will stick to a certain number of pre-initialised features with
pre-initialised uncertainty.

In the following we present a vision based SLAM approach where we use a
stereo camera instead of a monocular camera. First, we will set up the state as
the description of the system. This is followed by the process model which relates
the state at one point in time to the next. The state estimate provided by the
process model is augmented by a measurement of the system’s output. There-
fore, we will introduce the measurement vector and the measurement model
which relates the state to the measurements.
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Stereo Camera Coordinate Frame

World Coordinate Frame

Feature Point

Figure 5.3: Uncertainty, Represented by the Grid Ellipsoid, about the 3D po-
sition of a Point Feature after one Kalman Filter Cycle. The measurement is
obtained by a stereo camera.

5.3.1 System and Process Model

The system we consider here resembles the one in Section 5.2. It consists of
several 3D point features situated in an environment and a camera moving
in this environment with a certain velocity. The sole difference is the vision
sensor. Instead of a monocular camera, we will use a stereo camera to increase
the precision in the estimation of the 3D point position.

In the following, we will shortly summarise Section 5.2.1 and 5.2.2 because
state and process model for SLAM with a stereo camera are the same as for
SLAM with a single camera. For a more detailed explanation have a look at
these sections.

The first component of the state x is the position tW = (tx, ty, tz)> of the
camera within the world. In Section 5.2.1 this information refers to the camera
projection centre. If we use a stereo camera, we have two camera systems and
therefore two projection centres. We define, that tW indicates the position of
the left one.

All the other state components of the system with the single camera sensor,
like orientation, linear and angular velocity and the position of the features,
remain the same as for the monocular camera.
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Therefore, as state we have

x =



tW

qCW

vW

ωCW

yW
1
...

yW
i
...

yW
n


=



Position of the camera
Orientation of the camera

Linear velocity
Angular velocity

1st feature
...

ith feature
...

nth feature


.

If the dimension of the state is m, P is the according m ×m error covariance
matrix.

As well as the state, also the process, namely the motion of the camera, stays
the same. In the following, subscript new refers to estimates for the new point
in time. Values of the previous point in time have no subscript. As a process
model we have

xnew = f(x,w) =



tW
new

qCW
new

vW
new

ωCW
new

yW
1,new
...

yW
i,new
...

yW
n,new


=



rW + (vW + VW)4k
q((ωCW + ΩCW)4k)× qCW

vW + VW

ωCW + ΩCW

yW
1
...

yW
i
...

yW
n


VW and ΩCW represent the process noise as some unknown random acceleration.
They are summarised in the noise vector w = (VW,ΩCW)>. The values for the
noise vector are approximated by zero which is the mean of the corresponding
distribution. Then, we have

x̂new = f(x̂, 0) =



t̂W
new

q̂CW
new

v̂W
new

ω̂CW
new

ŷW
1,new
...

ŷW
i,new
...

ŷW
n,new


=



r̂W + v̂W4k
q̂(ω̂CW4k)× q̂CW

v̂W

ω̂CW

ŷW
1
...

ŷW
i
...

ŷW
n


As this is the same nonlinear process model as in Section 5.2.2, we also need to
derive the Jacobian matrices A and W to apply the Kalman Filter approach
to this nonlinear system. Both matrices are given in detail in Appendix A.
The matrix A contains the partial derivatives of the process model f(x, 0) with
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respect to the state x. It is used to project the uncertainty represented by the
error covariance matrix P about one estimate to the next point in time. The
Jacobian matrix W contains the partial derivatives of f(x, 0) with respect to
the noise vector v.

Thus, after we have predicted the state estimate x̂new for the next point in
time by calculating f(x, 0), we can derive the uncertainty about this estimate
represented by Pnew with

Pnew = APA> + WQW>.

5.3.2 Output of the System

Opposed to a monocular camera, a stereo camera provides not just one 2D
projection of a 3D feature per time step. We have two camera systems and
therefore a left and right projection of one landmark is available at considered
points in time. With this information we can directly compute the according
camera coordinates by applying Equations (3.8) to (3.10) if we assume that the
camera is in standard stereo geometry.

Depending on the position and orientation of the camera just some features
might be visible for both camera systems. These features are referred to as fully
visible in contrast to features where just one or no projection is visible. Thus,
the output of the system depends on its state.

If l features are fully visible, the output of the system consists of l pairs
of image coordinates xI

l = (xI
l, y

I
l)
> and xI

r = (xI
r, y

I
r)
> which are the left and

right projection of the visible landmarks. In our case we just measure the image
coordinates of the left projection and the disparity. Remember that the disparity
is the difference between the left and right x-coordinate! Because we assumed
that the stereo image is rectified, the y-coordinate of both projections is the
same. So, one projection and the disparity contain all necessary information to
derive the 3D position of a feature point.

One might ask, if it would not be easier to measure the camera coordinates
of the feature directly. Especially, the differentiation of the measurement model
would be less complicated due to the omitted division as you will see in the
following section. Choosing the disparity instead has the advantage that its
value indirectly influences the uncertainty about the corresponding camera co-
ordinates. Small disparity values refer to features that are far away; large values
indicate a close feature position. Landmarks that are far away from the camera
can be less precisely measured than nearer ones. If a measurement value of a
feature with a large depth is accompanied by a certain measurement error, the
error in the calculated 3D position would be larger than for a nearer feature and
the same measurement error. This situation is depicted by Figure 5.4.

This circumstance is not exploited if we measure the camera coordinates of
the landmark directly. The uncertainty about the 3D position would be the
same, whether it is far away or near to the camera.

To summarise, if l features are fully visible the measurement vector z consists
of l three-dimensional vectors zi.

zi =

xI
l,i

yI
l,i

dI
i

 =

 x-coordinate of the left projection
y-coordinate of the left/right projection

Disparity
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Cl Cr

Image planes

yi

yj

Figure 5.4: Regions of uncertainty for two point features yi and yj in 2D.
Trapezoids around the 2D points bound the region of uncertainty referring to
the position of the considered features. Dotted lines indicate the line of sight
from the camera projection centres Cl or Cr to each feature point. Dashed
lines can be taken as an error bound and are defined by the deviation of the
measurement error. Farer feature points with a small disparity are accompanied
by a larger uncertainty about their position. Projections of nearer feature points
with a larger disparity provide more information about their 2D position. This
circumstance can be adopted to 3D without restrictions.
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Each row and column of the according error covariance matrix S refers to one
component of the measurement vector. S is therefore of dimension 3l × 3l. It
represents the uncertainty about a predicted measurement.

5.3.3 Measurement Model

The measurement model relates the state of the system to the measurement of
its output. The state contains information about the position and orientation
of the camera in the world, its average velocity during one time step and the
position of the landmarks in the world. The measurement vector contains the
image coordinates of the projections of the fully visible feature points onto the
left image plane of the stereo camera and the appropriate disparity.

The relation between the left projections and the state of the camera is
clearly the same as the relation between the single projections and the state of
the monocular camera in Section 5.3.3. Firstly, the world coordinates of the
landmarks yW need to be transformed into camera coordinates yC

l for the left
camera system. This transformation consists of a rotation and a translation
based on the appropriate values derived from the state: tW as the position and
qCW as the orientation of the camera. Regarding to one feature point yW

i , we
have

yC
i,l =

xC
i,l

yC
i,l

zC
i,l

 = RCW(yW
i − tW). (5.7)

The matrix RCW denotes the rotation matrix derived from the quaternion qCW

and is introduced here to simplify the notation. Equation (5.7) is the same as
Equation (5.4).

Secondly, we need to project the camera point yC
i,l onto the left image plane.

This is easily derived by a division.

ŷI
i,l =

[
xI

i,l

yI
i,l

]
=

xC
i,l

zC
i,l

yC
i,l

zC
i,l

 (5.8)

Like already explained for Equation (5.5), ŷI
i,l is just an estimate of the real

projection of the landmark yW
i . What the camera provides are rather pixel than

image coordinates. The extraction of image coordinates out of a pixel location
is not unique. Depending on the solution of the camera, a certain number of
image points are merged to one pixel. Thus, we need to introduce a random
noise variable to model the unknown displacement of the image coordinates in
the horizontal and vertical direction. We define vl = (vl,x, vl,y)> as the random
measurement noise vector. It is assumed to be normally distributed with zero
mean and a certain covariance matrix Rl.

p(vl) ∼ N(0,Rl)

The covariance matrix is of the following form

Rl =
[
σ2

x 0
0 σ2

y

]
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By setting the covariance values, situated outside the main diagonal, to zero we
assume that the noise is uncorrelated in x− and y−direction.

If we augment Equation (5.8) with this noise vector vl we derive the real
measurement yI

i,l for the landmark yW
i .

yI
i,l =

[
xI

i,l

yI
i,l

]
=

xC
i,l

zC
i,l

+ vl,x

yC
i,l

zC
i,l

+ vl,y

 (5.9)

vl,x and vl,y are assumed to be zero. Thus, to predict the left projections of the
fully visible features, we use Equation (5.8).

Besides the left projection ŷI
i,l of one landmark, the third component of the

specific measurement zi is the disparity dI
i. It is defined as the difference between

the x−coordinates of the left and right projection of the considered landmark.
Thus, to be able to calculate the disparity we also need to define the relation
between the state of the system and the right projections of the fully visible
landmarks. In principle, this relation resembles the one for the left projection.
Firstly, we need to transform the world coordinates of the appropriate landmarks
into camera coordinates for the right camera system. Secondly, we project the
computed camera point onto the image plane.

The difference between the left and right camera influences the first transfor-
mation. Both camera systems are orientated the same way. Thus, the quater-
nion qCW is also used to rotate world into right camera coordinates. The position
tW is referred to the left camera projection centre which is unequal to the right
one. But, to transform world into right camera coordinates we need to obtain
the world coordinates tW

r of the right camera projection centre. We know the
distance, namely the baseline b, between both projection centres. This baseline
is rotated around the left camera projection centre about qWC which denotes the
inverse rotation to qCW. Therefore, the world coordinates of the right projection
centre are computed by

tW
r = tW + RWCb

To transform a specific landmark yW
i into right camera coordinates yC

i,r, we
substitute tW

r for tW in Equation (5.7) and derive

yC
i,r =

xC
i,r

yC
i,r

zC
i,r

 = RCW(yW
i − tW

r )

= RCW(yW
i − (tW + RWCb)).

The second transformation, the projection of a right camera point onto the
image plane, stays the same as for a left camera point in Equation (5.8).

ŷI
i,r =

[
xI

i,r

yI
i,r

]
=

xC
i,r

zC
i,r

yC
i,r

zC
i,r

 (5.10)

Here, ŷI
i,r is also an estimate of the real measurement yI

i,r. The discrepancy
is due to an unknown noise term vr = (vr,x, vr,y)> analogous to vl for the
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projection on the left image plane. vr is likely to differ from vl at each point in
time, but the covariance matrices are the same.

p(vr) ∼ N(0,Rr) ∼ N(0,Rl)

As usual, we assume the noise to be equal to the mean of its distribution.
Therefore, to predict the right projections of the fully visible landmarks we
compute Equation (5.10).

Besides the left projection, the specific measurement vectors zi for a fully
visible landmark yW

i contains the disparity dI
i rather than the image coordinates

for the right projection. dI
i is calculated by

dI
i = xI

i,l − xI
i,r (5.11)

where xI
i,l and xI

i,r is calculated by Equation (5.8) or (5.10) respectively. Two
estimated values are used to compute the disparity. Therefore, the disparity
itself is an estimate. The difference between the real disparity and its estimate
is covered by a random noise value vd which is the sum of the noise values for
each x-coordinate. We do not know the individual values for vl,x and vr,x at
each point in time and therefore also not for vd. Because we assumed vl,x and
vr,x to be zero, vd results to zero. Thus, the noise in the disparity value is also
normally distributed with zero mean. Its standard deviation is the sum of the
standard deviations for vl,x and vr,x: 2σx.

p(vd) ∼ N(0, 2σx)

We have a three-dimensional measurement vector zi for each fully visible land-
mark yW

i containing the appropriate left projection and disparity. Each compo-
nent is accompanied by some noise. In all cases we do not know the individual
noise values and model them as normally distributed white noise with zero mean
and a specific standard deviation. We now summarise these noise values into the
measurement noise vector v = (vl,x, vl,x, vd)>. It can be altogether modelled as
normally distributed white noise with zero mean and covariance matrix R.

p(v) ∼ N(0,R).

The covariance matrix has the following form:

R =

σx 0 0
0 σy 0
0 0 2σx


To summarise, we calculate zi regarding to one world point yW

i by:

zi = hi(x,v) =

xI
l,i

yI
l,i

dI
i

 =


xC

i,l

zC
i,l

+ v1,x

yC
i,l

zC
i,l

+ v1,y

xI
i,l − xI

i,r + vd


where yC

i,l is calculated by Equation (5.7) and xI
i,r by Equation (5.10).
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The individual values for v are unknown and zi is therefore estimated with-
out it as ẑi by calculating:

ẑi = hi(x,v = 0) =

xI
l,i

yI
l,i

dI
i

 =


xC

i,l

zC
i,l

yC
i,l

zC
i,l

xI
i,l − xI

i,r


where yC

i,l is again calculated by Equation (5.9) and xI
i,r by Equation (5.10).

