On the Computational Complexity of Naive-based Semantics for Abstract Dialectical Frameworks Sarah Gaggl ¹ Sebastian Rudolph ¹ Hannes Strass ² ¹Technische Universität Dresden, Germany ²Universität Leipzig, Germany Buenos Aires, 31st July 2015 UNIVERSITÄT LEIPZIG # Motivation - Abstract dialectical frameworks (ADFs): a powerful generalisation of Dung's abstract argumentation frameworks - ADFs allow to model argumentation scenarios s.t. that ADF semantics provide interpretations of scenarios - Naive-based semantics are built upon the fundamental concept of conflict-freeness - Exhaustive analysis of computational complexity of naive-based semantics - Interesting results: some involve little-known classes of so-called Boolean hierarchy (another hierarchy in between classes of polynomial hierarchy) - Credulous and sceptical entailment: different complexity depending on whether we check for truth or falsity of statement # **ADFs and Semantics** # Example ``` cfi(D) = \{ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{u}, c \mapsto \mathsf{u}, d \mapsto \mathsf{u} \}, \\ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{t}, c \mapsto \mathsf{u}, d \mapsto \mathsf{u} \}, \\ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{u}, c \mapsto \mathsf{t}, d \mapsto \mathsf{u} \}, \\ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{u}, c \mapsto \mathsf{t}, d \mapsto \mathsf{u} \}, \\ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{t}, c \mapsto \mathsf{t}, d \mapsto \mathsf{u} \}, \\ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{t}, c \mapsto \mathsf{t}, d \mapsto \mathsf{d} \}, \\ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{t}, c \mapsto \mathsf{t}, d \mapsto \mathsf{t} \}, \\ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{t}, c \mapsto \mathsf{t}, d \mapsto \mathsf{t} \}, \\ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{f}, c \mapsto \mathsf{f}, d \mapsto \mathsf{f} \} \} nai(D) = \{ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{f}, c \mapsto \mathsf{f}, d \mapsto \mathsf{f} \}, \\ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{f}, c \mapsto \mathsf{f}, d \mapsto \mathsf{f} \}, ``` ### **Definition** Let D = (S, L, C) be an ADF. A three-valued interpretation $v : S \rightarrow \{t, f, u\}$ is - conflict-free, i.e. $v \in cfi(D)$, iff for all $s \in S$ we have: - v(s) = t implies that φ_s^v is satisfiable, - v(s) = f implies that φ_s^v is unsatisfiable; - naive, i.e. $v \in nai(D)$, iff v is \leq_i -maximal conflict-free; # Main Results | | cfi | nai | stg | nai ₂ | |---------------------|-----------------|--------------------------------|-----------------|------------------| | Ver_σ | | П ₂ ^P -с | | | | $Exists_\sigma$ | coDP-c | coDP-c | coDP-c | coDP-c | | $Cred^{t}_{\sigma}$ | NP-c | NP-c | Σ_3^P -c | Σ_3^P -c | | $Cred^{f}_{\sigma}$ | Σ_2^P -c | Σ_2^P -c | Σ_3^P -c | Σ_3^P -c | | $Scep^t_\sigma$ | trivial | Π_2^P -c | Π_3^P -c | Π_3^P -c | | $Scep^f_\sigma$ | trivial | Π_3^P -c | Π_3^P -c | Π_3^P -c | ### **Decision Problems** Let D = (S, L, C) be an ADF, σ a semantics. - Ver_{σ}: given $v : S \to \{t, f, u\}$, is $v \in \sigma(D)$? - Exists_{σ}: does there exist a non-trivial interpretation $v \in \sigma(D)$? - $\operatorname{Cred}_{\sigma}^{\mathsf{t}}/\operatorname{Cred}_{\sigma}^{\mathsf{f}}$: $s \in S$, does there exist an interpretation $v \in \sigma(D)$ with $v(s) = \mathsf{t}/v(s) = \mathsf{f}$? - Scep^t_{σ} / Scep^f_{σ}: $s \in S$, is v(s) = t / v(s) = f for all $v \in \sigma(D)$?