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Abstract Semantic Web Rule Language SWRL [8] and the Web Rule

Language WRL [1]. While the former adheres to the con-

Logic programming has always been a major ontology ceptual design decisions underlying OWL DL, the latter is
modeling paradigm, and is frequently being used in large based on F-Logic.
research projects and industrial applications, e.g., byame The two paradigms lier in many respects. While OWL
of the F-Logic reasoning engine OntoBroker or the TRIPLE DL is decidable, F-Logic is notWhile F-Logic is a Turing-
query, inference, and transformation language and system.complete programming paradigm, OWL DL can mainly be
At the same time, the Web Ontology Language OWL hasused for specifying static knowledge bases. Probably the
been recommended by the W3C for modeling ontologies formost prominent conceptualfférence is that OWL DL ad-
the web. Naturally, it is desirable to investigate the iofer heres to the open world assumption, while F-Logic — and
erability between both paradigms. In this paper, we do so logic programming in general — is committed to the closed
by studying an expressive fragement of OWL DL for which world assumption. Indeed, OWL DL is based on descrip-
reasoning can be reduced to the evaluation of Horn logic tion logics and is thus basically a decidable fragment of
programs. Building on th&AON 2 algorithms for trans- first-order predicate logic, from which it borrows its forima
forming OWL DL into disjunctive Datalog, we give a de- semantics. The semantics of logic programming based lan-
tailed account of how and to what extent OWL DL can be guages like F-Logic diers from that of first-order logic in
employed in standard logic programming systeEisroute certain ways, and this often also results in a procedural fla-
we derive a novel, simplified characterization of the sup- vor. OWL and standard logic programming paradigms [13]
ported fragment of OWL DL. thus difer in modeling styles and formal semantics in ways

which go beyond syntactic issues. The choice of modeling
language indeed inflicts heavily on the treatment of implici
1 Introduction knowledge by means of reasoning support [7].

While —in an ideal universe — a single ontology represen-
tation language might be a desirable goal, it is only realis-
tic to expect that the currently evolving Semantic Web will
be highly heterogeneous, not only in terms of the knowl-
edge represented, but also in terms of ontology language
paradigms used. It is desirable, therefore, to embark on the
creation of integrated reasoning tools which can cope with

Logic programming has been a major ontology modeling
paradigm since the advent of the Semantic Web. In partic-
ular F-Logic [11] as supported by fterent systems such
as OntoBroket, FLORA? and TRIPLE [19] were and are
being used widely for ontology modeling in research and

industry. . knowledge represented inftrent paradigms and thus es-
At the same time, the Web Ontology Language OWL tablish language interoperability in a practical sense- Ac

[14] has been recommended by the W3C as standard forcordingly various approaches have been proposed for inte-
modeling complex ontologies on the web. Hence, there ex- '

ist two competing major paradigms for expressive knowl- grating logic programs and description logics [3, 2, 5, 171,
edge representation for the Semantic Web. This situation is The study of language mteroperabnlty IS a_dehcate_ IS-
also reflected by the Charfesf the W3C Rule Interchange sue. Id_eally, a general logic would be established within
Format Working Group formed in November 2005 as part which different ontology languages could be embedded se-

of the W3C Semantic Web Activity: The charter refers ex- mantically. To date, however, it is rather unclear whether a

plicitly to several W3C member submissions, including the _satlsfactory such logic can and will be found, and whether

it will be possible to put such a logic to practical use.

1h‘ctp ://ontobroker.semanticweb.org
http://flora.sourceforge.net 5Indeed, logic programming with non-monotonic negation ssaily
Shttp://triple.semanticweb.org not even semi-decidable. See [18] for an account of the foahded se-
4http ://www.w3.0rg/2005/rules/wg/charter mantics.




So instead of pursuing the search for a common gen-in detail in [20]. DLP is a naive Horn fragment of OWL DL,
eralization of dfferent paradigms, we rather embark on and although it is of very limited expressiveness compared
the complementary quest for large fragments which canwith OWL DL, it appears to be a suitable core paradigm for
be mapped semantically into other languages, in the senssome practical purposes [6].
that they can be dealt with procedurally by corresponding As sets of Horn clauses, DLP ontologies can be ex-
tools. More precisely, we ask to what extent ontologies pressed as logic programs without negation, and although
from one paradigm can be processed correctly by an engingheir OWL semantics diers somewhat from their reading
from another paradigm. In this paper, we investigate this fo under logic programming semantics [13], these two per-
OWL and logic-programming based engines, such as XSBspectives are compatible up to a certain extent [5]. From
Prolog® which can be understood as the basic underlying an interoperability perspective, however, DLP is of lirdite
paradigm for, e.g., OntoBroker, FLORA, and TRIPLE. use as it is only a small fragment of OWL DL.