As already stated in the previous section, if l features are fully visible, our
measurement vector z consists of l three-dimensional vectors zi for each fully
visible landmark yW

i . Therefore, the whole measurement model can be sum-
marised as

z = h(x,v) =



z1

...
zi

...
zn

 =



h1(x,v)
...

hi(x,v)
...

hn(x,v)

 .

Setting the noise vector to zero, we derive an estimate ẑ for the measurement
vector.

ẑ = h(x, 0) =



ẑ1

...
ẑi

...
ẑn

 =



h1(x, 0)
...

hi(x, 0)
...

hn(x, 0)

 .

This estimate is accompanied by an uncertainty about it represented by the
covariance matrix S. Until now, we always assumed that the real state vector x
is used to calculate or predict the measurement. We do not have access to this
vector and therefore, take an estimate x̂ instead. The uncertainty about this
estimate is represented by the covariance matrix P. If we take the state esti-
mate to predict the measurement, the uncertainty about it will contribute to the
uncertainty about the estimated measurement. Due to the rotation and projec-
tion, the measurement model is nonlinear. To project P into the measurement
space, we need the Jacobian matrix H which contains the partial derivatives of
h(x, 0) with respect to the state x. But not just the uncertainty about the state
estimate will contribute to the uncertainty about the predicted measurement.
Additionally we have the measurement noise. We project the noise covariance
matrix R into the measurement space by using the Jacobian matrix V which
contains the partial derivatives of the measurement model h(x, 0) with respect
to the noise vector v.

After we have obtained the predicted the measurement vector ẑ for the
specific state estimate x̂ by calculating h(x̂, 0) we can calculate the uncertainty
about it by

S = HPH> + VRV>
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5.4 Predict and Correct Steps

In the previous sections we have presented the appropriate models to apply
the EKF algorithm to the SLAM problem by either using a single camera or
a stereo camera. The EKF algorithm itself stays the same regardless of which
vision sensor is used.

As already said above, we assume that the system is already initialised with
values for the position and orientation of the robot as well as with positions of
n landmarks in the world. There is no uncertainty about the robot’s but about
the landmark’s position. This means, that the components of the main diagonal
of the error covariance matrix P referring to the feature points are set to some
initial values. The values outside the main diagonal are equal to zero.

The EKF is cycling through two steps: the predict and the correct step. As
the name implies, in the predict step a prediction is made for the state of the
system in the next point in time. In the correct step, this estimate is corrected
by including measurements of the output of the system.

5.4.1 Predict Step

Assume, that we have given a state estimate x̂k−4k and the according error
covariance matrix Pk−4k at the point (k −4k) in time. Then, we can predict
the state x̂−k for k by calculating

x̂−k = f(x̂k−4k, 0).

The uncertainty given in P−k about the a priori estimate x̂−k also has to be
calculated. Therefore, the Jacobians A and W containing the partial derivatives
of f with respect to the state x or the process noise vector w respectively, need
to be calculated for the current time. Then, we can compute

P−k = APk−4kA> + WQW>

The uncertainty is projected to the next point in time indicated by the term
AP̂k−4kA>, and also increased by the process noise WQW>.

5.4.2 Correct Step

In contrast to the state of the system, we have access to the real measurements
of the system’s output. In the correct step, the difference between the predicted
and the real measurement, the residual, is weighted with the Kalman Gain K
and added to the a priori estimate x̂−k . Thus, we first need to compute the
Kalman Gain. For this task the Jacobians H and V of the measurement model
h with respect to the state x or the measurement noise vector v respectively
are needed. If they had been computed, the Kalman Gain can be derived by

Kk =
P−k H>

(HP−k H> + VRV>)
.

Then, we predict the measurement ẑ which depends on the a priori state esti-
mate

ẑk = h(x̂k, 0).
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After the real measurement zk had been obtained, the residual can be calculated
and weighted. The last step is to add this to the a priori state estimate.

x̂k = x̂−k + Kk(zk − h(x̂−k , 0)).

Besides the state, the uncertainty about the predicted state is corrected as well
by computing

Pk = (I−KkH)P−k .

Intuitively said, if a concrete measurement is involved in the correct step, the
uncertainty about the state estimate x̂k will shrink. But as you might remember
from the simple example in Section 4.2.4, there are cases, where the uncertainty
increases. It occurs when estimates are made based on measurements that are
corrupted by a high measurement noise.



Chapter 6

An Observation Strategy

In the previous chapter we applied the Extended Kalman Filter approach to the
SLAM problem. A problem of using the EKF is that it does not scale very well.
The complexity is cubic in the number of features in the map. In this chapter,
we will examine strategies to reduce the complexity to at least O(n2) where n
is the number of features.

One of these strategies includes that just a single feature instead of all visible
ones is measured. In [35] it is shown, that this is sufficient for tracking. If we
do so, we need to select the best feature based on a heuristic. In the following,
we will refer to this heuristic as an observation strategy. It is adapted from
Davison in [9] and [8].

In this chapter, we will firstly concentrate on the ways to reduce the time
complexity of one EKF cycle. This examination is chiefly based on [23]. Sec-
ondly, an appropriate heuristic is introduced to realise the selection of the best
landmark. The two SLAM scenarios, the first with a single camera, the second
with a stereo camera, are handled separately.

6.1 Complexity of the Kalman Filter

We will first examine the general time complexity of the Extended Kalman
Filter algorithm in detail. Considering each step during one EKF cycle, we will
introduce methods to reduce the cubic time complexity to at least O(n2). Just
to remember, the appropriate equations are listed in Figure 6.1.

If we have a look at these equations, we can state that there are two ma-
jor time consuming operations: matrix multiplication and matrix inversion. If
the matrix multiplication is carried out in a straightforward manner, its time
complexity is O(n3) if we multiply n× n matrices. Matrix inversion also grows
cubic with the number of visible and measured features.

In the case of the EKF, the maximal size of a matrix, here P, is (13 +
3n) × (13 + 3n) where n is the number of features. The matrix which will be
inverted is the innovation covariance. It is of dimension (2l× 2l) or (3l× 3l).1 l
denotes the number of visible and measurable features. Because the number of

1The dimension of the measurements using a monocular camera is 2. If a stereo camera is
used as a vision sensor, the measurement is three-dimensional

69



70 CHAPTER 6. AN OBSERVATION STRATEGY

1. Predict Step

(a) Predict the state ahead.

x̂−k = f(x̂k−1, 0)

(b) Predict the error covariance matrix ahead.

P−k = APk−1A> + WQW>

2. Correct Step

(a) Calculate the Kalman Gain.

Kk =
P−k H>

(HP−k H> + VRV>)

(b) Correct the a priori state estimate

x̂−k + Kk(zk − h(x̂−k , 0))

(c) Correct the a posteriori error covariance matrix estimate

Pk = (I−KkH)P−k

Figure 6.1: Equations of one Extended Kalman Filter Cycle.
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measurable features cannot be larger than the number of known features, the
overall complexity of the EKF is O(13 + 3n) = O(n3).

We can reduce this complexity to O(n2) by considering aspects related to
the SLAM problem. First of all, the process model just affects the state of
the camera and the velocities, summarised in xv. The known features are not
involved and thus not the whole state of the system.

Secondly, usually just a small subset of feature points can be measured at
each point in time, due to the constraints of the viewing direction. In the
following, we will explain this in detail, first for the predict step and after that
for the correct step.

6.1.1 Complexity of the Predict Step

In the predict step of the Kalman Filter, we predict the state x of the system
as x̂− and the related error covariance P as P−. The process model f relates
the state at one point in time to the next. But, as already mentioned above,
just the state of the camera and its velocities are affected. Thus,the Jacobian
matrix A, containing the partial derivatives of the process model with respect
to the state, is of the following form,

A =
[

∂fv

∂xv
0

0 I

]
where fv is the first part of the measurement model.

xv,new = f(xv,w = 0) =


tW
new

qCW
new

vW
new

ωCW
new

 =


rW + vW4k

q(ωCW4k)× qCW

vW

ωCW


The detailed Jacobian matrix A can be found in Appendix A.

The overall dimension of the state is m = 13 + 3n where n is the number of
the 3D landmarks and 13 is the dimension of xv. Thus, A is a m×m Jacobian
matrix as well as the error covariance matrix P. The block ∂fv

∂xv
is of dimension

13× 13.
Let’s consider the first summand APk−1A> of the prediction of the error

covariance matrix as P−k and let the old Pk−1 be denoted by

Pk−1 =
[
P11 P12

P21 P22

]
.

P11 is a covariance matrix also of dimension 13×13 related to xv. P12 and P21

are of dimension 13 × 3n and 3n × 13, respectively. 2 P22 is then a 3n × 3n
covariance matrix.

If we perform the matrix operation for APk−1A> explicitly, we obtain:

APk−1A> =
[

∂fv

∂xv
0

0 I

] [
P11 P12

P21 P22

] [
( ∂fv

∂xv
)> 0

0 I

]

=

[
∂fv

∂xv
P11( ∂fv

∂xv
)> ∂fv

∂xv
P12

( ∂fv

∂xv
P12)> P22

]
2Note that P12 is the transpose of P21 because of the symmetry of covariances.
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Regarding to the dimensions of the matrices, the term ∂fv

∂xv
P11( ∂fv

∂xv
)> can be

evaluated by 2(13∗13∗13) multiplications. To solve ∂fv

∂xv
P12 we need 13∗13∗3n

multiplications. ( ∂fv

∂xv
P12)> is just the transpose of the previous term and do

not need to be evaluated again. Altogether, the whole amount of multiplications
to evaluate APk−1A> lies at 2(13 ∗ 13 ∗ 13) + (13 ∗ 13 ∗ 3n).

The second summand WQW> of the prediction function can be considered
equivalently. The Jacobian matrix W contains the partial derivatives of the
process model with respect to the process noise. It is of the following form:

W =
[

∂fv

∂VW
∂fv

∂ΩCW

0 0

]
For the detailed matrix, have a look at Appendix A.

Since the process noise vector w is of dimension 6, W is a m × 6 matrix.
The blocks ∂fv

∂VW as well as ∂fv

∂ΩCW carry 13× 3 elements. The process noise does
not affect the coordinates of the known features. Thus, the according elements
of W are equal to zero.

The process noise covariance Q can be denoted by:

Q =
[
Q11 0
0 Q22

]
It is a 6× 6 matrix and the blocks Q11 and Q22 are each of dimension 3× 3.

If we perform the matrix multiplication WQW> explicitly, we derive:

WQW> =
[

∂fv

∂VW
∂fv

∂ΩCW

0 0

] [
Q11 0
0 Q22

] [
( ∂fv

∂VW )> 0
( ∂fv

∂ΩCW )> 0

]

=
[

∂fv

∂VW Q11( ∂fv

∂VW )> + ∂fv

∂ΩW Q22( ∂fv

∂ΩW )> 0
0 0

]
Because no block of a size related to the n known features is involved in the one
block unequal to the zero matrix, the number of multiplications is independent
of n. We exactly need 4(13 ∗ 3 ∗ 3) multiplications.

Thus, the cost of the predict step in all is linear in m.

6.1.2 Complexity of the Correct Step

Since just a few features of all known are visible for the camera sensor at each
point in time, the Jacobian matrix H containing all partial derivatives of the
measurement model h with respect to the state, carries a large number of zeros.
Let’s assume that we just measure one feature yW

i after each time step. Then
H is of the following form:

H =
[

∂h
∂xv

0 ∂h
∂yW

i

0
]

The detailed Jacobian matrix can be found in Appendix A.
We know, that the dimension of the state vector x is m = 13 + 3n. The

dimension p of the measurement vector is either 2 or 3, depending on whether
we use a single or stereo camera. Thus, the whole matrix H is of dimension
p×m. The block ∂h

∂xv
carries p×13 elements whereas ∂h

∂yW
i

is of dimension p×3.
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To evaluate the Kalman Gain K, we need to perform the multiplication
P−k H>. For this case, P−k is represented by:

P−k =
[
P1 P01 P2 P02

]
(6.1)

The block P1 contains m× 13 and the block P2 m× 3 elements. If we perform
this multiplication explicitly, we obtain

P−k H> =
[
P1 P01 P2 P02

]


∂h
∂xv

>

0
∂h

∂yW
i

>

0

 = P1
∂h

∂xv

>
+ P2

∂h
∂yW

i

>
.

The number of multiplications adds up to 16pm.
After evaluating P−k H> we need to derive the innovation covariance S. It

can be obtained by equation HP−k H> + VRV>. We will firstly consider the
first summand.

