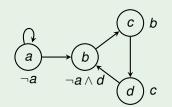
On the Computational Complexity of Naive-based Semantics for Abstract Dialectical Frameworks

Sarah Gaggl ¹ Sebastian Rudolph ¹ Hannes Strass ²

¹Technische Universität Dresden, Germany ²Universität Leipzig, Germany

Buenos Aires, 31st July 2015


UNIVERSITÄT LEIPZIG

Motivation

- Abstract dialectical frameworks (ADFs): a powerful generalisation of Dung's abstract argumentation frameworks
- ADFs allow to model argumentation scenarios s.t. that ADF semantics provide interpretations of scenarios
- Naive-based semantics are built upon the fundamental concept of conflict-freeness
- Exhaustive analysis of computational complexity of naive-based semantics
- Interesting results: some involve little-known classes of so-called Boolean hierarchy (another hierarchy in between classes of polynomial hierarchy)
- Credulous and sceptical entailment: different complexity depending on whether we check for truth or falsity of statement

ADFs and Semantics

Example


```
 cfi(D) = \{ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{u}, c \mapsto \mathsf{u}, d \mapsto \mathsf{u} \}, \\ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{t}, c \mapsto \mathsf{u}, d \mapsto \mathsf{u} \}, \\ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{u}, c \mapsto \mathsf{t}, d \mapsto \mathsf{u} \}, \\ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{u}, c \mapsto \mathsf{t}, d \mapsto \mathsf{u} \}, \\ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{t}, c \mapsto \mathsf{t}, d \mapsto \mathsf{u} \}, \\ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{t}, c \mapsto \mathsf{t}, d \mapsto \mathsf{d} \}, \\ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{t}, c \mapsto \mathsf{t}, d \mapsto \mathsf{t} \}, \\ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{t}, c \mapsto \mathsf{t}, d \mapsto \mathsf{t} \}, \\ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{f}, c \mapsto \mathsf{f}, d \mapsto \mathsf{f} \} \}   nai(D) = \{ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{f}, c \mapsto \mathsf{f}, d \mapsto \mathsf{f} \}, \\ \{a \mapsto \mathsf{u}, b \mapsto \mathsf{f}, c \mapsto \mathsf{f}, d \mapsto \mathsf{f} \},
```

Definition

Let D = (S, L, C) be an ADF. A three-valued interpretation $v : S \rightarrow \{t, f, u\}$ is

- conflict-free, i.e. $v \in cfi(D)$, iff for all $s \in S$ we have:
 - v(s) = t implies that φ_s^v is satisfiable,
 - v(s) = f implies that φ_s^v is unsatisfiable;
- naive, i.e. $v \in nai(D)$, iff v is \leq_i -maximal conflict-free;

Main Results

	cfi	nai	stg	nai ₂
Ver_σ		П ₂ ^P -с		
$Exists_\sigma$	coDP-c	coDP-c	coDP-c	coDP-c
$Cred^{t}_{\sigma}$	NP-c	NP-c	Σ_3^P -c	Σ_3^P -c
$Cred^{f}_{\sigma}$	Σ_2^P -c	Σ_2^P -c	Σ_3^P -c	Σ_3^P -c
$Scep^t_\sigma$	trivial	Π_2^P -c	Π_3^P -c	Π_3^P -c
$Scep^f_\sigma$	trivial	Π_3^P -c	Π_3^P -c	Π_3^P -c

Decision Problems

Let D = (S, L, C) be an ADF, σ a semantics.

- Ver_{σ}: given $v : S \to \{t, f, u\}$, is $v \in \sigma(D)$?
- Exists_{σ}: does there exist a non-trivial interpretation $v \in \sigma(D)$?
- $\operatorname{Cred}_{\sigma}^{\mathsf{t}}/\operatorname{Cred}_{\sigma}^{\mathsf{f}}$: $s \in S$, does there exist an interpretation $v \in \sigma(D)$ with $v(s) = \mathsf{t}/v(s) = \mathsf{f}$?
- Scep^t_{σ} / Scep^f_{σ}: $s \in S$, is v(s) = t / v(s) = f for all $v \in \sigma(D)$?