Much of the content of this paper is implicitly contained However, a larger OWL fragment than OWL DLP can
in the Ph.D. thesis [15]. However, it takes considerable ef- be mapped into clausal form by means of sophisticated al-
fortto trim the rather involved theory down to such an extent gorithms developed for the KAOROWL reasonef. The
that the results become accessible, and so we chose to sharesult of this transformation is disjunctive Datalog witio
our insights. The original contributions of the paper are as function symbols, and this is done in such a way that the
follows. resulting disjunctive Datalog programs can be processed in
a standard Datalog fashion without loosing any of the OWL
DL semantics of the original knowledge base. In order to
improve on OWL DLP, and in order to find a larger fragment
which is processable by a logic programming system, a nat-
» We give a crisp and accessible account of how to real- yral starting point is thus the OWL DL fragment which is

ize the interoperability. translated to Horn clauses by means of the KAQiMinsla-
tion algorithms. This fragment was called HoSiH7Q in
[10]. In the following, we will basically analyze the Horn-
SHI1Q fragment regarding the question as to what extent

The paper is structured as follows. In Section 2 we it can be dealt with within a standard logic programming
present an overview of our work within some historic con- gystem like XSB Prolog.

text. In Section 3 we provide the novel characterization
for the mentioned OWL language fragment HS# 7 Q,
which we can translate into logic programs, and discuss
some issues arising in this context. In Section 4 we dis-
cuss our tool which realizes the approach, and we provide a We next present and discuss the transformation of OWL
comprehensive example that illustrates the translatian-L DL specifications into Horn logic programs as provided by
guage interoperability within our approach is discussed in the KAON2 algorithm described in [9, 15], which compiles
Section 5. We close with conclusions in Section 6. SH1Q knowledge bases into (function- and negation-free)
disjunctive Datalog The usage of this algorithm for our
Acknowledgments. The authors wish to thank Boris Purpose of casting OWL DL into Horn clauses is restricted
Motik for the numerous clarifying discussions during the in two ways. On the one hand, the algorithm was devised
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e We provide a novel characterization for the OWL lan-
guage fragment which can be translated into logic pro-
grams.

e We provide a specialized conversion tool for using the
approach.

3 From OWL to Logic Programs

7http ://kaon2.semanticweb.org
8A (function- and negation-free) disjunctive Datalog rigeaifunction-
2 OWL DLP, and how to do better symbol-free formula of the formy V...V A, « ByA...ABp. Thisin turn
is equivalent to the formula; v...v Ay vV =B1 A... A =Bn in conjunctive
. . (or clausa) normal form. Any first order predicat logic formula that doe
The straightforward candidate for an OWL DL fragment ot contain quantifiers and functions symbols can be casidh a Datalog
to be processed by a logic programming system is DLP (De-rule by means of standard algorithms.
scription Logic Programs), as introduced in [4] and studied ~ °At the time of the writing of this paper, the conceived supior
concrete domains is not implemented yet, i.e., the progi@mlesSH7Q
Shttp://xsb.sourceforge.net instead ofSH7Q(D).




Transitivity into Clauses saturatedby adding logical consequences. This is the cru-
o cial step of the algorithm where one has to compute enough

- > Conversion to 4 Fimination of |\ Suproastion consequences to allow for a reduction to function-free Dat-
- Dgg‘t';f;g’e ;‘;fr‘rf;';;‘ alog. Since the computational complexity ispEEmme for
SHIQ but only NP for disjunctive Datalog, it should not

come as a surprise that this transformation step can be ex-
ponential in the size of the input. The details of this step ar
rather sophisticated and we refer interested readers {o [15
for details and proofs.

Now function symbols can safely be eliminated in step
(4). To ensure that this process still preserves satisfiabil

The latter problem of incompatibility with Horn logic ~ of the knowledge base, one has to add a linear number of
reasoners can have various causes, each of which will beauxiliary axioms. Finally, it is easy to syntactically tsan
discussed individually below. First of all, one obviously form the resulting set of clauses into a disjunctive Datalog
has to ensure that none of the created rules have a disprogram in step (5).
junction in the head, i.e., that each clause contains at most Due to the transformationsin steps (1) and (2)’ the output
one non-negated literal. Th&HZQ fragment for which  of the algorithm is in general not semantically equivalent t
this is the case still is surprisingly large and has been dis-the input. Since all major reasoning tasks &H7Q can
cussed in [10]. In Section 3.2 below, we review these resultspe reduced to satisfiability checking, it isfBaient for the
and derive a substantially simpler alternative charazderi  transformation to preserve satisfiability. However, cambi
tion. While this restriction eliminates disjunctions from ing the Datalog program with further axioms of first-order
the rule heads, it still leaves the pOSSIbI'Ity of haVin@ﬂJ' |Ogic genera”y destroys Comp|eteness of reasoningtme_,

p— ofE ?2) — }}j Next, in step (3), the obtained set of clauses is partially
Saturation

Figure 1. Algorithm for reducing SHIQ to
disjunctive Datalog.

with empty heads, also known eegrity constraintsSec-  resulting knowledge base might be (first-order) satisfiable
tion 3.3 discusses how to model such constraints in a (strict under some model that is not a model for the original OWL
Horn-logic setting. Another problem is thegjualitypred-  ontology. In combination with a nonmonotonic reasoning

icate encountered in many OWL DL specifications, since paradigm, such incompleteness often leads to unsoundness
logic programming systems do usually not provide built-in as well. Fortunately, there are a number of axioms that one
equality. In Section 3.4, we show how this can be taken into can safely add without jeopardizing soundness or complete-
account by the translation. Finally, the sophisticatedalg ness, as discussed in Section 5 below. Yet, in general, com-
rithms of KAON2 enable us to deal with some OWL DL pleteness of reasoning in the presence of additional axioms
specifications that are not in the fragment of DLP. In partic- can only be restored by applying the transformation algo-
ular, the system supports arbitrary existential quansifias rithm to the whole knowledge base again.

is discussed in the next section.