The result for P−k H> is a m× p matrix and is represented by

P−k H> =


P′1
P′01
P′2
P′02


where the block P′1 is a 13× p and P′2 a 3× p matrix.

As result for the product HP−k H> we obtain

HP−k H> =
[

∂h
∂xv

0 ∂h
∂yW

i

0
]

P′1
P′01
P′2
P′02

 =
∂h

∂xv
P′1 +

∂h

∂yW
i

P′2

The amount of multiplications lies at 16p2, where p is either 2 or 3.
The second summand VRV> in the equation to derive the innovation co-

variance can be simplified equivalently. R is the measurement error covariance
of dimension p × p. The Jacobian matrix V contains the partial derivatives
of the measurement model with respect to the measurement noise. Because
the measurement noise vector is an additive constant in both SLAM scenarios
whether with a single or stereo camera, V is an identity matrix regardless of
the value of p. We have

VRV> = R.

The overall amount of multiplications to calculate the innovation covariance is
16p2.

To evaluate the Kalman Gain K we need to invert S. As already mentioned
above, the complexity of matrix inversion grows cubic with the number of rows
or columns, respectively, of the considered quadratic matrix. Here, we have a
p× p matrix to invert. Thus, we need p3 multiplications.

The whole amount of multiplications to calculate the Kalman Gain is there-
fore 16pm + 16p2 + p3 which is linear in m.

Until now, the complexity of all equations whether in the predict or correct
step were linear in m. The second equation of the correct step updating the
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Predict Step

P−k = APk−1A> + WQW> O(m) = O(13 + 3n) = O(n)

Correct Step

Kk = P−k H>

(HP−k H>+VRV>)
O(m) = O(13 + 3n) = O(n)

Pk = (I−KkH)P−k O(m2) = O((13 + 3n)2) = O(n2)

Table 6.1: Complexities for the Equations of one Extended Kalman Filter Cycle.

error covariance P is responsible for the quadratic complexity. We have to
evaluate the summand KkHP−k . We will first consider the product HP−k . H is
as already stated above represented by

H =
[

∂h
∂xv

0 ∂h
∂yW

i

0
]

The predicted error covariance matrix P−k is denoted by

P−k =


P1

P01

P2

P02

 .

Note that these blocks are not the same as in Equation (6.1) although they split
up the same matrix P−k . Here, P1 is of dimension 13 × m. P2 carries 3 × m
elements. If we evaluate the product, we obtain

HP−k =
[

∂h
∂xv

0 ∂h
∂yW

i

0
]

P1

P01

P2

P02

 =
∂h

∂xv
P1 +

∂h

∂yW
i

P2

where the result is a p×m matrix. 16pm multiplications are needed. The last
step is to multiply the Kalman Gain K with this result. Either K which is a
m× p matrix, nor HP−k carries a zero or identity matrix. Therefore, we derive
an m×m matrix by performing pm2 multiplications.

Thus, the time complexity of the correct step is O(m2) or if we just
consider the number of known features O((13 + 3n)2) = O(n2). At the same
time, this is the time complexity of one EKF cycle. The results presented in
Section 6.1 are summarised in Table 6.1.2.

6.2 A Heuristic to Decide which Feature to
Track

In the last section we presented methods to reduce the complexity of one EKF
cycle by taking the particular structure of the SLAM problem into account.
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For one of these methods it is assumed, that we just measure one of the visible
feature points per point in time. But if we do so, two questions may arise:

� Is it sufficient for the estimation of the state to measure just one feature?

� Which feature of the several visible ones is best to be measured?

Considering the first question, Welch and Bishop [35] presented the SCAAT
method where it is shown that measuring a single landmark after each time
step is sufficient to observe 3D structure and motion of a scene over time.3

In the case of 3D-SLAM, a single measurement of a 2D projection of a 3D
landmark just provides partial or incomplete information about the whole state
of the system, e.g., nothing about the (linear or angular) velocity of the camera
and nothing about the depth of the 3D feature position. Systems operating
just by obtaining incomplete measurements are referred to as unobservable
because the whole system’s state cannot not be inferred from them. Such
systems must incorporate a sufficient set of these measurements to obtain
observability. This can be achieved over space or over time. The latter is
adopted by the SCAAT technique. It is based on the Extended Kalman Filter
where individual measurements providing incomplete information about the
system’s state are blended into a complete state estimate. The mean for
this blending provided by the filter describes the state estimate. Based on
several experiments, SCAAT was shown to be accurate, stable, fast and flexible.

To find an answer on the second question, we first need to find a crite-
ria to rate the feature. An intuitive idea is stated by Davison in [9]: The
more uncertain we are about the 3D position of a feature, the more profitable
it is to measure this one. Or in other words, measurements of features, that
are difficult to predict, provide more information about the position of this
feature and of the camera than measurements of features which can be reliably
predicted.

The innovation covariance S describes the uncertainty about each predicted
measurement. Thus, it contains the basic information to decide which visible
feature should be measured at each point in time. It is calculated as follows

S = HPH> + VRV> (6.2)

where H and V are the Jacobian matrices of the measurement model h(x, 0)
with respect to the state x and the measurement noise v, respectively. P is
the error covariance matrix linked to the state and R is the measurement noise
covariance.

S is a multivariate Gaussian. Therefore, covariance matrices Si for each
predicted measurement ẑi corresponding to a visible feature point yW

i can be
extracted from it. These smaller covariances refer to a Gaussian with the mea-
surement ẑi as its mean. According to Whaite and Ferrie [36], depending on
the measurement space, each Si can be represented either by an ellipse or el-
lipsoid centred around the mean of the distribution. They are also referred to
as ellipses or ellipsoids of confidence and represent the amount of uncertainty
about the predicted measurement. Or in other words, we can be confident, that

3Single Constraint At A Time
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the real measurement is situated within the ellipse or ellipsoid. By calculat-
ing the surface area or volume of these objects, we can decide which predicted
measurement is most uncertain.

Besides its role as a measure of the information content expected of a mea-
surement, Si also defines a search region where the according measurement ẑi

should be located in with high probability. Thus, if we have decided to measure
a specific feature, we can send the parameters of the search region to the fea-
ture tracker. The advantages of this method are obvious. The feature tracker
just needs to search a small region of interest instead of the whole picture.
Furthermore, the chances of a mismatch are reduced.

In the previous chapter, we considered two SLAM cases: SLAM with a single
camera and SLAM with a stereo camera. In the following sections, the heuristic
is discussed in detail with respect to the different vision sensors.

6.2.1 Deriving the Innovation Covariance Matrix for
SLAM with a Single Camera

In the case we use a single camera, we predict two dimensional measurements ŷI
i

for each visible three-dimensional feature yW
i referring to its 2D projection onto

the image plane. Thus, if l features are visible, S is a 2l× 2l matrix and l 2× 2
covariance matrices Si regarding to the visible features can be extracted from
it. These covariance matrices represent a two-dimensional standard distribution
over image coordinates. Its mean is the predicted measurement ŷI

i. The dis-
tribution can be visualised by an ellipse of confidence on the picture. Its focal
point refers to the mean, the direction of its axes are given by the eigenvectors of
the covariance matrix and the square root of the according eigenvalues specifies
the deviation of the distribution along the axis.

According to [36], the surface area of the ellipse can be used as a measure
of uncertainty. If a and b denote the length of the principal axes of the ellipse,
the surface area A is calculated by

A = πab.

The standard deviation of a distribution describes the average deviation of the
related Gaussian. The values of the whole distribution diversify much more.
Possible realisations of the predicted measurement situated beyond the average
deviation are just less probable but should also be involved in the calculation
of the amount of uncertainty and in the size of the search region.

Thus, we introduce the factor nσ and multiply the length of the principle axes
of the ellipse with it. Consider the estimated measurement ŷI

i with eigenvalues
e1,i and e2,i of the according covariance matrix Si. To derive the surface area
of the demanded ellipse, we have to compute

Ai = πnσ
√

e1,ie2,i. (6.3)

The value for nσ should extend the standard deviation such that the probability
for a measurement to be found within the considered region is approximately
100%. In [9], Davison chose nσ = 3. The probability that the possible realisa-
tions of a standard deviated random variable lie within the 3σ-region around
the mean of the distribution is approximately 99% ([16], p. 1119).
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After calculating the amount of uncertainty about the predicted measure-
ment of each visible 3D feature, we can rank them and send the parameters
(predicted measurement and corresponding covariance matrix) of the landmark
whose measurement is most difficult to predict to the feature tracker. The corre-
sponding covariance matrix specifies the search region for the demanded feature
measurement within the image and centred around the estimated measurement.

6.2.2 Deriving the Innovation Covariance Matrix for
SLAM with a Stereo Camera

In the second case of SLAM scenarios, we use a stereo camera to measure the
visible features. For each, we derive three-dimensional measurement vectors.
Thus, if l features are visible, l 3 × 3 smaller covariances Si, each referring to
one of the predicted measurements for the visible features, can be extracted
from the innovation covariance matrix S. As already mentioned for the two-
dimensional case, these covariances are related to a standard distribution. Their
means are the predicted measurements.

Considering one visible feature point yW
i , the measurement vector for the

SLAM scenario with a stereo camera consists of the image coordinates of the
projection of this feature on the left image plane yI

i = (xI
l, y

I
l)
> and the disparity

dI. The according innovation covariance matrix Si is therefore not defined over
one of the image coordinate frames as it was the case wen using a monocular
vision sensor. It can be represented as an ellipsoid in the space spanned by
xI

l, yI
l and dI. Analogous to the surface area of the ellipses, the volume of the

ellipsoids can be seen as a measure for uncertainty. The equation to calculate
the volume of an ellipsoid is

V =
4
3
πabc.

where a, b and c are the lengths of its principal axes. If we substitute the square
root of the eigenvalues for a, b and c and introduce the factor nσ again, we derive
the equation to calculate the volume of each Si:

Vi =
4
3
πnσ

√
e1,ie2,ie3,i

After calculating this volume for each ellipsoid, we are able to rank the visible
3D feature points. The corresponding predicted measurement and innovation
covariance of the landmark whose measurement is most difficult to predict is sent
to the feature tracker. Centred around this prediction, the covariance matrix
defines the search region where the real measurement is likely to be found. Note
that in this case, the search region is not defined on image coordinates as for
the usage of a monocular camera. Thus, the feature tracker needs to project the
ellipsoid onto both image planes to define the search region on the pictures.





Chapter 7

Experiments

We will perform a number of experiments to evaluate the presented methods
based on simulated data. Besides real-time capability, one of the main ap-
proaches of this work is to obtain the best possible accuracy.

We will examine the accuracy of our approach by measuring the deviation of
the estimate from the real state of the system. Additionally we will also regard
to the overall amount of uncertainty about the state. It is distinguished between
the usage of a monocular and a stereo camera. The outcomes are compared to
explore whether the usage of a stereo camera is beneficial in terms of accuracy.

We fill firstly describe the evaluation method and the experimental setup.
After that, the results are presented.

7.1 Setup

The following vision sensors are compared:

“Mono” This refers to the application of a monocular camera to the 3D SLAM
problem as described in Section 5. Single 2D projections of 3D landmarks
are obtained after each time step and related to the predicted state of the
system.

“Stereo” This refers to the application of a stereo camera to the 3D SLAM
problem as described in Section 5.3. The obtained measurements after
each time step consist of the 2D projection on the left image and the
corresponding disparity.

The usage of both vision sensors yield to an estimate of the system’s state at
the current point in time and the according uncertainty about that estimate
represented by the error covariance matrix P.

Two different scenarios are evaluated. They are depicted in Figure 7.1
and 7.2. In both cases, the scene consist of 20 landmarks randomly distributed
inside a cuboid. These 3D feature points are projected onto the image plane(s)
with the following internal parameters which are equal for the both camera
systems:

79
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Camera 0Camera 600

100

50

50
300

Figure 7.1: First Scenario. The camera moves along the x−axis, perpendicular
to the viewing direction.

image width 640 pixels
image height 480 pixels
focal length 800 pixels
principal point x = 320, y = 240 pixels

The baseline of the stereo camera has a length of 10 units.

In both scenarios, the camera moves with a linear velocity of 0.5 units per
time step either along the x− or z−axis. 600 camera positions are used. To
simulate noisy measurements, we perturb the 2D projections by adding noise
vectors n = (nx, ny)> as a realisation of normally distributed white noise with
zero mean and a certain standard deviation. We performed experiments with a
deviation of either 2.0 or 1.0 in the x− and y−direction.

The Kalman Filter is initialised with the real starting position of the camera
within the world coordinate frame. The entries in the main diagonal of the
initial error covariance matrix referring to the camera position are set to zero.
This means, that the filter is perfectly sure about the location of the camera.