3.2 Horn-SHIQ
3.1 The KAON2 Transformation Algorithm

Now, we turn to the question which knowledge bases are

Here, we sketch how the transformation algorithm of transformed exclusively into rules that do not contain dis-
KAON 2 works in principle. An exhaustive treatment can junctions in the head. This class of knowledge bases has
be found in [15]. The general workflow for transforming a already been introduced as Ho8 7Q in [10], but in the
SH 1Q knowledge base into a disjunctive Datalog program following we derive a novel characterization which greatly
is depicted in Fig. 1. The steps of the algorithm can roughly simplifies the presentation. Generally, the description of
be described as follows. (1) Transitivity axioms for ro®s  Horn-SHIZQ exploits the insight that, whenever the nor-
are replaced by adding axioms of the foffRC C YS.VS.C mal form transformation yields only Horn clauses, any rel-
whenevelS C R. This is a standard method for eliminating evant clause that is obtained by the saturation step (3ds al
transitivity axioms, and the resulting knowledge basets sa Horn. Thus, it sifices to identify thos&H 7Q-axioms that
isfiable if and only if the original knowledge base is. produce Horn-clauses after step (2) of the transformation

Employing the fact thafH 7Q can be regarded as a sub- algorithm.
set of first-order logic, step (2) uses standard algorithms When defining HornSH 7Q, one needs to consider the
to transform the knowledge base into conjunctive normal details of the normal form transformation implemented in
form. This involves eliminating existential quantifiers by KAON 2. In particular, KAON2 performs a structural trans-
Skolemizationand thus function symbols must be intro- formation that introduces new names for subformulae. For
duced into the knowledge base. example, the axiomh C FRIRC is transformed into ax-



Cle =C pol(C, €) =1
(-C)lip  =Clp pol(=C,1p) = -pol(C, p)
(C1oC)lip=Cilp  pol(Cy0Cp,ip) = pol(Ci, p)

foro € {M,u} andi € {1, 2}

ORClpy  =Clp pol(ORC,2p) = pol(C, p)

for & € {v, 3}
<nRClzpp =CJp pol(zn RC, 3p) = —pol(C, p)
>nRClzp =CJp pol(=n RC,3p) = pol(C, p)

Table 1. Positions in a concept (left) and their
polarity (right).

iomsA C dRQ andQ C JR.C, whereQ is a new concept

name. When done with care, such translations can help to
retain Hornness of a large class of clauses. Further details

on structural transformation (which, in general, does only
preserve satisfiability) are found in [15].

We recall the definition of Hori8H 7Q as given in [10],
which requires us to introduce a couple of auxiliary con-

cepts first. Subconcepts of some description logic concept

are denoted by specifying theyosition Formally, a posi-
tion p is a finite sequence of integers, wherdenotes the
empty position. Given a concef, D|, denotes thesub-
concepbf D at positionp, defined recursively as in Table 1
(left). In this paper, we consider only positions that are de
fined according to this table, and the setatifpositions in

a concept Dis understood accordingly. Given a concépt
and a positiorpin D, thepolarity pol(D, p) of D at position

p is defined as in Table 1 (right). Using this notation, we
can state the following definition of Horn knowledge bases.

Defintion 1 ([10, Definition 1]) Letpl* andpl™ denote mu-
tually recursive functions that map &H7Q concept D

D pl* (D) pl~(D)

1 0 0

T 0 0

A 1 0

-C pI~(C) pI*(C)

MG max sgn(pl* (Ci)) 2i sgn(pl=(Ci))

LICi i sgn(pl* (Ci)) max sgn(pl~(Ci))

JIrRC 1 sgn(pl™(C))

YRC sgn(pl*(C)) 1

>nRC | 1 20D 4 nsgn(pl~(C))

<nRC | MY 4 (n+ 1) sgn(pl~(C)) 1

Table 2. Definition of pl*(D) and pl~(D).

Cj = TIL]|-C,ICyNCHICiuCH|VR.C]

C, »=TIL|-C{IC,NCy|CouC; |IRCyIA

C x= T|L|-C{|C;nC!H|CsuCt|IRCE
VR.CH|=nR.C} |<1R.Cj | A

Cl == TIL|-C;|Cy;nC]|CIuC]|3IRCT]

VR.C] | 22R.C; | <nR.C] | A

Table 3. A grammar for defining Horn-
ALCHIQ. A and R denote the sets of all con-
cept names and role names, respecitvely.

for all possible positions in the formula. On the other hand,
Definition 1 is still overly detailed apl calculates thex-
actnumber of positive literals being introduced when trans-
forming some (sub)formula.

In order to derive a more convenient characterization, ob-
serve that, since we require the valugobfo be smaller or
equal to 1 aall positions of the concept, there cannot be any
sub-concepts of higher values, even though the value of the
subconcept is not decisive for some cases of the calculation

to a non-negative integer as specified in Table 2, where Of pl (€.g. forpl"(3RC)). Thus we can generally restrict

sgn(0) = 0 andsgn(n) = 1 for n > 0. We define a func-
tion pl that assigns to eac8H 7Q-concept D and position
p in D a non-negative integer by setting:
pI*(Dlp)  if pol(D,p) =1,
I(D, p) = _ :
PID. P) { pI-(Dly) if pol(D, p) = -1,

A concept C i¢ornif pl(C, p) < 1 for every position pinC
(including the empty positiog). An extensionally reducéd
ALCHIQ knowledge base KB dornif -C 1 D is Horn

for each axiom G D of KB.

While suitable as a criterium fatheckingthe Hornness
of single axioms or knowledge bases, this definition is not
particularly suggestive as a description of the class ohHor

to concepts with gl-value< 1. To do so, one has to con-
sider four diterent classes of concepts, having-xalue ei-
ther=0 or <1 when occuring either at a positive or negative
position in a formula. Appropriate classes BfLCHIQ
concepts are defined in Table 3, where notation is simpli-
fied by omitting concepts that are obviously equivalent to
those already included. For example, we G&C instead

of >1R.C, and exploit commutativity and associativityrof
andu.

Intuitively, the classe€| andC;] define exactly those
concepts for which the value @f is smaller or equal to 0
and 1, respectively. In particuldZ; denotes the class of all
Horn concepts. Let us now show this formally.

knowledge bases as a whole. Indeed, it is not readily seen amma 1 A SH7Q concept D is inC} (C5) iff we find

for which formulaepl yields values smaller or equal to 1

10A knowledge base isxistentionally reducei its ABox contains only
literal concepts. This can always be achieved by introduciew names
for complex concept terms.

for every position p in D (in=D), that pl(D,p) = 0
(pI(=D, p) = 0).

Proof: Observe that usingD in the condition forCj re-



flects the fact that those concepts occur only at negativeposition polarity, or any of the auxiliray functionpl®/~).
subpositions in concepts of tyige. The proof proceeds Itis possible to further extend the above characterisation
by induction over the structure of concepts. For the baseSH 7Q, and this has been done in [12].

casesL, T, andA, the claim is obvious. Now ldd = -C. So far, we only considered LCH I Q knowledge bases,
It is easy to see thdd € C{ iff C € C;. By the indcution i.e. we excluded transitivity from our treatment. The
hypothesis, this is equivalentpd(D, p) = pl(-=C, p) = 0 for reason is that transitivity axioms &+ 7Q are replaced
anyp. ConverselyD € Cj iff C € C, which is equivalent by ALCHIQ axioms before axioms are transformed into

to pl(C, p) = O for everyp in C. By the definition ofpl~, clausal normal form. These additional axioms can actu-
it is easy to see that this is equivalenti¢-D, p) = 0 for ally lead to non-Hornness as well. We refrain form giv-
everypin =D. ing a more precise description, which is readily obtained by

The remaining cases are very similar, and the argumentscombining our results forALCHIQ with the processing
for Cj andC; are mostly symmetric. We exemplify the of transitivity axioms described in [15].
required reasoning by considering the cd&3e= 3RC.
Clearly,pl(D, €) # 0, soD is notinCg. On the other hand, 3.3 Integrity Constraints
we find thatD € Cj iff C € Cj iff pl(=C, p) = O for ev-
ery p. By the definition ofpl™, this clearly is equivalent to

E h tricting to H the t f -
pl(-=D, p) = O for everyp. All other cases are shown analo- ven when restricting to Hors#(7Q, the transforma

tion algorithm can produce rules of the forn By A.. . A By

gOl_:_sth.? llowing is th ial It f h eri that do not have a head at all. These rules correspond to
tion € following 1S the crucial result for our charactenza- 5 ses of the formnB; Vv ... VvV =B, and thus can be re-

garded asntegrity constraintasserting that the statements
B; can never become true simultaneously. A typical exam-
ple are the disjointness-conditions of classes in OWL DL,
e.g., the stateme@ n D = L translates ta— C(X) A D(X).
(pI(=D, p) < 1). . , :

While logic programming systems often do not support

Proof: The proof proceeds as in Lemma 1, so we only con- such rules! this does not impose real restrictions on our
sider some specific cases of the induction. So assume thafanslation. To see why this is the case, recall that thegi

Proposition 1 A SHIQ concept D is inC] (C) iff we
find, for every position p in D (imD), thatpl(D,p) < 1

D = C1 UC,. ThenD e C* iff C; € CF andC, € C. By consequences of a Horn-program are obtained by consider-
: 1 0 1 L . . .

the induction hypothesis and the definitiorptf, we obtain ing its least (Herbrand) model: an atomic statementis a con-

pl(D, p) < 1 for all pin D. sequence of a Horn-program if and only if it is entailed by

Conversely, assume thal(D, p) < 1 for all pin D. For the least model. On the other hand, the role of integrity con-
this to hold at, all positions ot’her_them C, andC, must straints is to disallow certain interpretations for the wiko
be inC:. In addition,pl(D,€) = pI*(Cy) + pl*(Cy) < 1 _edge base. In the case of H(_)rn_-loglc this means that given
implies thatpl*(C;) = 0 or pI*(C,) = 0. Without loss of integrity constraints either eliminate the least modelsth
generality, we assume thalt (C1) = 0. By the definition of making the whole theory inconsistent, or otherwise have no
pl* andpl™, it is easy to see that this implig&(Cy, p) = 0 ©ffecton the reasoning at all.