In contrast to that, the positions of the features are just known approx-
imately. This is represented by an initial error covariance matrix where the
entries of the main diagonal referring to the features are set to 10. The real
coordinates of the landmarks are perturbed according to this initial uncertainty
and inserted into the initial state. All other entries of the error covariance ma-
trix outside the main diagonal are equal to zero. This means that neither the
features are correlated with each other nor with the camera position.

The standard deviation of the process noise referring to the linear velocity
of the camera in all directions is set to 0.01. The deviation of the measurement
noise are set to the real values: either 2.0 or 1.0.
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Camera 0
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300

Figure 7.2: Second Scenario. The camera moves along the z−axis, parallel to
the viewing direction.
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7.2 Results

The criteria that were used to evaluate the usage of both vision sensors are:

Position error The Euclidean distance between the estimated position of the
camera and the real position within the world coordinate frame at a certain
point in time.

Position uncertainty The volume of the ellipsoid of confidence representing
the uncertainty about the position of the camera within the world coordi-
nate frame.

Mapping error The magnitude of the error vector between the estimated po-
sitions of all known landmarks and the real positions within the camera
coordinate frame at a certain point in time.

Mapping uncertainty The sum of the volumes of all ellipsoids of confidence
representing the uncertainty about the positions of the landmarks within
the camera coordinate frame.

In contrast to the first two criterias, the last ones are relative to the camera
coordinate frame instead of to the world coordinate frame. Because of this, the
considered values for mapping error or mapping uncertainty are independent
of the corresponding values for the estimation of the camera position relative
to the world. They just depend on the current position of the 3D landmarks
relative to the camera.

We will begin with evaluating exemplarily one instance of the first scenario
with respect to the mentioned criterias. The results for the usage of two different
measurement error variances are compared.

After that, we go on analyzing one instance of the second scenario. We will
perform experiments with the same different measurement error variances as for
the first scenario.

The stereo camera has to deal with measurements that are perturbed twice:
one time in the left and one time in the right camera system. By using different
noise variances in the measurements, we like to find out if the advantage of the
stereo camera over the single camera in terms of accuracy is negativly affected
by increasing the measurement error.

For both scenarios, we expect that the stereo camera performs better than
the single camera. Especially, the second scenario should just provide poor
information on the depth of the features for the monocular camera. Therefore,
error and uncertainty for localization and mapping should be higher than in the
case we use the stereo camera as the vision sensor.

7.2.1 Evaluation of the First Scenario

In the first scenario, the camera moves perpendicular to the viewing direction.
In Figure 7.3 and Figure 7.4 the evolution of the position error is depicted with a
measurement error variance of either (1.0)2 or (2.0)2. First of all, we can state
that considered over most of the filter cycles, the error in the position estimates
for the monocular camera is constantly increasing no matter what measurement
noise is introduced. Just between filter cycle 200 and 400 we have a quite long
period of decreasing position error. This can be traced back to special conditions
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Figure 7.3: Position error for motion perpendicular to the viewing direction
(first scenario) for each filter cycle with a measurement error variance of (1.0)2.
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Figure 7.4: Position error for motion perpendicular to the viewing direction (first
scenario) for each filter cycle with a measurement error standard deviation of
2.0.



84 CHAPTER 7. EXPERIMENTS

in the considered instance of the first scenario. From filter cycle 200 to 300 a
bunch of landmarks comes into view and stays there until approximatly filter
cycle 390. Then we have a gap between this former bunch and the next small
group of features. The estimated positions for the landmarks coming into view
are therefore less correlated to the already measured ones. Additionally, just
few of the twenty landmarks in the scene provide information to orientate at.
The position error increases again.

Compared to the monocular camera, the position error derived by SLAM
with a stereo camera seems to oscillate around a rather constant and low value.
Just at the end of the scenario it strongly increases. This is also entailed by the
small amount of visible landmarks.

The drift in the position estimation for the monocular camera is caused by
the accumulation of error due to the process and measurement noise. As already
explained in Section 5.1, the error would decrease if the features measured at the
beginning of the experiment come into view again. Of course, this also holds
for the stereo camera. Because of more accurate measurements, the position
estimation for the stereo camera suffers less from accumulating error.

If we compare the resulting curves for a measurement error standard
deviation of 1.0 with the curves derived by experiments with a measurement
error standard deviation of 2.0, we can note that the overall amount of error
rises for the usage of both vision sensors. The deviation of the error values also
increases for the single and stereo camera.
In the following table the average error values are given.

1.0 2.0

Mono 0.578149 0.738551

Stereo 0.161140 0.305079

We can state, that the average position error is smaller if we use a stereo
camera. It increases stronger than the error for the single camera if we
introduce the double measurement error variance.

In Figure 7.5 and Figure 7.6 the position uncertainty is diagrammed also
for the two mentioned values of the measurement error variance.

For both cases of possible measurement noise, we can state that the position
uncertainty increases if we use a single as well as a stereo camera. The slope
of the curve for the monocular camera is much steeper. The general rising
of the position uncertainty is as already explained due to the noisy process
and measurements. Because the stereo camera obtains informations about the
landmark positions that are much more accurate, it is also much more certain
about its own position.

If we compare the curves for a measurement error variance of (1.0)2 and
(2.0)2, we can again note a general rise of uncertainty for both vision sensors.
The relative growth of uncertainty is slightly better for the monocular camera.
Nevertheless, in a direct comparison, the stereo camera is clearly benificial in
terms of position uncertainty.

In Figure 7.7 and Figure 7.8 the mapping error is depicted.
In general, we can determine a constantly decreasing mapping error for both

vision sensors and measurement error variances. The echelon form is due to
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Figure 7.5: Position uncertainty for motion perpendicular to the viewing di-
rection (first scenario) for each filter cycle with a measurement error standard
deviation of 1.0.
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Figure 7.6: Position uncertainty for motion perpendicular to the viewing di-
rection (first scenario) for each filter cycle with a measurement error standard
deviation of 2.0.
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Figure 7.7: Mapping error for motion perpendicular to the viewing direction
(first scenario) for each filter cycle with a measurement error standard deviation
of 1.0.
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Figure 7.8: Mapping error for motion perpendicular to the viewing direction
(first scenario) for each filter cycle with a measurement error standard deviation
of 2.0.
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Figure 7.9: Mapping uncertainty for motion perpendicular to the viewing di-
rection (first scenario) for each filter cycle with a measurement error standard
deviation of 1.0.

the sudden increment of information when a landmarks comes into view for the
first time. For most of the filter cycles, the accuracy when using a single or a
stereo camera just differs slightly. From approximately filter cycle 450 to 550
we have a long period where the stereo camera provides better results. Here,
the higher amount of information on the depth of the already measured features
take effect.

The quite good performance of the monocular camera can be explained by
the kind of scenario. The sideways motion of the camera provides beneficial
measurements such that the single camera obtains many informations on the
depth of the considered landmarks over time.

In the following table the average mapping error derived by the usage of
each vision sensor and for different possible measurement error are given.

1.0 2.0

Mono 11.900710 12.502029

Stereo 10.449180 10.927803

The slightly faster relative growth of position error when using a stereo
camera and introducing an increasing measurement error variance does not
occur when evaluating the mapping error. Here, the single camera performs
worse even when considering the relative growth of the mapping error.

In Figure 7.9 and Figure 7.10 the mapping uncertainty is illustrated also
for the different measurement error variances. Because the range of the values
is that large, the developing between filter cycle 500 and 600 is depicted in a
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Figure 7.10: Mapping uncertainty for motion perpendicular to the viewing di-
rection (first scenario) for each filter cycle with a measurement error standard
deviation of 2.0.

larger scale in Figure 7.11 and Figure 7.12. As already noted for the mapping
error, also the mapping uncertainty is constantly decreasing. The echelon
form is caused by the sudden drop of uncertainty when measuring a feature
for the first time. If we consider the enlargements of Figure 7.9 and 7.10, we
can note a slight increase of uncertainty after the sudden drop. The gain in
information about the currently visible features is canceled out by the increase
in uncertainty about the position of the landmarks currently out of view.

This effect is due to the used evaluation criteria, where the correlation be-
tween the features is not taken into consideration. It enforced at the end of the
experiment, where just three features are visible and the knowledge about the
position of the others is getting more and more uncertain.

In terms of mapping uncertainty, the stereo camera performs better. The
difference is not that significantly as for the position uncertainty.

If we compare the relative growth of mapping uncertainty when introducing
a measurement error covariance of (2.0)2, just a slight disadvantage of the stereo
camera can be noted.

7.2.2 Evaluation of the Second Scenario

In the second scenario, the camera moves parallel to the viewing direction into
a cuboid where twenty 3D landmarks are distributed randomly. In Figure 7.13
and Figure 7.14 the position error is depicted with a measurement error standard
deviation of either 1.0 or 2.0.

Let us first consider Figure 7.3. As already noted for the position error in the
first scenario, it is constantly increasing if a single camera is used. For the case
of a stereo camera, the curve is oscillating about a rather constant value. Just
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Figure 7.11: Mapping uncertainty in the first scenario between filter cycle 500
and 600. Clipping of Figure 7.9.
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Figure 7.12: Mapping uncertainty in the first scenario between filter cycle 500
and 600. Clipping of Figure 7.10.
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Figure 7.13: Position error for motion parallel to the viewing direction (second
scenario) for each filter cycle with a measurement error standard deviation of
1.0.
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Figure 7.14: Position error for motion parallel to the viewing direction (second
scenario) for each filter cycle with a measurement error standard deviation of
2.0.
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a slightly increasing deviation of the error values appears. Considering position
error, we can state that the advantages of the stereo camera are emphasised in
the second scenario. In the following, we will show that this effect will continue
for the other criterias.

This is clearly due to the ability of the stereo camera to obtain information
about the depth of a considered landmark from just one measurement. The
single camera needs several measurements to infer rather uncertain depth val-
ues. In this scenario the motion of the feature points relative to the camera
provide less information about their depth than in the first scenario. Thus, the
monocular vision sensor suffers from a stronger accumulation of the error.

If we have a closer look at Figure 7.4 where a higher measurement error
variance is used, we can note a general increase of the position error for both
vision sensors. The curve regarding to the stereo camera is again oscillating
about a rather constant value. This constant value is higher than the one for a
measurement error deviation of 1.0. Also the the deviation of values increases.

Between filter cycle 200 and 400, the curve regarding to the monocular
camera is decreasing. This is caused by special conditions in the considered
instance of the second scenario. In this period of the experiment, a quite large
bunch of landmarks to orientate at is constantly visible.

In the following table, the average position error for the usage of the dif-
ferent vision sensors and possible measurement errors are given.

1.0 2.0

Mono 0.559175 0.574538

Stereo 0.116864 0.183878

The relative growth of the average position error when introducing more
measurement noise is higher for the usage of a stereo camera than for a
monocular camera. Nevertheless, the stereo camera is clearly beneficial when
comparing the curves directly.

If we re-consider the average position errors for the first scenario, we can
see that the corresponding values for the second scenario are lower. This is
caused by the circumstance that in the latter all known features are visible
from the initial position of the camera. The “early” position estimates for all
feature points are therefore more certain than for the case the camera moves
perpendicular to the viewing direction. They pose better flags during the
camera motion as we explained in Section 5.1.

In Figure 7.15 and Figure 7.16 the position uncertainty is illustrated for
the different mentioned measurement error variances.

Independent of the introduced possible measurement error, we can note that
the uncertainty about the position of the single camera increases constantly
whereas the uncertainty about the position of the stereo camera stays rather
constant. The hooks in the curves refer to situations where a feature gets
invisible and certainty about the camera position needs to be recovered. The
rise of the uncertainty at the end of the experiment is caused by the fact that
just two features are still visible.

The increase in the uncertainty about the monocular camera position is
caused by a shrinking amount of landmarks to orientate at. For the stereo
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Figure 7.15: Position uncertainty for motion parallel to the viewing direction
(second scenario) for each filter cycle with a measurement error standard devi-
ation of 1.0.
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Figure 7.16: Position uncertainty for motion parallel to the viewing direction
(second scenario) for each filter cycle with a measurement error standard devi-
ation of 2.0.
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Figure 7.17: Mapping error for motion parallel to the viewing direction (second
scenario) for each filter cycle with a measurement error standard deviation of
1.0.

camera this poses a smaller problem because it can rely on more certain mea-
surements.

If we introduce more measurement noise, the overall amount of position
uncertainty increases independent of which vision sensor is used. Considering
the relative growth of uncertainty, the stereo camera performs again a bit worse.

In Figure 7.17 and Figure 7.18 the mapping error is presented.
In general, we can note a constant decrease of the mapping error for both

vision sensors and independent of the measurement error as it was already the
case for the first scenario. The curves have no echelon form because the feature
do not come into view bit by bit, but are all visible right from the beginning.
This initially large amount of information about all known landmarks is also
the reason for the faster shrinking of the error values to a low level compared
to the first scenario.

Mostly, there is a significant distance between the lower mapping error pro-
vided by the stereo camera and the values of the single camera. But there are
exceptions that are again caused by specific conditions given in the correspod-
ing instance of the second scenario. Consider the curves for a measurement
error standard deviation of 1.0. Between approximately filter cycle 50 and 200
the mapping error for the stereo camera is rather constant whereas the error
provided by the single camera decreases. During this period of the experi-
ment, a number of features gets out of view. Regarding to the image plane, the
corresponding projections change their position rapidly. This large amount of
motion is advantageous for the single camera and compensates the disadvantage
that some feature are getting invisible. The amount of information about the
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Figure 7.18: Mapping error for motion parallel to the viewing direction (second
scenario) for each filter cycle with a measurement error standard deviation of
2.0.

landmark position obtained by the stereo camera does not depend on the kind
of motion. Therefore, it just suffers from the disappearance of these features.
Between the mentioned filter cycles, the mapping error provided by the stereo
camera remains rather static.

After that period, it follows a phase where a bunch of landmarks is visible
and moves rather straight to the camera. This does not provide that much
information for the monocular camera.

In the following table, the average mapping error values are given for
both vision sensors and the two different measurement error standard devia-
tions.

1.0 2.0

Mono 5.478627 6.308648

Stereo 2.816210 4.397468

The relative growth of the average mapping error is significantly higher
for the stereo camera when introducing a higher measurement error variance.
Nevertheless, the stereo camera performs better than the single camera.

If we compare these values with the results of the first scenario, we can
state that the average mapping error is much smaller for the second scenario.

In Figure 7.17 and Figure 7.18 the mapping uncertainty is depicted.
Independent of the introduced measurement error and utilized vision sensor,
right from the beginning of the experiment the mapping uncertainty is de-
creasing massivly. This is due to the fact, that initially all known features are
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Figure 7.19: Mapping uncertainty for motion parallel to the viewing direction
(second scenario) for each filter cycle with a measurement error standard devi-
ation of 1.0.
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Figure 7.20: Mapping uncertainty for motion parallel to the viewing direction
(second scenario) for each filter cycle with a measurement error standard devi-
ation of 2.0.
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visible. The hooks in the curves are again caused by situations where features
become invisible for the according vision sensor.

For both cases of measurement error, the mapping uncertainty obtained
by the monocular camera is higher than by the stereo camera. As expected,
the overall amount of uncertainty increases with the introduction of a higher
measurement error.

7.3 Discussion

If we consider the results of all previous experiments, we can clearly say that
the usage of a stereo camera as the measurement device to solve the SLAM
problem is advantageous over the usage of a monocular camera.

In general, it provides less error in the position estimates of the camera
itself and of the landmarks. The uncertainty about these estimates is also much
smaller.

The advantages of the stereo camera are emphasised when the camera moves
straight toward landmarks that should be mapped. In the case of such a motion,
a monocular camera is just able to obtain very uncertain depth information on
the visible landmarks.

If we compare the developing of the results when introducing more measure-
ment noise, we can state that the considered values grow independent of the
utilized vision sensor. For the stereo camera, the relative growth of rather error
or uncertainty is in most of the experiments worse than for the single camera.
But independent of the amount of measurement error, the values provided by
the stereo camera will never overtake the values of the single camera. This is due
to the fact that both vision sensors obtain the same measurements perturbed
by the same noise from the left camera system in case we use a stereo device
or rather from the single camera system in case we use a monocular device. As
long as the additional information from the right camera system is provided
for the state estimation, the stereo camera will perform better. The amount of
uncertainty about this addition affects the degree of improvement compared to
the state estimate obtained by the single camera.



Chapter 8

Conclusions

The main requirements on vision-based mobile robot navigation are real-time
compliance and accuracy. With our approach of 3D Simultaneous Localisation
and Mapping, we aim to meet these demands. Based on the Extended Kalman
Filter, we want to recover the trajectory of the mobile robot during the period
of navigation and build a map of the environment this robot is moving in at
the same time. In our navigation method, we track landmarks represented by
three-dimensional point features through several images.

In contrast to the classic EKF-SLAM approaches which is mainly based on
range-only sensors and provide 2D abstractions of the three-dimensional process
of navigation only, our approach is purely based on vision. Visual sensors such as
monocular or stereo cameras are able to supply spatial information. In robotics,
they can be used to recover the 3D structure of a scene considered. Their weak
point is their dependency on the lighting conditions and the scene in general.

In addition to the EKF-SLAM approaches, one may also consider techniques
based on multiple-view geometry. In fact, Tobias Pietzsch [24] presented a
purely vision-based approach to mobile robot navigation.

The constraints in multiple view geometry where utilised to recover structure
and motion of a scene in real-time. The results of the work showed that the
error in the trajectory of the robot and in the mapping accumulates over time.
In this work, we like to avoid an accumulation of the error and a degradation
of accuracy over time.

As the main contribution of our work, we presented the process and sensor
models for the application of a monocular and stereo camera to the problem of
SLAM. Thereby, we expected the stereo camera to perform better in terms of
accuracy than the single camera.

Furthermore, we evaluated the real-time capability of the approach. We
presented a method to reduce the time complexity of the EKF from O(n3)
to O(n2) where n is the number of known landmarks. This method includes
that just one of the currently visible features should be measured. A basis for a
decision which of the several visible landmarks should be measured is presented.

We were able to demonstrate that the expectation on the higher accuracy
achieved by the stereo camera was right. The need to avoid the accumulation of
the error in the localisation and mapping was also met by both vision sensors,
although the stereo camera performs significantly better. The ability of the
filter to re-recognise landmarks after periods of neglect is beneficial to that.
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A problem of the Kalman Filter based approach can be found in its compu-
tational complexity. If we like to maintain real-time performance, we are just
able to carry the knowledge on a very limited number n of landmarks due to a
computational time complexity of O(n2). Davison [9] stated that an implemen-
tation of a SLAM shortcut method is required, if the number of features goes
past 100. A recognition of for example walls or objects such as tables will not
be possible with such a small number of known 3D landmarks.

A subject of our future work is therefore to improve the real-time compliance
of the Kalman Filter to the point where scatter plots are obtained in real-time
that are feasible to recognise objects. In [38] and [37] a promising hierarchical
Kalman Filter approach is presented. The correlation of the feature points is
exploited to split up a large filter into several sub-filters and one main-filter.

However, the next step will be to implement an automatic initialization of
the filter and a sufficient map management to be able to add and delete feature.
We will test this for a sequence of real images.



Appendix A

Jacobian Matrices of the
Model Equations

In this work we present a Kalman Filter based approach to solve the SLAM
problem with different vision sensors. The process and measurement models
are nonlinear whether we use a monocular or a stereo camera. Thus, we need to
apply the Extended Kalman Filter. This includes the set up of several Jacobian
matrices.

A Jacobian matrix contains all first order partial derivatives of a function f .
If this function f is defined as

f : Rn → Rm

then the Jacobian matrix is a n ×m matrix. To derive them is quite complex
but solvable. Especially for the Jacobian matrices of the measurement model
we used a method, called Automatic or Algorithmic Differentiation.

After a short introduction to Automatic Differentiation, we present the Ja-
cobian matrices for the process model which is the same for SLAM with a single
camera as well as with a stereo camera. This is followed by the results for the
measurement models for each SLAM scenario.

For more detailed information on Automatic Differentiation, have a look
at [27] or [11].

A.1 Basic Idea of Automatic Differentiation

The method of Automatic Differentiation is based on the application of the chain
rule. If we like to evaluate a function f(x) for a certain x, it is decomposed into
elementary functions, like +,−, ∗, / or sin. For the differentiation of f(x) with
respect to x we can easily differentiate these elementary functions and combine
them via the chain rule.

To remember, if we have a composite function f(x) = g(h(x)) of one variable,
the chain rule is

f ′(x) = g′(h(x)) ∗ h′(x). (A.1)

To simplify the notation we introduce ◦ to denote the composition of functions.
Then, the function f can be written as f = g ◦ h. Its value at the point x is
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denoted as f(x) = (g ◦ h)(x). Equation (A.1) then becomes

f ′(x) = (g′ ◦ h(x)) ∗ h′(x).

To evaluate f ′(x) at the point x we firstly need the derivatives g′ and h′ of g and
h. Then, the first factor of the product is derived by evaluate h′ at the point
x. The second factor can be either derived by the evaluation of the composed
function g′ ◦ h(x) at the point x or the evaluation of g′ at the point h(x).

If the function f is composed of a finite number n of functions
g1, g2, . . . , gn−1, gn, it can be denoted as

f = g1 ◦ g2 ◦ . . . ◦ gn−1 ◦ gn

By a repeated application of the chain rule, the derivation f ′(x) at a point x is
given by

f ′(x) = (g′1 ◦ g2 ◦ . . . ◦ gn−1 ◦ gn)(x) ∗ (g′2 ◦ . . . ◦ gn−1 ◦ gn)(x) ∗
. . . ∗ (◦gn−1 ◦ gn)(x) ∗ g′n(x) (A.2)

Now, to evaluate f ′(x) at the point x, we need all derivatives g′1, g
′
2, . . . , g

′
n−1, g

′
n

of its components and the values of all factors on the right side of Equation (A.2).
The composite function f can be also represented by a sequence. Thus, if

we set
f0 = x
f1 = gn(f0)
f2 = gn−1(f1)

...
fn−1 = g2(fn−2)

fn = g1(fn−1)

(A.3)

then the calculation of the sequence of values f1, f2, . . . , fn−1, fn yields to f(x) =
fn. If we have given this sequence and the derivatives g′i we can compute the
value for the derivative of f at the point x. By applying the chain rule to each
row of the Sequence (A.3) except from the first one, we have

f ′0 = 1
f ′1 = g′n(f0) ∗ f ′0
f ′2 = g′n−1(f1) ∗ f ′1

...
f ′n−1 = g′2(fn−2) ∗ f ′n−2

f ′n = g′1(fn−1) ∗ f ′n−1.

(A.4)

Thus, the value for the derivative f ′ at the point x is f ′(x) = f ′n. If we substitute
f ′0, f

′
1, . . . , f

′
n−1 back into the appropriate equations of the Sequence (A.4), we

derive

f ′(x) =
n∏

i=1

g′i(fn−1) ∗ f ′0

= g′1(fn−1) ∗ g′2(fn−2) ∗ . . . ∗ g′n−1(f1) ∗ g′n(f0) ∗ f ′0,

which is required by Equation (A.2).
In the following we will set up the sequences for each considered model as

in (A.3) and (A.4) to establish the appropriate Jacobians.
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A.2 Process Model for SLAM with a Single and
Stereo Camera

Our process model f(x,w) depends on two independent variable vectors: the
state of the system x and the process noise vector w. The state vector is defined
as

x =



tW

qCW

vW

ωCW

yW
1
...

yW
n


=



Position of the camera
Orientation of the camera

Linear velocity
Angular velocity

1st feature
...

nth feature


.

The process noise vector contains

w =
[
VW

ΩCW

]
=
[

Acceleration in linear direction
Acceleration in angular direction

]
.

The process model updates the state x and provides the state estimate xnew

for the next point in time. In detail we have

xnew = f(x,w) =



tW
new

qCW
new

vW
new

ωCW
new

yW
1,new
...

yW
n,new


=



rW + (vW + VW)4k
q((ωCW + ΩCW)4k)× qCW

vW + VW

ωCW + ΩCW

yW
1
...

yW
n


Because we do not know the individual values of the noise vector w at each
point in time, we will set it to zero. Then we have

x̂new = f(x, 0) =



tW
new

qCW
new

vW
new

ωCW
new

yW
1,new
...

yW
n,new


=



rW + vW4k
q(ωCW4k)× qCW

vW

ωCW

yW
1
...

yW
n



A.2.1 Jacobian Matrix with Respect to the State

We first want to derive the Jacobian matrix A = ∂f
∂x which contains the partial

derivatives of f(x,w) with respect to the state x. If the state is of dimension
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m, A is a m×m matrix. Represented by several blocks of derivatives, we have

A =



∂tW
new

∂tW

∂tW
new

∂qCW

∂tW
new

∂vW

∂tW
new

∂ωCW

∂tW
new

∂yW
1

. . .
∂rW

new

∂yW
n

∂qCW
new

∂tW

∂qCW
new

∂qCW

∂qCW
new

∂vW

∂qCW
new

∂ωCW

∂qCW
new

∂yW
1

. . .
∂qCW

new

∂yW
n

∂vW
new

∂tW

∂vW
new

∂qCW

∂vW
new

∂vW

∂vW
new

∂ωCW

∂vW
new

∂yW
1

. . .
∂vW

new

∂yW
n

∂ωCW
new

∂tW

∂ωCW
new

∂qCW

∂ωCW
new

∂vW

∂ωCW
new

∂ωCW

∂ωCW
new

∂yW
1

. . .
∂ωCW

new

∂yW
n

∂yW
1,new

∂tW

∂yW
1,new

∂qCW

∂yW
1,new

∂vW

∂yW
1,new

∂ωCW

∂yW
1,new

∂yW
1

. . .
∂yW

1,new

∂yW
n

...
...