for all pin C;. Thus, by Lemma 1C; € C¢. The case for .Therefore, it i_s not necessary f[(.).extend logic program-
D = C; UC, andC; is simpler, since values & andC, ming systems with spec_lal capabilities to support intggrit
are combined with the max operation here. All other casesconstraints. Instead, we just translate claus@gy...v-B,
are shown analogousty. into rulgs of the forminc « _Bl A A Bn, Where_lnc is a

Now we can sum up our results in the following corol- freshly introduced nullary “|n_cons.|stency” predu_:ate. €n
lary. can now query the system farc: if the answer is “yes”

theninc is true in the least model, and thus every model nec-

Corollary 1 An extensionally reduce@ LCHIQ knowl- essarily violates one of the constraintsintf is not entailed,
edge base KB is Hormj for all axioms CC D of KB, one then the knowledge base is consistent and can be queried as
finds that(-C L D) € C;. usual.

We argue that this definition is more easy to comprehend3.4 Equality
than the original characterization. For example, it is now
readily seen that the axiom2 R(C n dR.D) C YR~E is
of the formC] C C§ and is thus Horn, whereatR —-E C
>2R(Cm3JRD)is not. This is less obvious when consider-
ing the original definition. Also note that Corollary 1 only
depends on Table 3, but does not require the definition of !Rules with an empty head typically only appear as queries.

Equality plays an important role in many description log-
ics. The reason is that description logics have a classical
first-order semantics without a unique name assumption.




XX XzYe¥YxX XxZeXxYAYxZ tems described in the previous section. Therefore, we pro-

C(Y) « C(X) AX=~Y forevery concept name vide an additional wrapper applicatiatipconvert[16] as
R(Y1, Y2) « R(X1, X2) A X1 = Y1 A Xo 2 Y2 part of the KAON2 OWL Tools™® The latter is a collection
for every role nam&® of command line tools applicable for tasks ranging from sat-
isfiability testing to the conversion of OWL specifications
Table 4. Horn axioms for describing equality. into IATEX-processable logical formulae. In the following,

we briefly discuss the usage dipconvertand demonstrate

the algorithm for a concrete example.
Thus it is pOSSible that Syntactica”yffﬁrent |Ogica| con- In genera|'d|pconvertreads an 0nt0|ogy in OWRDF
stants denote the same element in a model. This can bgr OWL/XML format and transforms it into a logic pro-
stated eXplICItly in the form of ABox statements such as gram in Pro'og Syntax_ If invoked without further argu_
“a~ b butit can also be concluded indirectly during rea- ments, this transformation does not support Skolemization
soning. of existential quantifiers or any form of non-Horn clauses

The latter occurs when number restrictions appear in the(thus defining a form of “DLP” based on Ho®H 7 Q). If

knowledge base: given the axiomdR(a), R(a,b), and  the -X switch is useddipconvertuses the full capabilities

R(a, c), we conclude tha andc must denote the same el-  of KAON 2 to produce disjunctive Datalog from arbitrary
ement. Indeed, it is standard to treat number restrictigns b S#7Q input.

translating them into logical formulae that include eqtyali There is also anflogic option that syntactically ad-
statements. For example, the statemari(a) translatesto  jysts the output for use in an F-Logic system. In particular,
VX1, X R@ X)) AL AR@ X)) & X 2 X VX & this involves the usage of F-Logic’s “object oriented” syn-

X3 V...V X & X1, Where the consequent denotes the dis- tactic features, such &::D for denoting subclasses. We
junction of all pairwise equality statements among the-vari remark that the exact semantic interpretation of such syn-
ables. This is also the way how KAGNreats number re-  tax might depend on the reasoning engine that is employed.
strictions and thus these are closely tied to the support fora typical approach is to axiomatize :: and similar syntacti-
equality. cal constructs in the underlying (non-monotonic) logic-pro

f gramming paradigm, and to regard classes and relations as
logical terms, rather than as predicates. In contrast,rige o
inal semantics of F-Logic [11] was based on so-called “F-
Structures,” and employed classical monotonic negation. |
order to avoid lengthy discussions on the intended seman-
tics, we employ well-known Prolog syntax for the following

Unfortunately, equality reasoning in the presence o
functions symbols is a problem of formidabléfitiulty, and
an almost inevitable source of non-termination. Thus com-
mon logic programming systems typically do not provide
a native support for a general equality predicate. How-
ever, it is well known that one can axiomatically describe
an equality predicate in Horn logic, as long as only finitely examples, and mere_ly remarl_< that all of the programs could
many predicate symbols are considered. The correspondpe adjusted for use in F-Logic reasoners such as OntoBro-
ing clauses are depicted in Table 4. In order to ensure thatker' FLORA, or TRIPLE as well.

these rules do not impair decidability, one must slightly ex Besides the serialization in Prolog and F-Logic, the im-
tend them to becomBL-safe as explained in Section 5. plementation also enables the user to serialize the titadsla