...
...

...
. . .

...
∂yW

n,new

∂tW

∂yW
n,new

∂qCW

∂yW
n,new

∂vW

∂yW
n,new

∂ωCW

∂yW
n,new

∂yW
1

. . .
∂yW

n,new

∂yW
n


Most of these blocks are trivial. If I denotes the unit matrix and 0 the zero
matrix, A can be simplified to

A =



I 0 I4k 0 0 . . . 0

0 ∂qCW
new

∂qCW 0 ∂qCW
new

∂ωCW 0 . . . 0
0 0 I 0 0 . . . 0
0 0 0 I 0 . . . 0
0 0 0 0 I . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . I


The blocks ∂qCW

new

∂qCW and ∂qCW
new

∂ωCW are a bit more complicated.
We will first write down the detailed system of equations for

qCW
new = q(ωCW4k)× qCW to enhance the understanding of the differentiation.

Then we will differentiate it with respect to the state x and noise vector w.
The term q(ωCW4k) denotes the quaternion q which is derived by an angle

θ and axis xθ, summarised in the three-dimensional vector ωCW = (ωx, ωy, ωz)>.
ωCW represents the angular velocity between two points in time. It is pointing
in the direction of the rotation and its magnitude |ωCW| =

√
ω2

x + ω2
y + ω2

z is
the amount of rotation per second in radians.
According to Definition (B.1), the unit quaternion q representing a rotation by
θ radians about the unit vector xθ is defined as

q =
[

cos( 1
2θ)

sin( 1
2θ)xθ

]
.

Thus, besides calculating the magnitude of ωCW, we need to normalise it. A vec-
tor is normalised by the division of each component by the vector’s magnitude.
Thus, we have

ω̄CW =

ω̄x

ω̄y

ω̄z

 =


ωx√

ω2
x+ω2

y+ω2
z4k

ωy√
ω2

x+ω2
y+ω2

z4k
ωz√

ω2
x+ω2

y+ω2
z4k
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If we now substitute |ωCW| for θ and ω̄CW for xθ in Equation (A.2.1), we derive

q(ωCW4k) =


qω
0

qω
1

qω
2

qω
3

 =



cos( 1
2

√
ω2

x + ω2
y + ω2

z4k)

sin( 1
2

√
ω2

x + ω2
y + ω2

z4k) ωx√
ω2

x+ω2
y+ω2

z4k

sin( 1
2

√
ω2

x + ω2
y + ω2

z4k) ωy√
ω2

x+ω2
y+ω2

z4k

sin( 1
2

√
ω2

x + ω2
y + ω2

z4k) ωz√
ω2

x+ω2
y+ω2

z4k


(A.5)

The quaternion q(ωCW4k) is just the first factor of the quaternion product
q(ωCW4k) × qCW. After applying the quaternion multiplication, the result
expressed in a matrix multiplication yields

qCW
new =


qnew
0

qnew
1

qnew
2

qnew
3

 =


qω
0 qCW

0 − qω
1 qCW

1 − qω
2 qCW

2 − qω
3 qCW

3

qω
0 qCW

1 + qω
1 qCW

0 + qω
2 qCW

3 − qω
3 qCW

2

qω
0 qCW

2 + qω
2 qCW

0 + qω
3 qCW

1 − qω
1 qCW

3

qω
0 qCW

3 + qω
3 qCW

0 + qω
1 qCW

2 − qω
2 qCW

1

 (A.6)

=


qCW
0 −qCW

1 −qCW
2 −qCW

3

qCW
1 qCW

0 qCW
3 −qCW

2

qCW
2 qCW

0 qCW
1 −qCW

3

qCW
3 qCW

0 qCW
2 −qCW

1




qω
0

qω
1

qω
2

qω
3

 (A.7)

Now, we can differentiate the equations to derive the new quaternion qCW
new with

respect to the old quaternion qCW. The according block within the Jacobian
matrix A is of the following form

∂qCW
new

∂qCW
=


∂qnew

0
∂qCW

0

∂qnew
0

∂qCW
1

∂qnew
0

∂qCW
2

∂qnew
0

∂qCW
3

∂qnew
1

∂qCW
0

∂qnew
1

∂qCW
1

∂qnew
1

∂qCW
2

∂qnew
1

∂qCW
3

∂qnew
2

∂qCW
0

∂qnew
2

∂qCW
1

∂qnew
2

∂qCW
2

∂qnew
2

∂qCW
3

∂qnew
3

∂qCW
0

∂qnew
3

∂qCW
1

∂qnew
3

∂qCW
2

∂qnew
3

∂qCW
3


Regarding to Equation (A.6), we can easily derive the partial derivatives.

∂qCW
new

∂qCW
=


qω
0 −qω

1 −qω
2 −qω

3

qω
1 qω

0 −qω
3 qω

2

qω
2 qω

3 qω
0 −qω

1

qω
3 −qω

2 qω
1 qω

0


The last block to differentiate within the Jacobian matrix A is qCW

new with
respect to the average angular velocity ωCW. It is of the following form

∂qCW
new

∂ωCW
=


∂qnew

0
∂ωCW

x

∂qnew
0

∂ωCW
y

∂qnew
0

∂ωCW
z

∂qnew
1

∂ωCW
x

∂qnew
1

∂ωCW
y

∂qnew
1

∂ωCW
z

∂qnew
2

∂ωCW
x

∂qnew
2

∂ωCW
y

∂qnew
2

∂ωCW
z

∂qnew
3

∂ωCW
x

∂qnew
3

∂ωCW
y

∂qnew
3

∂ωCW
z


Components of the vector ωCW are just contained in the equations for the quater-
nion q(ωCW4k). Therefore, to derivate qCW

new by ωCW we need the partial deriva-
tives ∂q(ωCW4k)

∂ωCW . If we have a look at the Matrix Expression (A.7), we can see,
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that the components of the left matrix are just multiplicative constants. Thus,
∂qCW

new

∂ωCW can be conveniently expressed as

∂qCW
new

∂ωCW
=


qCW
0 −qCW

1 −qCW
2 −qCW

3

qCW
1 qCW

0 qCW
3 −qCW

2

qCW
2 −qCW

3 qCW
0 qCW

1

qCW
3 qCW

2 −qCW
1 qCW

0




∂qω
0

∂ωx

∂qω
0

∂ωy

∂qω
0

∂ωz
∂qω

1
∂ωx

∂qω
1

∂ωy

∂qω
1

∂ωz
∂qω

2
∂ωx

∂qω
2

∂ωy

∂qω
2

∂ωz
∂qω

3
∂ωx

∂qω
3

∂ωy

∂qω
3

∂ωz


In the following, just the results of the differentiation of q(ωCW4k) by ωCW are
given. We start with the first row of the Jacobian matrix ∂q(ωCW4k)

∂ωCW .

∂qω
0

ωx
= − sin(

1
2

√
ω2

x + ω2
y + ω2

z∆t)
ωx∆t

2
√

ω2
x + ω2

y + ω2
z

= −∆t2

2
qω
1

In an analogous manner, we have

∂qω
0

ωy
= −∆t2

2
qω
2

∂qω
0

ωz
= −∆t2

2
qω
3

Next, we examine the partial derivatives, where the considered variable is the
numerator of the fraction in Equation (A.5).

∂qω
1

ωx
=cos(

1
2

√
ω2

x + ω2
y + ω2

z∆t)
∆tω2

x

2(ω2
x + ω2

y + ω2
z)

+ sin(
1
2

√
ω2

x + ω2
y + ω2

z∆t)
1√

ω2
x + ω2

y + ω2
z

− sin(
1
2

√
ω2

x + ω2
y + ω2

z∆t)
ω2

x

(ω2
x + ω2

y + ω2
z)

3
2

=
∆tωx

ω2
x + ω2

y + ω2
z

(
qω
0

ωx

2
− qω

1

)
+ sin(

1
2

√
ω2

x + ω2
y + ω2

z∆t)
1√

ω2
x + ω2

y + ω2
z

Again, in an analogous manner we derive ∂qω
2

ωy
and ∂qω

3
ωz

.

∂qω
2

ωy
=

∆tωy

ω2
x + ω2

y + ω2
z

(
qω
0

ωy

2
− qω

2

)
+ sin(

1
2

√
ω2

x + ω2
y + ω2

z∆t)
1√

ω2
x + ω2

y + ω2
z

∂qω
3

ωz
=

∆tωz

ω2
x + ω2

y + ω2
z

(
qω
0

ωz

2
− qω

3

)
+ sin(

1
2

√
ω2

x + ω2
y + ω2

z∆t)
1√

ω2
x + ω2

y + ω2
z
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Finally, we have the partial derivatives, where the considered variable is just
situated within the square roots of Equation (A.5).

∂qω
1

ωy
=cos(

1
2

√
ω2

x + ω2
y + ω2

z∆t)
∆tωxωy

2(ω2
x + ω2

y + ω2
z)

− sin(
1
2

√
ω2

x + ω2
y + ω2

z∆t)
ωxωy

(ω2
x + ω2

y + ω2
z)

3
2

=
∆tωy

ω2
x + ω2

y + ω2
z

(
qω
0

ωx

2
− qω

1

)
The same way, we derive the remaining partial derivatives.

∂qω
1

ωz
=

∆tωz

ω2
x + ω2

y + ω2
z

(
qω
0

ωx

2
− qω

1

)
∂qω

2

ωx
=

∆tωx

ω2
x + ω2

y + ω2
z

(
qω
0

ωx

2
− qω

2

)
∂qω

2

ωz
=

∆tωz

ω2
x + ω2

y + ω2
z

(
qω
0

ωx

2
− qω

2

)
∂qω

3

ωx
=

∆tωx

ω2
x + ω2

y + ω2
z

(
qω
0

ωx

2
− qω

3

)
∂qω

3

ωy
=

∆tωy

ω2
x + ω2

y + ω2
z

(
qω
0

ωx

2
− qω

3

)

A.2.2 Jacobian Matrix with Respect to the Process Noise

In this section we want to derive the Jacobian matrix W which contains the
partial derivatives of the process model f(x,w) with respect to the noise vector
w = (VW,ΩCW)>. Each component of w is a three-dimensional vector. If the
state x is of dimension m, W is a m× 6 matrix. Represented by several blocks
of derivatives, we have

W =
∂f

∂w
=


∂rW

new

∂VW

∂rW
new

∂ΩCW

∂qCW
new

∂VW

∂qCW
new

∂ΩCW

∂vW
new

∂VW

∂vW
new

∂ΩCW

∂ωCW
new

∂VW

∂ωCW
new

∂ΩCW


Just to remember, the process model is given by

xnew = f(x,w) =



tW
new

qCW
new

vW
new

ωCW
new

yW
1,new
...

yW
n,new


=



rW + (vW + VW)4k
q((ωCW + ΩCW)4k)× qCW

vW + VW

ωCW + ΩCW

yW
1
...

yW
n
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If we have a look at it, we can see that most of the partial derivatives are trivial
again.

W =
∂f

∂w
=


I4k 0

0 ∂qCW
new

∂ΩCW

I 0
0 I


If we now have a closer look at qCW

new = q((ωCW + ΩCW)4k)× qCW we can see,
that differential changes to ωCW and ΩCW have the same effect. Thus, if we set
ΩCW = (0, 0, 0)> we have

∂qCW
new

∂ΩCW
=

∂qCW
new

∂ωCW
.

A.3 Measurement Model for SLAM with a Sin-
gle Camera

The measurement model h(x,v) we use to predict measurements derived by
a single camera, depends on two independent variables: the state x and the
measurement noise vector v. As already mentioned in several sections in this
work, the state x is defined as

x =



tW

qCW

vW

ωCW

yW
1
...

yW
n


=



Position of the camera
Orientation of the camera

Linear velocity
Angular velocity

1st feature
...

nth feature


.

The measurement noise vector contains

v =
[
vx

vy

]
=
[
Error in x−direction
Error in y−direction

]
The measurement model relates the state of the system to the measurement
of its output. In the case, we use a single camera as the vision sensor, the
measurement is represented by a vector z containing image coordinates yI

i of
the projections of all visible landmarks yW

i in the environment at the considered
point in time. If there are l visible landmarks, z is of the following form

z = h(x,v) =



z1

...
zj

...
zl

 =



yI
1
...
yI

j
...
yI

l


The image coordinates yI

i are calculated by

yI
j =

[
xI

j

yI
j

]
=

xC
j

zC
j

+ vx

yC
j

zC
j

+ vy

 (A.8)
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where the camera coordinates yC
j are derived by

yC
j =

xC
j

yC
j

zC
j

 = RCW(yW
j − tW). (A.9)

We do not know the individual values of the measurement noise v at each point
in time. Therefore, we set it to zero and derive h(x, 0). Equation (A.8) then
changes to

yI
j =

[
xI

j

yI
j

]
=

xC
j

zC
j

yC
j

zC
j

 (A.10)

In the following we will convert the measurement model into a more detailed
form to make the set up of the Jacobian matrices traceable.

We will mainly disassemble Equation (A.9). The matrix RCW in this equa-
tion denotes the rotation matrix derived by the quaternion qCW. Further details
can be obtained from Appendix B. To be more exactly, this matrix results from
applying the quaternion multiplication to the vector (yW

j − tW).

yC
j =

r11 r12 r13

r21 r22 r23

r31 r32 r33

xW
j − tx

yW
j − ty

zW
j − tz

 (A.11)

where the r′s are the components of the rotation matrix RCW. Expressed in a
system of linear equations, the camera coordinates yC

j can be calculated by

xC
j = r11(xW

j − tx) + r12(yW
j − ty) + r13(zW

j − tz)

yC
j = r21(xW

j − tx) + r22(yW
j − ty) + r23(zW

j − tz)

zC
j = r31(xW

j − tx) + r32(yW
j − ty) + r33(zW

j − tz).

The components of the rotation matrix in detail are

r11 = (qCW
0 )2 + (qCW

1 )2 − (qCW
2 )2 − (qCW

3 )2

r21 = 2(qCW
2 qCW

1 + qCW
0 qCW

3 )
r31 = 2(qCW

3 qCW
1 − qCW

0 qCW
2 )

r12 = 2(qCW
1 qCW

2 − qCW
0 qCW

3 )
r22 = (qCW

0 )2 − (qCW
1 )2 + (qCW

2 )2 − (qCW
3 )2

r32 = 2(qCW
0 qCW

1 + qCW
3 qCW

2 )

r13 = 2(qCW
1 qCW

3 + qCW
0 qCW

2 )
r23 = 2(qCW

2 qCW
3 − qCW

0 qCW
1 )

r33 = (qCW
0 )2 − (qCW

1 )2 − (qCW
2 )2 + (qCW

3 )2

(A.12)

A.3.1 Jacobian Matrix with Respect to the State

In this section we want to derive the Jacobian matrix H = ∂h
∂x containing the

partial derivatives of the measurement model h(x,v) with respect to the state
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x. The Jacobian matrix H, represented by several blocks of derivatives is given
as

H =



∂h1
∂tW

∂h1
∂qCW

∂h1
∂vW

∂h1
∂ωCW

∂h1
∂yW

1
. . . ∂h1

∂yW
j

. . . ∂h1
∂yW

l

...
...

...
...

...
...

...
∂hj

∂tW

∂hj

∂qCW

∂hj

∂vW

∂hj

∂ωCW

∂hj

∂yW
1

. . .
∂hj

∂yW
j

. . .
∂hj

∂yW
l

...
...

...
...

...
...

...
∂hl

∂tW
∂hl

∂qCW
∂hl

∂vW
∂hl

∂ωCW
∂hl

∂yW
1

. . . ∂hl

∂yW
j

. . . ∂hl

∂yW
l


If we have a closer look at the jth row of H, we see that some blocks are again
equal to the zero matrix, represented by 0.

∂hj

∂x
=
[

∂hj

∂tW

∂hj

∂qCW 0 0 0 . . .
∂hj

∂yW
j

. . . 0
]

All the other blocks are non-trivial. But they can be simplified by applying the
quotient rule. Any partial derivative of h(x, 0) will always have the following
form:

h′j =


(xC

j )′∗zC
j−xC

j∗(z
C
j )′

zC
j ()2

(yC
j )′∗zC

j−yC
j∗(z

C
j )′

(zC
j )2

 .

This can be expressed by a matrix multiplication.

h′j = Q ∗ (yC
j )′ =

 1
zC

j

0 − xC
j

(zC
j )2

0 1
zC

j

− yC
j

(zC
j )2

 ∗
(xC

j )′

(yC
j )′

(zC
j )′

 (A.13)

Thus, to obtain the partial derivatives ∂hj(x,0)
∂x we need to differentiate yC

j with
respect to x.

According to Equation (A.13), the jth row of H is then

∂hj

∂x
= Q ∗

∂yC
j

∂x

=

 1
zC

j

0 − xC
j

(zC
j )2

0 1
zC

j

− yC
j

(zC
j )2

 ∗ [ ∂yC
j

∂tW

∂yC
j

∂qCW 0 0 0 . . .
∂yC

j

∂yW
i

. . . 0
]

In the following, just the result for the remaining blocks of partial derivatives

are given. We start with ∂yC
j

∂tW .

∂yC
j

∂tW
=


∂xC

j

∂tW
x

∂xC
j

∂tW
y

∂xC
j

∂tW
z

∂yC
j

∂tW
x

∂yC
j

∂tW
y

∂yC
j

∂tW
z

∂zC
j

∂tW
x

∂zC
j

∂tW
y

∂zC
j

∂tW
z


If we remember Equation (A.11), we can easily see, that the partial derivatives
with respect to each component of the translation vector tW = (tx, ty, tz)> are
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in each case one negated column of the rotation matrix. Thus the whole block
∂yC

j

∂tW equates −RCW. In detail we have

∂yC
j

∂tWx
=

−r11

−r21

−r31

 =

−(qCW
0 )2 − (qCW

1 )2 + (qCW
2 )2 + (qCW

3 )2

−2(qCW
2 qCW

1 + qCW
0 qCW

3 )
−2(qCW

3 qCW
1 − qCW

0 qCW
2 )


∂yC

j

∂tWy
=

−r12

−r22

−r32

 =

 −2(+qCW
1 qCW

2 − qCW
0 qCW

3 )
−(qCW

0 )2 + (qCW
1 )2 − (qCW

2 )2 + (qCW
3 )2

−2(qCW
3 qCW

2 + qCW
0 qCW

1 )


∂yC

j

∂tWz
=

−r13

−r23

−r33

 =

 −2(qCW
1 qCW

3 + qCW
0 qCW

2 )
−2(qCW

2 qCW
3 − qCW

0 qCW
1 )

−(qCW
0 )2 + (qCW

1 )2 + (qCW
2 )2 − (qCW

3 )2


In the same manner, we derive the block ∂yC

j

∂yW
j

of partial derivatives.

∂yC
j

∂yW
j

=


∂xC

j

∂xW
j

∂xC
j

∂yW
j

∂xC
j

∂zW
j

∂yC
j

∂xW
j

∂yC
j

∂yW
j

∂yC
j

∂zW
j

∂zC
j

∂xW
j

∂zC
j

∂yW
j

∂zC
j

∂zW
j


Here, the whole block resembles the rotation matrix R. The components are
given in detail in Equation (A.12).

The block ∂yC
j

∂qCW is a bit more complicated.

∂yC
j

∂qCW
=


∂xC

j

∂qCW
0

∂xC
j

∂qCW
1

∂xC
j

∂qCW
2

∂xC
j

∂qCW
3

∂yC
j

∂qCW
0

∂yC
j

∂qCW
1

∂yC
j

∂qCW
2

∂yC
j

∂qCW
3

∂zC
j

∂qCW
0

∂zC
j

∂qCW
1

∂zC
j

∂qCW
2

∂zC
j

∂qCW
3


In Equation (A.11) we can see, that in this case the vector (yW

j − tW) is just
a multiplicative constant regarding to the considered variables in each partial
derivative. Thus, for each partial derivative we just need to differentiate the
appropriate row of the rotation matrix with respect to the quaternion qCW.

∂yC
j

∂qCW
0

=

 2qCW
0 −2qCW

3 2qCW
2

2qCW
3 2qCW

0 −2qCW
1

−2qCW
2 2qCW

1 2qCW
0

 ∗ (yW
j − tW)

∂yC
j

∂qCW
1

=

2qCW
1 2qCW

2 2qCW
3

2qCW
2 −2qCW

1 −2qCW
0

2qCW
3 2qCW

0 −2qCW
1

 ∗ (yW
j − tW)

∂yC
j

∂qCW
2

=

−2qCW
2 2qCW

1 2qCW
0

2qCW
1 2qCW

2 2qCW
3

−2qCW
0 2qCW

3 −2qCW
2

 ∗ (yW
j − tW)

∂yC
j

∂qCW
3

=

−2qCW
3 −2qCW

0 2qCW
1

2qCW
0 −2qCW

3 2qCW
2

2qCW
1 2qCW

2 2qRW
3

 ∗ (yW
j − tW)
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A.3.2 Jacobian Matrix with Respect to the Measurement
Noise

In this section we derive the Jacobian matrix V = ∂h
∂v containing the partial

derivatives of the measurement model h(x,v) with respect to the noise vector
v = (vx, vy)>. It is of the following form

V =



∂xI
1

∂vx

∂xI
1

∂vy

∂yI
1

∂vx

∂yI
1

∂vy

...
...

∂xI
j

∂vx

∂xI
j

∂vy

∂yI
j

∂vx

∂yI
j

∂vy

...
...

∂xI
l

∂vx

∂xI
l

∂vy

∂yI
l

∂vx

∂yI
l

∂vy


According to Equation (A.8), the noise vector is an additive constant. Therefore,
the Jacobian matrix V consists of l identity matrices ∂hi

v = I

A.4 Measurement Model for SLAM with a
Stereo Camera

The measurement model for SLAM with a stereo camera differs from the model
for a single camera. It also depends on two independent variables: the state x
and the measurement noise vector v. Of course, the Jacobian matrices H and
V containing the partial derivatives of the measurement model h with respect
to x and v change.

As already mentioned in Section 5.3, the state x remains the same as for the
monocular case except from the fact, that the position and orientation of the
camera are related to the left camera system.

x =



tW

qCW

vW

ωCW

yW
1
...

yW
n


=



Position of the left camera
Orientation of the left camera

Linear velocity
Angular velocity

1st feature
...

nth feature


.

The measurement noise vector containsvl,x

vl,y

vd

 =

Error in x−direction related to the left projection
Error in y−direction related to the left projection

Error in the Disparity Value


The measurement model relates the state of the system to the measurements of
its output. The result is a measurement vector z containing the image coordi-
nates of the left projection of each fully visible feature point and the according
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disparity value. If the measurement related to the fully visible feature yW
j is

denoted by zj and l feature are fully visible, as measurement vector z we have

z = h(x,v) =



z1

...
zj

...
zl


where zj is given by

zj = hj(x,v) =

xI
l,j

yI
l,j

dI
j


. The left projection yI

l,j of the feature point yW
j is derived by

yI
l,j =

[
xI

l,j

yI
l,j

]
=

xC
l,j

zC
l,j

+ vx

yC
l,j

zC
l,j

+ vy

 (A.14)

Because we do not know the individual values for the measurement noise at
each point in time, we set it to zero. Then we derive h(x, 0) where the predicted
measurements are estimates of the real measurements.

ẑ = h(x,v) =



ẑ1

...
ẑj

...
ẑl


where the image coordinates yI

l,j of the left projection are calculated without
the noise values.

ŷI
l,j =

[
xI

l,j

yI
l,j

]
=

xC
l,j

zC
l,j

yC
l,j

zC
l,j

 (A.15)

At last we need the equation to derive the left camera coordinates yC
l,j from

world coordinates of the feature point yW
j . The demanded equation resembles

Equation (A.11).
yC

l,j = RCW(yW
j − tW) (A.16)

The first two components of the measurement zj can be calculated by the last
mentioned equations. The third component is the disparity dI

j . It represents
the difference between the x−coordinate of the left and right projection of the
considered world point.

dI
j = xI

l,j − xI
r,j

Thus, we also need to compute the coordinates of the right projections. If the
camera coordinates yC

r,j for one world point are already given, Equation (A.14)
and Equation (A.15) can be applied to derive yI

r,j or ŷI
r,j . The difference to
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the right projection is due to the equation for the transformation of world into
right camera coordinates. The displacement of the right camera projection
centre regarding to the left one, namely the length of the baseline b, must be
considered. Then we have

yC
r,j = RCW(yW

j − tW −RWCb) (A.17)

= RCW(yW
j − tW)− b (A.18)

where b denotes the vector (b, 0, 0)>.
We know that Equation (A.16) resembles Equation (A.11). Thus, the ac-

cording system of equations is also the same. We have

xC
l,j = r11(xW

j − tx) + r12(yW
j − ty) + r13(zW

j − tz)

yC
l,j = r21(xW

j − tx) + r22(yW
j − ty) + r23(zW

j − tz)

zC
l,j = r31(xW

j − tx) + r32(yW
j − ty) + r33(zW

j − tz).

where

r11 = (qCW
0 )2 + (qCW

1 )2 − (qCW
2 )2 − (qCW

3 )2

r21 = 2(qCW
2 qCW

1 + qCW
0 qCW

3 )
r31 = 2(qCW

3 qCW
1 − qCW

0 qCW
2 )

r12 = 2(qCW
1 qCW

2 − qCW
0 qCW

3 )
r22 = (qCW

0 )2 − (qCW
1 )2 + (qCW

2 )2 − (qCW
3 )2

r32 = 2(qCW
0 qCW

1 + qCW
3 qCW

2 )

r13 = 2(qCW
1 qCW

3 + qCW
0 qCW

2 )
r23 = 2(qCW

2 qCW
3 − qCW

0 qCW
1 )

r33 = (qCW
0 )2 − (qCW

1 )2 − (qCW
2 )2 + (qCW

3 )2

(A.19)

Equation (A.18) leads to a slightly different system of equations by involving the
length of the baseline. By substituting Equation (A.16) into Equation (A.18)
we derive:

yC
r,j = yC

l,j − b (A.20)

Then, the system of equations for Equation (A.18) is

xC
r,j = r11(xW

j − tx) + r12(yW
j − ty) + r13(zW

j − tz)− b (A.21)

yC
r,j = r21(xW

j − tx) + r22(yW
j − ty) + r23(zW

j − tz) (A.22)

zC
r,j = r31(xW

j − tx) + r32(yW
j − ty) + r33(zW

j − tz) (A.23)

The r’s are given in Equation (A.19).
In this case, we are just interested in the components xC

r,j and zC
r,j = zC

l,j to
derive xI

r,j .