In general, this restriction is also required for the prauffs rulebg\se in either RubIeMLI 0Sor alternatively in the pro-.
completeness of reasoning. Here, we only remark that with posed Semantic Web Rule Language SWRL [8] extension

the (DL-safe version of the) above rules, equality reaspnin of OWL.
is possible within logic programming systems. Note that SWRL as of now does not allow for the use of

disjunctive head atoms in a rule. Therefore, the semantics
of SWRL rules in KAON2 do not follow the standard at

4 Implementation and example this point. In the standard, multiple atoms in the head of
a rule should be interpreted as being conjunctive, but the
A precompiled binary distribution of the KAORimple- serialization will print them meaning a disjunction. In erd

mentation is available online, and can be downloaded freeto avoid ambiguities, only SWRL rules with a single literal
of charge for research and academic purpd$g$AON 2 in the head should be used when interchanging SWRL files.
is a whole infrastructure for managing and reasoning with The implementation will warn you, if you have rules with
ontologies, accessible via an API rather than through somemultiple head atoms.

basic disjunctive Datalog program, but does not yet incor- the ontology given in Table 5 (top). The according trans-
porate the specific adjustments to logic programming sys-

13http ://owltools.ontoware.org
12h‘ctp ://kaon2.semanticweb.org 14h‘ctp ://www.ruleml.org/0.9/



lation to Horn-logic is given in the middle and lower parts ioms usually must be involved in the saturation step (3) of
of the table. Let us first consider the middle part, which the transformation, as described in Section 3.1. Adding ax-
shows the rules directly created in the translation. Some ofioms after the transformation thus impairs the saturason,
the rules clearly represent (part of) so®#{ 7 Q-axiom, as that elimination of function symbols can yield incomplete-
is the case for ferson(X) :— nosiblings(X).” and axiom ness.

(4). Other rules are obtained by more complicated reason-

ing steps, such as e.gpdrent(X) :— manychildren(X).” 5.1 Adding ground facts

which is obtained from axioms (3) and (1). While such rules
are still fairly self-explicatory, there is also a numbeeaf
ioms that include predicates of the fo8n(X, X;) which do

not appear in the original knowledge base. These predicate
are introduced in the elimination of function symbols. tu
itively, St (X, Y) holds if Y = f(X). However, the predicates
St are only satisfied for a finite number of constants, since
arbitrary application of functions is not needed and might
even lead to undecidability. The exact number of additional
function symbols may vary from case to case. Finally, two
of the rules represent inconsistency constraints by mefans o

the predicaténc as discussed in Section 3.3. : ) oo
The rules at the bottom of Table 5 define various aux- axioms that introduce new individuals, one has to add an ax-
u INE Various aux- o m of the formO(a) to the program as well.

iliary predicates that are needed for the correctness of the Adding auxiliary factsO(a) corresponds to “registering”

translation. In order to restrict these definitions to a init L : : 2
. : . new individuals for reasoning with the program. This is
number of terms, we introduce a predic&@ethat speci- : .
fies the individuals for which the program applies. In our crucial, since the generated Datalog program does only re-
' fer to the registered individuals. Indeed, every rule that

case, these are just the individuals from the ABox. Using . : . .
. . . is obtained by the transformation uses only variables that
O, we defineS; as discussed above. Further, we introduce /. .
(finitely) depend on the predicate. Thus, one can use

a predicateHU defining which terms are considered in the
2 I : the generated rules only to deduce facts about the known
program, namely individuals fror® and their immediate . ~.% : . L
individuals, and reasoning for non-registered individual

successors for each function symbol. The remaining rules . : : :
ield the equality theory of Section 3.4, though restridted bound to be incomplete. As we will see in the next section,
y o restriction to known individuals also ensures decidabilit

the terms irHU. - . - .
. The ability to add-C(a) to the resulting disjunctive Dat-
The resulting program now allows us to conclude ) .
alog does of course refer to the usual first-order semarttics o
several ABox statements.  For example, we can Ole'ne ation. In the logic programming setting, it is thus trans
rive that ‘parent(Elaine)” and that “SirLancelot ~ 9 ' gic prograr g 9 . .
lated to «C(a), which can either be read as an integrity

Lancelot du Lac.” However, asking queries requires special . . .
. ' , : . constraint that disallow&(a), or as a query asking whether
care, since the generated program is not semanucallyequwg(a) is provable. As discussed in Section 3.3, the results de-

alent to the original knowledge base. We discuss this aspect’ AR ) )
9 9 P rived in this situation by a Horn logic programming system

in the next section in greater detail. fully agree with the semantics of first-order logic in both
) ] . cases. One should be aware that this hinges upon the fact
5 Realized interoperability that one only asks for positive information: the given in-
tegrity constraint, when interpreted by the logic program,
The transformation of OWL DL into Horn logic pro- states tha€(a) cannot be true, not that it is false in a classi-
grams described so far can be used to check satisfiabilitycal sense. Especially, negated ABox statements have noth-
of the knowledge base in a logic programming system. In ing to do with the nonmonotonic negation (as failure) that
this section we describe which programs and rules can nowis used in some logic programming systems.
safely be added to the output of the transformation without  The situation for facts of the formR(a, b) is more in-
loosing soundness or completeness of reasoning. The folvolved than for the above cases. Note that, in description
lowing discussion fiects querying as well, since asking a logics, such statements are often not allowed in the ABox at
query is equivalent to adding the query (as a rule with an all, and thus the lack of support for such negations does not
empty head) to the program, and checking satisfiability. affect the soundness or completeness of the transformation
It has been remarked earlier that, in general, adding fur-algorithm. Still, as observed in [15], addirgr(a, b) to the
ther axioms to the transformed program requires to invoke knowledge base is unproblematic if the r&les simplei.e.,
the transformation algorithm again. The reason is that ax-has no transitive subroles. As remarked in Section 3.1, the