A.4.1 Jacobian Matrix with Respect to the State

In this section we want to derive the Jacobian matrix H = ∂h
∂x containing the

partial derivatives of the measurement model h(x, 0) with respect to the state
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x. The matrix H represented by several blocks of partial derivatives is of the
following form

H =



∂h1
∂tW

∂h1
∂qCW

∂h1
∂vW

∂h1
∂ωCW

∂h1
∂yW

1
. . . ∂h1

∂yW
j

. . . ∂h1
∂yW

l

...
...

...
...

...
...

...
∂hj

∂tW

∂hj

∂qCW

∂hj

∂vW

∂hj

∂ωCW

∂hj

∂yW
1

. . .
∂hj

∂yW
j

. . .
∂hj

∂yW
l

...
...

...
...

...
...

...
∂hl

∂tW
∂hl

∂qCW
∂hl

∂vW
∂hl

∂ωCW
∂hl

∂yW
1

. . . ∂hl

∂yW
j

. . . ∂hl

∂yW
l



If we have a closer look at the jth row of the Jacobian matrix, we can determine,
that some blocks are equal to the zero matrix.

∂hj

∂x
=
[

∂hj

∂tW

∂hj

∂qCW 0 0 0 . . .
∂hj

∂yW
j

. . . 0
]

All the other blocks are non-trivial. But they can be again simplified by applying
the quotient rule. Any partial derivative of h(x, 0) will always have the following
form:

h′j =



(xC
l,j)

′∗zC
l,j−xC

l,j∗(z
C
l,j)

′

(zC
l,j)

2

(yC
l,j)

′∗zC
l,j−yC

l,j∗(z
C
l,j)

′

(zC
l,j)

2

(xC
l,j)

′∗zC
l,j−xC

l,j∗(z
C
l,j)

′

(zC
l,j)

2 − (xC
r,j)

′∗zC
r,j−xC

r,j∗(z
C
r,j)

′

(zC
r,j)

2


=

1
(zC

r,j)2

(xC
l,j)

′ ∗ zC
l,j − xC

l,j ∗ (zC
l,j)

′

(yC
l,j)

′ ∗ zC
l,j − yC

l,j ∗ (zC
l,j)

′

−b(zC
l,j)

′

 .

This can be conveniently expressed by a matrix multiplication.

(hj)′ = Q ∗ (yC
j )′ =

1
(zC

r,j)2

zC
l,j 0 −xC

l,j

0 zC
l,j −yC

l,j

0 0 −b

 ∗
(xC

l,j)
′

(yC
l,j)

′

(zC
l,j)

′

 . (A.24)

Thus, to derive the partial derivatives ∂hj(x,0)
∂x we need to differentiate the vector

yC
l,j with respect to the state. yC

l,j is derived by Equation (A.16) which is the
same as for the single camera model. Therefore, also the according partial
derivatives with respect to the state are the same and given in Section A.3.1.

A.4.2 Jacobian Matrix with Respect to the Measurement
Noise

In this section we derive the Jacobian matrix V = ∂h
∂v containing the partial

derivatives of the measurement model h(x, 0) with respect to the noise vector



114APPENDIX A. JACOBIAN MATRICES OF THE MODEL EQUATIONS

v = (vl,x, vl,y)>. It is of the following form

V =



∂xI
1

∂vl,x

∂xI
1

∂vl,y

∂xI
1

∂vd

∂yI
1

∂vl,x

∂yI
1

∂vl,y

∂yI
1

∂vd

∂dI
1

∂vl,x

∂dI
1

∂vl,y

∂dI
1

∂vd

...
...

...
∂xI

j

∂vl,x

∂xI
j

∂vl,y

∂xI
j

∂vd

∂yI
j

∂vl,x

∂yI
j

∂vl,y

∂yI
j

∂vd

∂dI
j

∂vl,x

∂dI
j

∂vl,y

∂dI
j

∂vd

...
...

...
∂xI

l

∂vl,x

∂xI
l

∂vl,y

∂xI
l

∂vd

∂yI
l

∂vl,x

∂yI
l

∂vl,y

∂yI
l

∂vd

∂dI
l

∂vl,x

∂dI
l

∂vl,y

∂dI
l

∂vd


According to Equation (A.8), the noise vector is an additive constant. Therefore,
the Jacobian matrix V consists of l Identity Matrices: ∂hj

∂v = I .



Appendix B

Quaternion Rotations

In this work it often occurs, that we need to transform world into camera coor-
dinates. This transformation includes translation as well as rotation. Rotations
can be represented by various means. Each representation has specific char-
acteristics and attributes that makes them more or less applicable for solving
the SLAM problem. Here, we used quaternions to represents rotations due to
several advantages. Nevertheless, other representations appear in this work:
Euler Angles, Axis & Angle and rotation matrices.

In this appendix we will firstly present the reasons for our choice of quater-
nions . Then, some general operations with quaternions are introduced. We
close with a description how to convert the different means into each other.
The following explanations are based on [6] and [24].

B.1 Using Quaternions as a Representation of
Rotations

A rotation has three degrees of freedom. These degrees can be conveniently
represented by Euler Angles. These are three angles, specifying the rotation
about the x, y and z-axis. α

β
γ


Euler angles are a minimal representation.

Another way to represent rotation would be to specify a rotation axis ex-
plicitly and the amount of rotation about that axis. Thus, we need a four-
dimensional vector containing a three-dimensional unit vector x and an angle θ
specifying the rotation around x in radians.

x
y
z
θ


Notations like Euler Angles and Axis & Angle are intuitively easy to under-

stand, but there are problems.
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� For some rotations there is not a unique representation using Euler Angles.

� When applying one rotation and then applying another rotation, the
sum of the individual rotations is not equal to the total rotation. Thus,
Axis & Angle is inapplicable to combine rotations.

Rotation matrices do not suffer from these disadvantages. They usually carry
3 × 3 elements, where each rotation is represented by a unique matrix. The
combination of two rotations is done by matrix multiplication. Nevertheless,
there are disadvantages. Since a rotation has only three degrees of freedom, the
9 components of the matrix are constrained by the requirement of orthogonality.
When we are representing the rotation of a landmark then we want a matrix
that represents a pure rotation, but not scaling, shear or reflections. To do
this we need a subset of all possible matrices known as an orthogonal matrices.
This implies , e.g. that any two columns must be mutually perpendicular. The
determinant of a rotation matrix must be always 1. The magnitude of their
eigenvalues must be also equal to 1.

In contrast to that, unit quaternions are four-dimensional vectors, that are
just constrained by the requirement, that their magnitude is equal to 1.

q =


q0

q1

q2

q3


Each rotation is associated with a unique unit quaternion. Analogous to
Axis & Angle, a rotation is represented by the amount of rotation θ around
a unit vector x.

q =
[

cos( θ
2 )

sin( θ
2 )x

]
(B.1)

Thus, both representations are easily convertible into each other, which is ex-
plained in detail in Section B.3. The combination of rotations can also easily
be done with quaternion multiplication, which is described among other things
in Section B.2.

Another advantage of using quaternions is that the Jacobians of the model
equations are much easier to derive than with using rotation matrices.

B.2 Basic Quaternion Arithmetic

Antipodal Quaternions As already said above, a unit quaternion describes a
rotation about x by θ. A rotation by θ−2π yields the same result, but the
other way round. According to Definition (B.1), the antipodal rotation to
q can be derived by[

cos( θ−2π
2 )

sin( θ−2π
2 )x

]
=
[

cos( θ
2 − π)

sin( θ
2 − π)x

]
= −q

Quaternion multiplication If we have given two single quaternion rotations
q1 and q2, we can obtain the composed rotation q by applying

q = q1q2 =
[
q01

v1

] [
q02

v2

]
=
[

q01q02 − v1 · v2

q01v2 + q02v1 + v1 × v2

]
(B.2)
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Quaternion multiplication is an associative but not commutative opera-
tion.

To obtain the inverse rotation q−1 to q we utilise the fact that qq−1 =
q−1q = (1, 0, 0, 0)>. Using Equation (B.2) the inverse rotation to q =
(q0, q1, q2, q3)> is q = (q0,−q1,−q2,−q3)>.

Rotation of a Vector In this work it often occurs that we like to rotate cer-
tain points given as three-dimensional vectors x. If we want to apply a
quaternion rotation q than the rotated vector x′ is obtained by[

0
x′

]
= q

[
0
x

]
q−1.

B.3 Conversions

Relation between Axis & Angle and Quaternions Each of both repre-
sentations describes a rotation by θ radians about the unit vector x, the
rotation axis. This rotation as Axis & Angle a is

a =
[
x
θ

]
This rotation as quaternion q is

q =
[

cos( θ
2 )

sin( θ
2 )x

]
Relation between Rotation Matrices and Quaternions The columns of

a rotation matrix form the base vector of the frame which should be
rotated. Thus, the rotation matrix Rq associated with the quaternion
q = (q0, q1, q2q3)> can be derived by rotating the columns of a 3 × 3
identity matrix.

Rq =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q2q1 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q3q1 − q0q2) 2(q0q1 + q3q2) q2
0 − q2

1 − q2
2 + q2

3


The conversion of a rotation matrix into a quaternion is quite easy too.
Therefore, we define the following abbreviations:

r11 = q2
0 + q2

1 − q2
2 − q2

3

r12 = 2(q1q2 − q0q3)
r13 = 2(q1q3 + q0q2)
r21 = 2(q2q1 + q0q3)
r22 = q2

0 − q2
1 + q2

2 − q2
3

r23 = 2(q2q3 − q0q1)
r31 = 2(q3q1 − q0q2)
r32 = 2(q0q1 + q3q2)
r33 = q2

0 − q2
1 − q2

2 + q2
3
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As already said above, the sole constrained on quaternions is ‖q‖ = q2
0 +

q2
1 + q2

2 + q2
3 = 1. Then we have

q2
0 = 1− q2

1 − q2
2 − q2

3

4q2
0 = 4− 4q2

1 − 4q2
2 − 4q2

3

4q2
0 = 3q2

0 + 1− q2
1 − q2

2 − q2
3

4q2
0 = 1− (−q2

0 + q2
1 + q2

2 − q2
3) + q2

0 − q2
1 + q2

2 − q2
3 + q2

0 + q2
1 − q2

2 − q2
3

4q2
0 = 1− r11 + r22 + r33

=

q0 = ±
√

1− r11 + r22 + r33

2

The choice of the sign for w indicates the direction of rotation. The other
components can be easily derived, too, as shown in the following:

r32 − r23 = 2q2q3 + 2q1q0 − 2q2q3 + 2q1q0

r32 − r23 = 4q1q0

q1 =
r32 − r23

4q0

q1 =
r32 − r23

2
√

1− r11 + r22 + r33

r13 − r31 = 2q1q3 + 2q2q0 − 2q1q3 + 2q2q0

r13 − r31 = 4q2q0

q2 =
r13 − r31

4q0

q2 =
r13 − r31

2
√

1− r11 + r22 + r33

r21 − r12 = 2q1q2 + 2q3q0 − 2q1q2 + 2q3q0

r21 − r12 = 4q3q0

q3 =
r21 − r12

4q0

q3 =
r21 − r12

2
√

1− r11 + r22 + r33

You might have noticed, that there are other possibilities to derive the
components of the quaternion q from a rotation matrix. Starting from
the constraint, that the magnitude of the quaternion is equal to 1, we also
could evaluate q1, q2 or q3 instead of q0 and then go on evaluating the
respective other three components as shown before.
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