First, we discuss under which circumstances ground lit-
erals (positive or negative) can be added to the transformed
inowledge base. Ground facts of the fo@ta), -C(a), and
R(a, b) do not dfect the saturation step of the transforma-
tion algorithm, since the associated inferences can also be
drawn from the final logic program. Thus, one can generally
disregard ABox axioms in the transformation and add them
afterwards instead. However, as illustrated in Sectiohé, t
transformed program needs to contain auxiliary axioms for
each individual that occurs in the ABox. Thus, when adding



TBox/RBox ABOX

(1) Parent = 3 hasChild. T hasChild(Elaine Sir Lancelot)
(2) Person C d childOf.Person noSiblings(Lancelot du Lac)
(3) ManyChildren C >2hasChild.T childOf(Lancelot du LacElaine)
(4) NoSiblings T Person n Y childOf.(<1 hasChild.T)
(5) childOf = hasChild™t

person(X) :— nosiblings(X). person(X3) :— person(X), St3(X, X¢3).

parent(X) :— haschild(X, Y). parent(X) :— manychildren(X).

haschild(Y, X) :— childof(X, Y). haschild(X, Xs1) :— manychildren(X), Ss1(X, X¢1).

haschild(X, Xt2) :— parent(X), Si2(X, Xt2). haschild(X, Xtg) :— manychildren(X), Sto(X, Xto).
childof(X, Xt3) :— person(X), Stz(X, Xt3). childof(Y, X) := haschild(X, Y).
Y1 = Y2 :— nosiblings(X), childof(X, Z), haschild(Z, Y1), haschild(Z, Y>).
inc :— manychildren(X), nosiblings(Xy), childof(Xg, X).
inc :— X1 = Xo, manychildren(X), St1(X, Xt1), Sto(X, Xto).
St(X, (X)) :—= O(X). HU(X):— O(X). HU(f(X)) :— O(X). (for f € {fo, fy, T2, f3})
X = X = HU(X).
X=Y:= Y= X HU(X),HUCY).
X~Z: - X=xVY,Y=ZHUX),HU), HUZ).
C(Y) = C(X), X = Y, HU(X), HU(Y).
(for C € {person, parent, manychildren, nosiblings})
R(Yl, Yz) — R(Xl, XQ), Xl = Y1, X2 =~ Yz, HU(X]_), HU(Xz), HU(Y]_), HU(Xz).
(for R € {childof, haschild})

O(Elaine) O(Sir Lancelot) O(Lancelot du Lac)

Table 5. An example ontology in Horn-  SHZQ (top), and its translation into Horn-logic, consisting of
the translated rules (middle) and auxiliary axioms (bottom ).

elimination of transitivity axioms performed by the algo- clear that all individuals that are added to a program must be
rithm does not yield a logically equivalent knowledge base. “registered” via statements of the for@(a). Failing to do
Moreover, even equisatisfiability is only ensured for formu so generally results in incompleteness. If this is takea int
lae that regularly belong t8§H7 Q. account, arbitrary ground (Horn) rules can safely be intro-
Fortunately, the additional expressiveness of Horn logic duced into the program. The situation for rules and queries
allows us to recover transitivity axioms for the case of neg- that include variables is more complicated, and regisgerin
ative non-simple roles as well. Indeed, transitivityRo€an individuals is not stficient in this case.
simply be expressed by a rUX, Z) < R(X,Y) A R(Y, Z). However, reasoning remains sound and complete if one
As discussed in the following section, we could slightly considers only rules that af@L-safe The intention is to
extend this rule to make DL-safeand ensure decidabil-  restrict the scope of rules to those known individuals that
ity. The addition of the above rule obviously is sound. On occur in the (finite) Herbrand universe of the transformed
the other hand, attempting to remove all transitivity ax$om program. More formally, we define a DL-safe rule as a
in a preprocessing step and replacing them by axioms offunction-free Horn ruleA « By A ... A By, such that for
the above form after the transformation might destroy com- every variableX that occurs in the rule, there is a non-DL
pleteness of the algorithm. The reason is that (the trans-atomB; within which X occurs. A common way to achieve
formed) transitivity axioms play an important role during DL-safety is to addHU(X) for each variable occurring in
the saturation step, where one must draw enough consethe head of a rule, fiectively restricting each rule to the

guences to justify the elimination of function symbols. Herbrand universe of the program.
. It is also well known that the combination of OWL DL
5.2 Complex rules and queries with arbitrary Horn-rules is undecidable [8]. Restrictitag

DL-safe rules thus does not only ensure completeness of
Let us now turn to more complex rules and queries. reasoning, but is also needed to obtain a decidable formal-
Given the discussion in the previous section, it should beism. Indeed, it is easy to see that DL-safe rules do not in-



troduce major termination problems, since they allow only once knowledge of a basic form is added or when the sys-
for finitely many possible variable assignments. In facy, an tem is queried. The benefit from thisfiine translation is
DL-safe rule, and all of the generated program, could also apparent from the involved worst-case complexities: The
be “unfolded” into finitely many ground rules, and treated KAON 2 translation algorithms arexeTmve, while the re-

as a propositional logic specification. sulting Datalog is polynomial.

In addition to normal Horn-rules, many logic program- The basic functionality of our approach is thus as fol-
ming systems also support certain kinds of nonmonotoniclows: Given a HornSH7Q knowledge base, it is trans-
negation operators. These can often be described as a kinfPrmed diline into Datalog. ABox assertions for named
of negation as failurethough the exact definition of “fail- ~ classes can then be added to the Datalog knowledge base
ure” may vary (e.g. in taking cyclic proofs into account or as they become known. For querying, we allow only the
not). One might ask to what extent the generated programretrieval of instances of named classes, as this can be per-
allows for a sound and complete interaction with such non- formed without touching the Datalog knowledge base.
monotonic formalisms. However, given that the formal se-  In principle however, it is possible to query for instances

mantics of such systems is often not defined with respect toof certain complex classes or TBox knowledge, however
first-order logic, it is not clear what “sound” or “complete”  this involves the addition of some OWL axiom to the orig-

means in this setting. Clearly, nonmonotonic negation is inal Horn-SH7Q knowledge base, which in turn necessi-
not sound with respect to the semantics of negation in de-tates to invoke the KAOR translation algorithm again. We
scription logics, and thus cannot be used to query for suchthink that this process can be enhanced by using incremen-
knowledge. On the other hand, nonmonotonic negation cantal algorithms, but this remains to be investigated.

still be used “on top” of the knowledge base, provided that

the results are interpreted in an appropriate way. For ex-6 Conclusions

ample, the query—not C(a) can safely be used to find out
whether the logic programming system fails to construct a
proof for C(a), and this knowledge could be used by other
modules of the logic program.

Employing the transformation algorithm of KAQ2\we
gave a detailed description of how a considerable fragment
of OWL DL can be processed within logic programming
systems. To this end, we derived an enhanced characteriza-
tion of Horn-SHIZQ, the description logic for which this
translation is possible, and explained how the generated

In addition to the question of semantic interoperability, Datalog programs can be used in a standard logic program-
one also has to take into account whether the logic program-

. ) . ming paradigm without sacrificing soundness or complete-
ming system is actually able to work with the generated pro- gp g g P

L ~.o 7 ness of reasoning. The primary contribution of our study
gram. Even though the problem of determining satisfiability thus is to clarify to which extent KAOR enables semantic
is decidable for the class of knowledge bases we consider

. ) : interoperability between the ontology modeling paradigms
this does not mean that a particular system will actually of description logics and logic programming, and how this
decide all of the cases. Although the generated program ’

ld b d with al i logi . : interoperability can be realized in practice. Nonetheldmss
could be used with aimost any logic programming System, yeqeripeqd procedure may actually find practical applicetio
it turns out that simple SLD-resolution may run into loops

h luating th ted Since th within research projects such as Smart\A&b.
\r’\éfsget\éaf}lnaitler;g nge?:éﬁli?juzlr;%rna}msii ism(;:k?vioﬁsprtcr)\g;am Our contribution leaves various open questions to be in-
y y Y vestigated in the future. Can the KA@Nransformation al-

tser(';?]";zt';zgésgﬁg prgb:ae”m érr]nprlgz:?rl]e. tgﬂggggt Isggtzms gorithms be used for merging OWL and F-Logic databases?
u g usually emp ng P Can they possibly contribute to establishing powerful-nte

or use modified bottom-up strategies like OntoBroker), and : :
Ehis always sffices to obta?n termi?\ation in our setting) grated or hybrid systems based both on the logic program-
y ' ming and on the description logic tradition? Can practical

systems for large scale applications be developed where dif
ferent ontology language paradigms can be dealt with in an
] ) . interoperable way?

_ We have seen that certain fa}cts, including ABox asser-  Tpe sophisticated KAOR algorithms significantly en-
tions and negated ABox assertions for named classes, Cafyrge the class aB#7Q ontologies processable in a logic
be added to the knowledge base afte_r the trar_lslation Perhrogramming system. Although this extended scope is re-
formed by the KAONe translation algorithms. This feature  fiacted in an increased worst-case complexity and rules out

can be put to use for practical query answering, as it al- e possibility of a semantically equivalent transforroati
lows to translate the knowledge bas@line, which means

that the KAONR algorithms do not have to be invoked again ~ Shttp://www.smartweb-project.de

5.3 Termination

5.4 Offline processing




it still allows for nontrivial semantic interactions betere

the two paradigms. Such interaction does not only yield
ways to transfer knowledge between heterogeneous sys-
tems, but also, as in the case of DL-safe rules, can encom-

pass future extensions of the current ontology modeling lan [11

guages.
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